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In this work, our primary goal has been to explore the range of validity of two-mode models for Bose-
Einstein condensates in double-well potentials. Our derivation, like others, uses symmetric and antisymmetric
condensate basis functions for the Gross-Pitaevskii equation. In what we call an “improved two-mode model”
�I2M�, the tunneling coupling energy explicitly includes a nonlinear interaction term, which has been given
previously in the literature but not widely appreciated. We show that when the atom number �and hence the
extent of the wave function� in each well vary appreciably with time, the nonlinear interaction term produces
a temporal change in the tunneling energy or rate, which has not previously been considered to our knowledge.
In addition, we obtain a parameter, labeled “interaction tunneling,” that produces a decrease of the tunneling
energy when the wave functions in the two wells overlap to some extent. Especially for larger values of the
nonlinear interaction term, results from this model produce better agreement with numerical solutions of the
time-dependent Gross-Pitaevskii equation in one and three dimensions, as compared with models that have no
interaction term in the tunneling energy. The usefulness of this model is demonstrated by good agreement with
recent experimental results for the tunneling oscillation frequency �Albiez et al., Phys. Rev. Lett. 95, 010402
�2005��. We also present equations and results for a multimode approach, and use the I2M model to obtain
modified equations for the second-quantized version of the Bose-Einstein double-well problem.
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I. INTRODUCTION

The analogy between double Bose-Einstein condensates,
separated by a barrier, and Josephson oscillations of super-
conductors �1� was apparently first suggested by Javanainen
�2�, and has been developed more thoroughly in a number of
theoretical studies �3–20�. Especially from work in �4,5,10�
and more recently in �12,18�, a rather elaborate picture of
phase-space dynamics has now been developed. The equa-
tions for tunneling oscillations of Bose-Einstein condensates
in a double-well potential have been shown to resemble a
pendulum whose length depends on the momentum. In the
limit of small-amplitude oscillations, the equations are the
same as for Josephson oscillations for superconductors sepa-
rated by a weak link �21�. It has also been shown that when
atom-atom interactions exceed a critical value, the ensemble
will remain trapped in one well while the phase continually
increases, resembling a pendulum with sufficient energy to
rotate.

Experiments showing interference when condensates in a
potential with a barrier were released �22� first stimulated
interest in the problem of Bose-Einstein condensates in a
double-well potential. More pertinent to the present discus-
sion are experiments that probe the evolution of the distribu-
tion between two or more wells of an optical lattice. Joseph-
son oscillations have been observed in one-dimensional �1D�
optical potential arrays �23�. Recently for a double-well po-
tential, both the regimes of tunneling and self-trapping of Rb
atoms were observed �24�. In view of proposed extensions of
these and other experimental techniques �25–29�, it seems
appropriate now to reexamine the theory with the goal of
developing models to deal with more diverse conditions.

It is often assumed that the “tight-binding” approximation
is valid, leading to what is known as the Bose-Hubbard

model �30,31�, or discrete nonlinear Schrödinger equation
�32,33�. This model, which has been confirmed under the
experimental conditions of �23�, employs parameters for tun-
neling and on-site energy that are usually taken to be con-
stant. One expects that with sufficiently large numbers of
atoms, the atom-atom repulsion will cause the wave func-
tions in a well to vary in size depending on the atom number,
and consequently, the tunneling parameter and on-site energy
might vary.

In this paper, we show that solutions of a two-mode
model based on symmetric and antisymmetric solutions of
the Gross-Pitaevskii equation �11,13,20,34�, yield a param-
etrization for the double-well problem that produces agree-
ment with solutions of the time-dependent Gross-Pitaevskii
equation up to large values of the interaction term. Applied
in 3D to actual experiments on Bose-Einstein condensates in
a double-well potential �24�, this parametrization reproduces
the oscillation frequencies within experimental error, while a
simpler model exhibits self-trapping behavior under the same
conditions. The key element here is a tunneling parameter
that explicitly includes interaction effects. Although similar
tunneling parameters have been presented in the past by Gio-
vanazzi et al. �13�, the implications have not been examined
in detail. We will refer to this more exact two-mode model as
an “improved two-mode” �I2M� model, to distinguish it from
the standard two-mode �S2M� model, in which an interaction
term does not appear in the expression for the tunneling pa-
rameter. Despite the additional terms needed for the I2M, the
equations eventually reduce to the same form as for the S2M
or for the usual Bose-Josephson junction equations. How-
ever, the parameters are defined differently, and there is one
additional term that can be significant for strong interactions
and high barriers.
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Below, we compare results obtained with the I2M to those
obtained with the S2M, with results of a multimode model,
and then with numerical solutions of the time-dependent
Gross-Pitaevskii equation �TDGPE�. The parameters used in
the two- or multimode models are obtained from numerical
solution of the stationary Gross-Pitaevskii �GP� equation, so
it is perhaps not surprising that the model that mimics the GP
equation most closely also best reproduces results from the
TDGPE. For very large interactions, results from any two-
mode model will deviate from the TDGPE results, but agree-
ment is most persistent with the I2M. Under conditions of a
particular experiment, effects of nonzero temperature and ex-
perimental uncertainties may be larger than the differences
shown below.

The present study emphasizes a mean-field approach us-
ing the GP equation, assumes that fluctuations and thermal
excitations are negligible, and does not quantize particle
number. Thus the particle number difference and phase dif-
ference of atoms in two wells or two modes are classical
quantities in this approach. Considerable theoretical effort
has been devoted to second-quantized forms �4,7–9,18,19�.
We show in Sec. II E that the I2M leads to a second-
quantized model containing terms that can be interpreted as
correlated hopping effects. As shown in Ref. �18�, the clas-
sical patterns appear clearly in the quantum phase-space pic-
ture with as few as ten atoms.

An outline of this paper is as follows. Section II is de-
voted to 1D models. After a brief presentation of the time-
dependent Gross-Pitaevskii equation for double-well prob-
lems �Sec. II A�, we present equations for two-mode models
and compare certain results �Sec. II B�. Sec. II C lays out a
multimode approach, Sec. II D discusses dynamics in phase
space, and Sec. II E gives equations for a second-quantized
version. Experiments are of course in 3D, with some degree
of transverse confinement. Therefore in Sec. III we present a
formalism for 3D calculations and give a few results, includ-
ing comparisons with the experimental results of Ref. �24�.

II. MODELS

A. Time-dependent Gross-Pitaevskii equation

When the temperature is sufficiently low and when par-
ticle numbers are sufficient that second-quantization effects
are not important, the time-dependent Gross-Pitaevskii equa-
tion may be used for the wave function ��x , t� for interacting
Bose-Einstein condensate atoms at zero temperature in an
external potential Vext�x�. Letting �=m=1, a dimensionless
version is

i
��

�t
= −

1

2

�2�

�x2 + Vext� + g���2� . �1�

The relationship between g and g3D will be discussed in Sec.
III A. Here �dx ���x , t��2=N, where N is the number of at-
oms. Except in Sec. II E, N is not quantized, and the ap-
proach is strictly mean field.

We consider double-well potentials Vext�x� that are sym-
metric in x. Initially, we discuss one-dimensional versions.
Under the above conditions, we will use results obtained

with the TDGPE to test two-mode and multimode models
discussed below. The TDGPE can tell us, for example,
whether the phase is nearly constant as a function of x over
an individual well.

B. Two-mode models

In many situations, a good approximation is obtained with
a two-mode representation of ��x , t�. In early work �4�, wave
functions localized in each well were used. Later, ± combi-
nations of symmetric and antisymmetric functions, as in
Refs. �5,10,11� provided a more accurate formulation, and
we follow the approach of Ref. �11� here:

��x,t� = �N��1�t��1�x� + �2�t��2�x�� , �2�

�1,2�x� =
�+�x� ± �−�x�

�2
, �3�

where

�±�x� = ± �±�− x�, � dx �i� j = �i,j, i, j = + ,− .

�4�

The �± will be assumed to be real, and to satisfy the station-
ary GP equations

�±�± = −
1

2

d2�±

dx2 + Vext�± + ḡ��±�2�±, �5�

with ḡ=gN.
We can now define

z�t� 	 ��1�t��2 − ��2�t��2, �6�

��t� 	 �2�t� − �1�t� . �7�

Here �i�t� are the phase arguments of the complex-valued
function �i�t�: �i�t�= ��i�t� �ei�i�t�. The above normalization
conventions lead to a constraint on the �i�t�:

�
−	

	

dx���2 = N ⇒ ��1�t��2 + ��2�t��2 = 1. �8�

Note that �1 ��2� primarily occupies the left �right� well, but
has nonzero density on the other side. In order to compare
with results of the TDGPE, we define the number of atoms in
the left well as follows:

NL = �
−	

0

dx���x,t��2 =
N

2
+ NzS , �9�

and we define S and 
n as

S = �
−	

0

dx �+�x���−�x��, 
n =
NL − NR

N
= 2zS . �10�

From the ansatz �2�, the TDGPE �1�, and the GP equation
�5�, eventually one obtains differential equations for z and �.
We here briefly outline this derivation. In the following,
these quantities will be used:
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�ij = ḡ� �i
2�x�� j

2�x�dx �i, j = + ,− � ,


� = �−− − �++,


� = �− − �+,

A =
10�+− − �++ − �−−

4
,

B = �− − �+ +
�++ − �−−

2
= 
� −


�

2
,

C =
�++ + �−− − 2�+−

4
,

F =
�+ + �−

2
− �+−, �11�

where �+ and �− are defined in Eq. �5�. Substitution of Eqs.
�2� and �5� into Eq. �1� yields

i
d�1�t�

dt
��+ + �−� + i

d�2�t�
dt

��+ − �−�

= 

±
���1�t� ± �2�t����± − gN��±�2��±

+
gN

2 

±

��±
3P± + �±

2��Q±� , �12�

where

P± = 2��1 ± �2� − ��1�2�1 � ��2�2�2 ± �1
2�2

* + �2
2�1

*,

Q± = ± 2��2 − �1� + 5�1��1�2 � 5�2��2�2 ± �1
2�2

* − �2
2�1

*.

The usefulness of the �± basis is evident here, since integrals
with odd powers of �+ or �− vanish. From the above equa-

tions, the following equations for �̇1,2�t� are obtained for the
I2M:

i
d�1

dt
= �F + A��1�2 −


�

4
�1�2

*�1,

− �
�

2
−


�

4
��2�2 − C�1

*�2�2 = M1�1 − K1�2,

i
d�2

dt
= �F + A��2�2 −


�

4
�2�1

*�2,

− �
�

2
−


�

4
��1�2 − C�2

*�1�1 = M2�2 − K2�1. �13�

By contrast, evolution equations for the S2M are written
typically as follows:

i
d�1

dt
= �E1

0 + U1��1�2��1 − K�2,

i
d�2

dt
= �E2

0 + U2��2�2��2 − K�1, �14�

where, for i=1 or 2,

Ei
0 =� dx�1

2
���i�2 + ��i�2Vext ,

Ui = gN� dx��i�4,

K = −� dx�1

2
���1 � �2� + �1Vext�2 . �15�

To relate Ei
0 �i=1,2� to �± and �±,±, we define, for i

= + ,−,

i =� dx�−
1

2
�i

d2�i

dx2 + �iVext�i = �i − ḡ���i�4� = �i − �ii.

�16�

Then

E1
0 = E2

0 = E =
+ + −

2
. �17�

Furthermore,

U1 = U2 = U = ḡ���1,2�4� =
ḡ

4
���+ ± �−�4�

=
1

4
��++ + 6�+− + �−−� = A + 2C .

�18�

In the symmetric or antisymmetric basis, the coupling term
becomes

K =
− − +

2
=


� − 
�

2
=

B

2
−


�

4
. �19�

Comparison of Eqs. �13� and �14�, and definitions of
quantities therein, tells us the essential differences in the two
models. In the S2M, the tunneling parameter K does not
explicitly involve atom-atom interactions, and does not vary
when z and � vary. To understand the effective tunneling
parameter�s� in the I2M, we need ��1,2�2= �1±z� /2 and
�1

*�2= �1/2���1−z2�ei�. Thus in the limit z=�=0, the effec-
tive I2M tunneling parameters are

K1 = K2 =

�

2
−


�

8
+

C

2
= K +

3
�

8
+

C

2
. �20�

The magnitude of this difference between K1,2�z=�=0� and
K will be shown below for various cases.

For z�0,�=0, K1 increases in value and K2 decreases,
while the reverse is the case for z�0,�=0. As more atoms
accumulate on the left side, the wave function expands due
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to the repulsive atom-atom interaction, so the tunneling rate
to the right increases. At the same time, the wave function on
the right diminishes and the tunneling from right to left de-
creases, as expected. We find that this effect is typically
smaller than the correction to Ki for z=0 discussed above.

The term in C is an even smaller effect. To understand the
role of C, it is helpful to rewrite it as

C = ḡ� dx �1
2�2

2, �21�

which shows that C increases as the overlap of the right and
left wave functions increases. This occurs when �+ ap-
proaches the top of the barrier, near the limit of validity of
any two-mode model, as discussed below. Under such cir-
cumstances, and when �=0, �z� is maximum, the term in C
produces a decrease in both K1 and K2. This is therefore a
“pre-tunneling” effect proportional to the nonlinear interac-
tion that we will refer to as “interaction tunneling.” When the
wave functions are already overlapped to some extent, the
tunneling capability is diminished by an amount that depends
on the interaction.

Remarkably, despite some complexity of the additional
terms in the I2M, relatively simple equations of familiar
form can be obtained with no approximations beyond the
assumption of a two-mode representation of �, as in Eq. �2�.
Equations �1�, �2�, �5�, �12�, and �3� are used. We obtain for
the I2M

d�

dt
= Az +

Bz
�1 − z2

cos � − Cz cos 2� ,

dz

dt
= − B�1 − z2 sin � + C�1 − z2�sin 2� . �22�

These equations can be written in Hamiltonian form,

ż = −
�H

��
, �̇ =

�H

�z
�23�

with the Hamiltonian

HI2M = A
z2

2
− B�1 − z2 cos � +

1

2
C�1 − z2�cos 2� . �24�

This Hamiltonian is an integral of motion for a classical
system with generalized coordinates (z�t� ,��t�) and dynami-
cal properties �22� and will be referred to later as a classical
Hamiltonian. H is not equal to the expectation value
��H�� / ���� of the quantum Hamiltonian H=− 1

2�2 /�x
+Vext�x�+g ���2 within the two-mode approximation �2�.
Since ��x , t� defined as Eq. �2� is not an eigenfunction of H,
the expectation value ��H�� / ���� is not constant over time.
However, the Hamiltonian �24� provides information about
dynamics in phase space, including self-trapping, as will be
discussed in Sec. II D.

For the S2M, the corresponding Hamiltonian is

HS2M = U
z2

2
− 2K�1 − z2 cos � . �25�

In the limit �z � �1, the Josephson-junction form is

HS2M � Ec
z2

2
− EJcos � , �26�

where Ec is the on-site Coulomb energy and EJ is the Joseph-
son coupling energy. Thus A�Ec�U and B�EJ�2K. We
note here that the expression given in Ref. �13� for EJ can be
shown to be identical to B:

EJ = − N� dx �1�x��H0 + gN�1
2�x���2�x� = B �27�

where H0=−�1/2�d2 /dx2+Vext�x�.
Having outlined these two two-mode models, we now

consider the range of parameters, to give estimates of the
magnitude of various effects. In numerical work we often
used a harmonic potential with Gaussian barrier of varying
height and width:

Vext�x� =
1

2
x2 + Vbe−�x/��2

. �28�

Equations �2� and �5� imply that distances are scaled by �x

=�� /M�x, time by 1/�x and energies, including Vb above,
by ��x, where M is the atomic mass, and �x /2� is the har-
monic frequency. This scaling will be used throughout this
paper, and in particular in all the figures. To obtain numerical
values for the overlap integrals �ij, where i , j=±, we solved
Eq. �5� using the discrete variable representation �DVR�
method �35,36� with increasingly finer mesh, with iterations
for each mesh to make the �± functions and the nonlinear
term self-consistent. Values for the �ij are shown as a func-
tion of barrier height Vb for �=1.5, for gN=1,10, and 100,
in Fig. 1. For large enough Vb, all parameters �ij are equal.
As Vb decreases from the asymptotic region, �++ decreases

FIG. 1. Parameters �++ ,�−− ,�+− as a function of Vb for gN
=1.0 �a�, 10.0 �b�, and 100.0 �c�, calculated using the DVR method
applied to the stationary GP equation �5�. The vertical arrows de-
note values of Vb for which �+=Vb. All quantities plotted in this
and all other figures are dimensionless, with scalings as given after
Eq. �28�.
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most rapidly because �+, with no node, is less “lumpy” than
�−.

A useful estimate for the condition for a two-mode model
to be valid is that �+�Vb �33�. With this rough criterion in
mind, in many of the plots, we will denote this point by
vertical arrows. By this test, in Fig. 1, two-mode models are
valid to the right of the arrows, while in Fig. 2, the regime of
validity of two-mode models is to the left of the arrows. In
reality, the transition is not sharp, as we will see below.

In Fig. 2, values for the parameters A , B , C, and 
� are
shown. A, the on-site energy, increases roughly linearly with
ḡ. B is constant for small and moderate ḡ, which is consistent
with the usual expression for EJ or K which omits an inter-
action term. As �+ approaches Vb �as indicated by the ar-
rows� B begins to increase, and C and 
� increase more
rapidly. The parameter C �the “interaction tunneling” param-
eter� is several orders of magnitude smaller than A , B, and

� except when ḡ is large compared to 1. When C is much
smaller than 
�, it is justified to neglect C but preserve the
difference between B and 
�. When ḡ is sufficiently large,
the C term may become significant, although we have found
that within the regime of validity of two-mode models, the
ratio C /B is never greater than 0.15. We emphasize that the
term comes strictly from the nonlinear Gross-Pitaevskii
equation for Bose-Einstein condensates in a double-well po-
tential and does not apply to superconducting Josephson
junctions.

The two two-mode models may be compared, for ex-
ample, on the predictions for the plasma oscillation fre-
quency �15�, which is taken to be the oscillation frequency in
the limit of small amplitudes of z and �. In the limit of small
z and �, the equations for ż and �̇ become

dz

dt
= − 2K�,

d�

dt
= �U + 2K�z

⇒�0S
2 = 2K�U + 2K� �S2M�

dz

dt
= �2C − B��,

d�

dt
= �A + B − C�z

⇒�0I
2 = �B − 2C��A + B − C� �I2M� . �29�

In every 1D case we have considered, B−2C�0 and A
+B−C�0. Numerical results obtained with the I2M and
S2M are shown in Fig. 3 in comparison with frequencies
obtained with the TDGP equation. For ḡ�1, all three ap-
proaches agree well. For ḡ�1 and large Vb, the values for �0
from the S2M are about 16% less than from the I2M, while
for ḡ�3, the asymptotic difference is about a factor of 2. For
larger values of ḡ and for large Vb, as illustrated for ḡ�10 in
Fig. 3�c�, K becomes negative, hence �0S becomes imagi-
nary, and the real part of �0 plotted in Fig. 3 is zero. We note
also that in view of the factor �B−2C�1/2 in �0I, when C /B
=0.15, the C term produces a decrease in �0I by about 15%
due to the effect of wave-function overlap in the tunneling
integral.

Values of B , 2K, and 
� for ḡ=10 and �z=1.5 are shown
in Fig. 4. The region where K�0 is clearly indicated. �± are
the actual eigenvalues, which are calculated with the nonlin-
ear interaction terms included. The quantities ± have no di-
rect physical meaning, so it is not surprising that they can
lead to anomalous results. Note also that the putative regime
of validity of two-mode models is to the right of the vertical
arrows in Figs. 3 and 4, and that for ḡ=10, K is negative
over most of this region.

FIG. 2. A , B , C, and 
� parameters as a function of ḡ=gN, on
a log-log scale. The three plots are for �=1.5, and Vb=4.0 �a�, 7.0
�b�, and 12.0 �c� in units of ��z. The vertical arrows denote values
of log ḡ for which �+=Vb.

FIG. 3. Comparisons of the oscillation frequencies for small z ,�
amplitude calculated from the S2M, the I2M, and the TDGP equa-
tion, for gN=1.0 �a�, 3.0 �b�, 10.0 �c�. The insets in �a� and �b� show
ratios of S2M and I2M results to TDGPE results. Vertical arrows
denote values of VB for which Vb=�+.
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Thus from calculations of the Josephson plasma oscilla-
tion frequencies, we conclude that the additional terms de-
rived in the I2M take better account of nonlinear interaction
effects and produce better agreement with full TDGPE re-
sults. For low atomic numbers and weak interactions, these
additional terms are not needed. It is also evident that as
interactions increase in magnitude, neither two-mode model
reproduces TDGPE results quantitatively. This will lead us to
examine multimode models below.

First, however, it will be helpful to take another perspec-
tive by looking at results simply from the TDGPE. Figure 5
shows ���x��2 and ��x� as they evolve over one-half cycle
under conditions in which �in �a� and �b�� the phase is nearly
constant over each well, and �in �c� and �d�� with a larger ḡ
interaction parameter such that the phase over each well is
not constant at a given time. In the latter case, the phase
difference cannot be defined, and any two-mode model fails.

Another derived property is the onset of self-trapping at
�=0, which is usually labeled zc, the critical value of z. We
will discuss this in Sec. II D.

C. Multimode approximation

From Fig. 3, we saw that there are deviations in the Jo-
sephson plasma frequency �0 between even the more exact
�I2M� two-mode model and numerical solutions of the
TDGPE. These deviations raise the question whether better
agreement can be obtained by expanding the set of basis
functions beyond simply �+ and �−.

In this section we introduce a generalization of the im-
proved two-mode model. Starting from the TDGP equation

i
��

�t
= −

1

2

�2�

�x2 + Vext� + g���2� �30�

we introduce the following ansatz:

��x,t� = �N

k=0

N−1

bk�t�e−i�kt�k�x� �31�

where �k�x� satisfy the equations

�2s�2s = −
1

2

d2�2s

dx2 + Vext�2s + ḡ��0�2�2s, �32�

�2s+1�2s+1 = −
1

2

d2�2s+1

dx2 + Vext�2s+1 + ḡ��1�2�2s+1.

�33�

Thus �0,1=�± as defined above, with normalization
�dx �i�x�� j�x�=�ij. Here we are effectively using the virtual
excited states of the Gross-Pitaevskii equation rather than
Bogoliubov quasiparticle states. Equilibrium thermodynam-
ics is not the goal here. Any orthonormal basis offers an
extension of the two-mode model, and the quasiparticle basis
is unnecessarily cumbersome for this application. Substitut-
ing the ansatz �31� into the GP equation �30� and using equa-
tions for �2s�x� and �2s+1�x� with the orthogonality property,
we obtain the following equation for the time-dependent am-
plitudes br�t�:

iḃr = − 

j

b2j�00,2j,re
i�−�2j+�r�t − 


j

b2j+1�11,2j+1,re
i�−�2j+1+�r�t

+ 

s,n,m

bnb*bs�nmsre
i�−�n+�m−�s+�r�. �34�

There are 2J equations for real functions �bj�t�� and
arg�bj�t��, where J is number of modes. However there is the
following constraint: 
 j �bj�t��2=1, which is a consequence
of the normalization condition for the wave function ��x , t�.
Since also the overall phase is arbitrary, we effectively have
2J−2 equations for 2J−2 independent variables. Therefore,
we define bj�t�=cj�t�ei�j�t�, with cj�t�= �bj�t��, and introduce
the following variables:


r = c0
2 − cr

2, r = 1, . . . ,J − 1,

�r = �r−1 − �r, r = 1, . . . ,J − 1.

It is not difficult to restate Eqs. �34� in terms of the new
variables.

FIG. 4. Values for the parameters B , 2K, and 
�=�−−−�++ for
ḡ�10 and values of the barrier height Vb as indicated. Although K
becomes negative for Vb�6, B remains positive.

FIG. 5. �a� and �c� Evolution of ���x��2 over one-half cycle of
tunneling oscillation. �b� and �d� Evolution of phase ��x� under the
same conditions as in �a� and �c�, respectively. The conditions for
�a� and �b� are ḡ�2.0, Vb=5.0; for �c� and �d�, ḡ=10.0, Vb=5.0; and
in each case �=1.5. In �a� and �c�, the initial function ���x��2 is
denoted by thick solid lines. In �b� and �d�, the initial value of the
phase is everywhere zero. In �d� after the initial time, the phase is
clearly not uniform over either well because of the strong interac-
tions and low barrier.
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As in the case of the I2M, the main ingredients of multi-
mode approximation are parameters �klmn that can be found
numerically from eigenfunctions of the Gross-Pitaevskii op-
erator for the symmetric and antisymmetric “condensates.”
In making comparisons with two-mode model results and
with numerical solutions of the TDGPE, we will use the
number difference 
n�t� defined in Eq. �10�, rather than z�t�,
which is not defined for the TDGPE. As an initial condition
for the TDGPE, we use desired linear combinations of �±
�relabeled �0,1 in Eq. �32��. In a given experimental situa-
tion, the actual initial condition might differ and might need
to be modeled more precisely.

What our results show generally is that in circumstances
in which the I2M differs significantly from TDGPE, the time
evolution curve is not sinusoidal, but is distorted by higher-
frequency components. Therefore one cannot easily extract a
single frequency, for example, to correct the discrepancies
exhibited in Fig. 3. Figure 6 shows the actual time evolution
curve for several cases. These curves should be viewed in
light of the nominal condition for validity of two-mode mod-
els, �+�Vb. As shown in this figure, the two-mode model
agrees quite well with the TDGPE curve for ḡ=3.0,Vb=6.0,
for which �+=4.54 is less than Vb. For larger ḡ or smaller Vb,
the two-mode and TDGPE curves differ in both frequency
and shape. In each of these cases, results obtained with a

four-mode model yield better agreement with the TDGPE
curves. It is remarkable that this good agreement appears
even for a very low barrier, Vb=2.0, for ḡ=3.0.

In connection with the time variations of 
n shown in
Fig. 6, it is pertinent to plot also the ratios of C to B, as an
indication of the relative magnitude of C under varying con-
ditions. Figure 7 shows this ratio �left axis� for Vb=6.0, as in
the lower three cases of Fig. 6. The quantity labeled
“Eex/
�” is the ratio of the second excited state to 
�. As
this ratio diminishes, the two-mode model becomes less
valid, and this is reflected also in the departure of the time
evolution functions in Fig. 6 from sinusoidal shape, and from
the TDGPE results. Figure 7�b� will be discussed in connec-
tion with the results of 3D calculations.

D. Phase-space dynamics

The evolution of z ,� from the coupled equations �22�
closely resembles the dynamical evolution phenomena thor-
oughly discussed in Ref. �10�. We give a brief review to
point out the differences arising from use of the I2M.

To visualize the dynamics, it is helpful to view a plot of
the Hamiltonian surface H�z ,�� as shown in Fig. 8 for ge-
neric values of A , B, and C. The surface is periodic in �,
with minima at z=0,�=2n� and saddle points or maxima at

FIG. 6. Left column: The functions �+�x� and
potentials V�x� for conditions indicated above
each frame: ḡ ,Vb, with �z=1.5 in each case. The
last figure gives the chemical potential �+. Right
column: time evolution of the fractional number
difference, 
n, times 103 for very small initial
imbalance. The three curves are obtained from
the I2M model �long dashes�, the four-mode
model �short dashes�, and the TDGPE �solid
curve�.
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z=0,�= �2n+1��, where n is an integer. Trajectories are
horizontal curves �constant H� lying on this surface.

Within either two-mode model, self-trapping occurs for H
above Hs, the value of the classical Hamiltonian at the saddle
point. Critical values of z=zc are defined as values of z��
=2n��=z0 that give H�z ,�� equal to Hs. For �z0 � �zc, trajec-
tories will not pass through z=0 and z will remain positive or
negative. For the I2M, the Hamiltonian given by Eq. �24�
gives

Hs = H�0,�� = B +
C

2
= H�zc,0� . �35�

From this result and Eq. �24�, we obtain

zc,V =
2

A − C
�B�A − B − C��1/2. �36�

For the S2M, the Hamiltonian of Eq. �25� yields

Hs = H�0,�� = 2K = H�zc,0� , �37�

so that

zc,C =
2

U
�2K�U − 2K��1/2. �38�

Here the model breaks down when either K�0 �see Fig. 4�
or U−2K�0.

Before presenting results of calculations of zc, we recog-
nize that as �z � ��
n� and ḡ increase, as in Fig. 6, higher
modes enter. The variation of 
n with time becomes irregu-
lar rather than close to sinusoidal, as shown by several plots
obtained from calculations with the TDGPE in Fig. 9. Fig-
ures 9�a� and 9�b� �differing very slightly in 
n�0�, but on
opposite sides of 
n=zc�, closely resemble results one would
expect from a two-mode model. Figures 9�c� and 9�d� show
irregular curves from the TDGPE in a regime where the two-
mode model does not apply. In Fig. 9�c�, there are oscilla-
tions of 
n within the range 
n�0 before 
n eventually
becomes less than 0. Figure 9�d� shows that 
n�0 is
achieved for only a brief duration �between T=25 and 29�.
Neither of these cases can be considered “self-trapping,” but
they are far removed from symmetric, periodic oscillations.
Under such conditions of low barrier and/or strong interac-
tions, it is somewhat arbitrary to make the distinction be-
tween self-trapping and not self-trapping.

Nonetheless, we have attempted to establish criteria and
apply them consistently so as to compare results from the
S2M, I2M, and TDGPE approaches, as shown in Fig. 10.
Here, zc values from Eqs. �36� and �38� have been restated in
terms of 
nc using Eq. �10� in order to compare with

FIG. 7. Ratios of C to B for �a� 1D, with Vb=6.0, as in the
bottom three parts of Fig. 6; and �b� 3D, for the geometry of the
experiments discussed in Sec. III B. The dashed curves and right
axes give the ratio of the second to the first excitation energy, which
is a measure of the validity of the two-mode approximation. For
3D, we show the ratio of excitation energy to the lowest excited
state symmetric in x , y, and z to the excitation energy of the lowest
state antisymmetric in z.

FIG. 8. �Color online� Hamiltonian surface H�z ,�� for V0

=4,�=1.5, ḡ=1. Trajectories lie on the surface, following contour
lines that represent constant energy levels.

FIG. 9. Temporal evolution of 
n for various cases: �a� ḡ
=3.0,Vb=9.0,z0=
n�0�=0.0846; �b� ḡ=3.0,Vb=9.0,
n�0�
=0.0838; �c� ḡ=10.0,Vb=5.5,
n�0�=0.411; �d� ḡ=3.0,Vb

=4.0,
n�0�=0.735.
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TDGPE results. For both ḡ=3.0 and 10.0, when Vb is high
enough, there is good agreement between I2M and TDGPE
results. S2M results are significantly lower for ḡ=3.0, while
for ḡ=10.0, as in Fig. 3, the fact that K becomes negative
invalidates this approach in this regime of strong interac-
tions.

In the self-trapping regime, maximal and minimal values
of z�t� can be obtained by solving the equation ż=0:

z = ±�1 − � �B�
C − A

±�� B

C − A
2

−
2H − A

C − A
�2

. �39�

Plus or minus signs in front of the square root correspond to
different initial conditions for z �positive or negative, respec-
tively�. An elegant discussion of dynamics, and separatrices,
in phase space is given in Ref. �12� �explicitly for the case
C=0�.

In Ref. �10�, it was pointed out that closed trajectories
on the surface of H can also occur around maxima on the
lines �= �2n+1��. These are the so-called �-phase modes.
For the I2M, the condition for these maxima is that �B �
� ��A+C��. The actual values z� at which these maxima oc-
cur can vary drastically from one model to the other.

Even for the case of negligibly small overlap, the momen-
tum z�t� in the I2M differs drastically from the S2M when
conditions place these two models on opposite sides of the
transition to self-trapping. Far from the neighborhood of the
self-trapping transition in ḡ ,� ,V0, the differences are less.
We note also that the C term raises both the minimum and
the saddle point in H�z ,��, and changes the shape of the
surface because it introduces a term with a periodicity of �
rather than 2�. However, no new critical points or minima
are introduced for values of C /B�0.5, which is outside the

regime of validity of two-mode models, as noted in connec-
tion with Fig. 7.

E. Second quantization

Previous discussions of quantized versions of the Bose
double-well problem �4,9,18� are to first order in the overlap
of the wave functions in each well. Using the I2M, there are
further possibilities for extending the regime of validity of
quantum approaches, which are necessarily based on two-
mode models.

The energy functional describing a trapped Bose-Einstein
condensate in terms of creation and annihilation operators
��x , t�, �†�x , t� can be written

Ĥ2 = Ĥ0 + Ĥ1, Ĥ0 =� dx�−
1

2
�̂†�2�̂ + �̂†Vext�̂ ,

H̄1 =
g

2
� dx �̂†�̂†�̂�̂ , �40�

with the commutator ��̂�x , t� , �̂†�x� , t��=��x−x��.
As above, we will characterize the time evolution in terms

of two modes that are predominantly �but not exclusively�
located in the left and right wells. However, the derivation is
easier when written in terms of the symmetric and antisym-
metric functions �± rather than in terms of �1,2, because
��±

3���=0, whereas ��1,2
3 �2,1��0. We therefore write a

“mixed basis” expression

�̂ =
1
�2

�ĉ1��+ + �−� + ĉ2��+ − �−�� , �41�

in which

ĉ1,2 =
1
�2
� dx �̂��+ ± �−� �42�

are projections of �̂. �± are solutions to the GP equation as
above. In particular,

−
1

2
�2�i + Vext�i = �i�i − gN��i�2��i. �43�

Also �ĉi , ĉj
†�=�ij.

Substituting Eqs. �41� and �43� into the above equation for
H0, we obtain four terms:

Ĥ0 =
1

2
��ĉ1

†ĉ1 + ĉ2
†ĉ2���+ − �++ + �− − �−−�

+ �ĉ1
†ĉ2 + ĉ2

†ĉ1���+ − �++ − �− + �−−�� , �44�

Upon substituting Eq. �41� into the above equation for H̄1,
we obtain 16 terms, each with products of two creation and
two annihilation operators, times integrals of the form

�+ �i�− � j =
g

2
� dx��+ + �−�i��+ − �−� j . �45�

In particular

FIG. 10. Values for 
nc from the S2M, I2M, and TDGPE ap-
proaches, for ḡ= �a� 3.0 and �b� 10.0. The inset in �a� shows the
ratio of S2M and I2M values to TDGPE results.
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H1 = ĉ1
†ĉ1

†ĉ1ĉ1�+ �4 + ĉ2
†ĉ2

†ĉ2ĉ2�− �4 + �ĉ1
†ĉ1

†ĉ1ĉ2 + ĉ1
†ĉ1

†ĉ2ĉ1

+ ĉ1
†ĉ2

†ĉ1ĉ1 + ĉ2
†ĉ1

†ĉ1ĉ1��+ �3�− � + �ĉ2
†ĉ1

†ĉ1ĉ2 + ĉ2
†ĉ1

†ĉ2ĉ1

+ ĉ2
†ĉ2

†ĉ1ĉ1 + ĉ1
†ĉ2

†ĉ1ĉ2 + ĉ1
†ĉ2

†ĉ2ĉ1 + ĉ1
†ĉ1

†ĉ2ĉ2��+ �2�− �2

+ �ĉ2
†ĉ2

†ĉ1ĉ2 + ĉ2
†ĉ2

†ĉ2ĉ1 + ĉ2
†ĉ1

†ĉ2ĉ2 + ĉ1
†ĉ2

†ĉ2ĉ2��+ ��− �3.

�46�

In view of definitions given above, we obtain

�±�4 =
2U

N
, �±�3��� = −


�

2N
, �+ �2�− �2 =

2C

N
. �47�

We express H̄2 in terms of the following operators:

N̂ = N̂1 + N̂2 = ĉ1
†ĉ1 + ĉ2

†ĉ2, Ĵx =
1

2
�ĉ2

†ĉ2 − ĉ1
†ĉ1� ,

Ĵy =
i

2
�c̄2

†ĉ1 − ĉ1
†ĉ2�, Ĵz =

1

2
�ĉ2

†ĉ1 + ĉ1
†ĉ2� , �48�

and the Casimir element Ĵ2= �N̂ /2��N̂ /2+1�, so that

�Ĵi, Ĵj� = iijkĴk. �49�

Then using relations such as

�ĉ1
†�2ĉ1

2 + �ĉ2
†�2ĉ2

2 =
N̂2

2
− N̂ + 2Ĵx

2, �50�

collecting terms, and neglecting constant terms, we obtain

Ĥ2 = − Ĵz�
� + 
� −
2
�

N
 +

4�A + C�
N

Ĵx
2 +

8C

N
Ĵz

2.

�51�

Since

Ĵz
2 =

1

4
�ĉ2

†ĉ2
†ĉ1ĉ1 + ĉ1

†ĉ1
†ĉ2ĉ2� +

1

2
�1 + N̂1N̂2� , �52�

the last term contains correlated hopping or two-particle tun-
neling effects. Quantum equations of motion can be obtained
from

Ĵ
˙

i = i�Ĥ, Ĵi� . �53�

The above Hamiltonian Ĥ2 is to be compared with expres-
sions derived previously �4,9,12,15,18,19�. Although a gen-
eral second-quantized Hamiltonian was written many years
ago by nuclear physicists �37� �since known as the Lipkin-
Meshkov-Glick model�, most applications involve simply the

terms in Ĵz and Ĵx
2. Using the operators defined above and

assuming a symmetric double-well potential, the expression
in Ref. �15�, for example, can be written

Ĥcanon = − EJĴz +
1

2
KĴx

2. �54�

The comparison provides the following translation:

EJ = 
� + 
� −
2
�

N
, K =

8�A + C�
N

. �55�

The regimes defined in Ref. �15� then become �neglecting
the 2
� /N term�

K

EJ
�

1

N
⇒ R � 1, R =

8�A + C�

� + 
�

�Rabi� ,

1

N
�

K

EJ
� N ⇒ 1 � R � N2 �Josephson� ,

N �
K

EJ
⇒ N2 � R �Fock� . �56�

Thus for the second-quantized version as for the first-
quantum GP equation version discussed above, we obtain a
Hamiltonian with a form similar to those previously derived,
but with slightly different parameters, and with extra terms
that may be important for large atom-atom interactions. The

expectation value �2Ĵx� describes the difference between the
number of particles in the two modes, and is therefore an
analog of the classical quantities momentum z�t� and number
difference 
n�t�. This connection can be most easily seen in
the limit of very small interactions �small ḡ�, which is essen-
tially the Rabi regime as defined in Ref. �15� and above.
From numerical results, we find that for ḡ�10−2, there are
clear tunneling oscillations with frequency 
� from the first

term in Ĥ2 �
��
� here�. These oscillations are modulated

by effects from the second term �in Ĵx
2� in Ĥ2, which increase

with ḡ. For long enough times, one observes the collapse and
revival effects noted in Ref. �4�. For larger values of ḡ, these
structures do not persist. Extensive numerical results of
phase-space oscillations are given in Ref. �19�, and detailed
studies of averages in phase space using the Husimi distri-
bution have been presented in Ref. �18�.

III. CALCULATIONS IN 3D

A. General formalism

In comparing with experimental results, the transverse
confinement enters. In this study, we consider moderate
transverse confinement, not approaching the Tonks-
Girardeau regime �38�. We have extended the above methods
to 3D as follows. We write the TDGPE first in MKS units,
denoted by overbars:

i �
��̄

� t̄
= �−

�2

2m
�̄2 +

m

2 

i

�i
2x̄i

2 + VB + g3D��̄�x̄,t��2�̄�x̄,t�

�57�

where m is the atomic mass, g3D=4�q2a3D/m, a3D is the 3D

scattering length, and �dx̄ � �̄�x̄��2=N. The external potentials
of interest here will include a purely harmonic term as given
above, plus a barrier term as a function of z that will be
chosen to be Gaussian or proportional to a cos2 function, as
in the experiments of Ref. �24�.
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We let

�x = �y = ��z, �58�

and scale the coordinates and time as

x̄i = �ixi, �i
2 = � /m�i, t̄ = t/�z. �59�

Then since

� dx���x��2 = N =� dx̄��̄�x̄��2 = �x�y�z� dx��̄�x��2,

�60�

�̄= ��x�y�z�−1/2�, and Eq. �57� becomes

i
���x,y,z,t�

�t
= H��,����x,y,z,t� ,

H��,�� = −
�

2
� �2

�x2 +
�2

�y2 −
1

2

�2

�z2 +
�

2
�x2 + y2�

+
z2

2
+ VB + 4���a3D

�z
���x,y,z,t��2 �61�

where � represents the arguments � , VB , N , a3D, and �z.
An ansatz analogous to Eq. �2� can now be introduced:

��x,t� = �N��1�t��1�x� + �2�t��2�x�� , �62�

�1,2�x� =
�+�x� ± �−�x�

�2
, �63�

where

�±�x,y,z� = ± �±�x,y,− z�, � dx dy dz �±
2 = 1. �64�

The stationary GP equations take the form

�±�±�x,y,z� = H��,�±��±�x,y,z� . �65�

Because the transverse wave function is very nearly
Gaussian, some authors have simply assumed a Gaussian,
possibly with a z-dependent width, and obtained modified
equations �39,41� for what we have called �1�z�. Because we
wanted to consider cases where the Gaussian form may not
be valid, we used general 3D algorithms. Initial �± wave
functions were obtained by diagonalizing the DVR Hamil-
tonian �36� using sparse matrix techniques �42�, which made
calculations with more than 120 000 mesh points possible in
minutes on a PC. To calculate the time evolution, the split-
operator method �43� with fast Fourier transform �44� was
used, requiring an hour or more of �2 GHz CPU time, in
view of the small time steps required.

From the �± functions calculated from the 3D time-
independent Gross-Pitaevskii equation, one can also obtain
the parameters �± , �i, j , A , B, and C as in Sec. II, to pro-
vide a two-mode representation of tunneling oscillations in
3D. In translating results from 1D to 3D for g1D=g3D
=4��a3D/�z, we find that, in the limit of weak interactions
and ��1, the �ij functions for 3D are a factor of 2� smaller
than the corresponding 1D �ij functions. The explanation

touches on the basic properties of tight transverse confine-
ment.

If the transverse confinement is symmetric in x and y and
is tight enough, the 3D wave function �+�x ,y ,z� can be fac-
tored into a function of z and a function of �=��x2+y2�.
Then if also the interactions are weak enough, the � function
will be a Gaussian:

�+�x,y,z� = �+��,z�e−�2/2�1�z� . �66�

The normalization condition is

1 =� dx dy dz �+�x,y,z�2 = 2�� d� �e−�2� dz �1�z�2

= �� dz �1�z�2. �67�

Under the above conditions, and if g1D=g3D, then to within a
constant of proportionality, �1�z� will also be a solution of
the 1D problem: �1�z���+

1D�z�. For the 1D problem,
�dz ��+

1D�z��2=1, so from the different normalizations, we
see that, under all the above stated conditions,

�1�z� =
1

��
�+

1D�z� . �68�

The 3D version of �++ becomes

�++
3D =� dx dy dz��+

3D�4 = 2�� � d� e−2�2� dz �1�z�4

= 2�
1

4

�++
1D

�2 =
�++

1D

2�
. �69�

Similar relations hold also for �−−
3D and �+−

3D. For larger inter-
actions, the � dependence is not exactly Gaussian, the func-
tions �±

3D no longer factorize, and the parameters �ij
3D deviate

from the above relations. Figure 11 shows plots of �++ , �−−,
and �+− from 3D calculations with �=1 and 100, as com-
pared with 1D results. For �=100, the wave function is more
concentrated than for �=1, so the values for �ij are slightly

FIG. 11. Values for �ij , i , j= + ,−, from 3D calculations with
��1 and 100 �left axis�, as compared with a 1D calculation �right
axis�. Solid lines denote �++, short dashes �+−, and longer dashes
�−−. For 3D, the �ij are approximately 2� larger than for 1D.
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larger. Each is 5–6 times smaller than for the 3D case. Oth-
erwise the dependences on Vb are very similar.

There are other differences between 3D and 1D proper-
ties. The difference energy 
� and hence also the parameter
B decrease more rapidly as a function of barrier height. Fig-
ure 12 compares the parameters A , B, and C in 3D ��=1�
and in 1D, for the case ḡ=10. Evidently, finite transverse
confinement decreases the difference between the symmetric
and antisymmetric condensate energies. The differences are
much the same for �=100 as for �=1. Also for �=1, ḡ�10,
Fig. 12�b� shows that the plasma oscillation frequency in the
limit of small z ,�, for barrier height Vb�5, is even less than
a factor of 2� smaller in 3D than in 1D. This statement has
been found to be true for ��1 and 100, and ḡ up to 10.

We conclude that two-mode models tend to be even more
valid in 3D than in 1D.

Linear combinations of �± functions provide the initial
condition for the TDGPE, for which we use the split operator
approach with fast Fourier transform �43,44�. To be able to
compare TDGPE results with Eq. �29�, we use a very small
initial imbalance �z0=0.002� for the TDGPE calculations.
For the two-mode models, parameters are obtained from
wave functions calculated with the time-independent 3D GP
equation, as for 1D results above. The results for �0 are
shown in Figs. 13�a�–13�c� �Fig. 13�d� pertains to the experi-
ments of Ref. �24� as discussed below�. The plasma oscilla-
tion frequency obtained from the TDGPE increases rapidly
beyond ḡ=gN�3. The two-mode model results match the
TDGPE results well for ḡ�1. Figure 13�a�, for Gaussian
barrier of height Vb=5��z, shows good agreement for both
the I2M and S2M with TDGPE results, up to ḡ=100. On the
other hand, when the barrier height is raised to 8��z, the

S2M fails for ḡ�30, for both �=1 �b� and 100 �c�. For the
latter, the I2M result begins to deviate significantly from the
TDGPE value around ḡ=100. The failure of the S2M here is
analogous to the situation shown in Fig. 3, and occurs be-
cause K becomes negative.

B. Comparison with recent experiments

Very recently, the first quantitative experimental observa-
tions of oscillations of Bose condensates in a double-well
potential have been performed �24�. The harmonic confine-
ment was created by overlapping tightly focused Gaussian
laser beams. The harmonic frequencies were 66, 90, and
78 Hz in what we will call the x , y, and z directions. To
produce the double well, an optical standing wave from two
beams of wavelength 811 nm at an angle of 9° were added,
producing a barrier of the form Vb cos�z� /w�2, with Vb

=413�20� Hz, and w=5.20�20� �m. 1150 87Rb atoms were
loaded into this trap. We have modeled this experimental
configuration and find the effective value of gN=58.8 from
Eq. �61�, which corresponds to ḡ�10 in 1D simulations.

The reported experimental period of oscillation for z0
=0.28�6� was 40�2� ms �24�, which corresponds to the value
indicated by the large diamond in Fig. 13�d�. We obtain val-
ues very close to this observed tunneling frequency with both
the I2M and TDGPE by using a value for a3D=100a0 �where
a0 is the Bohr radius� �45�. For this initial value of z0, �al-
though not for very small values of z0�, self-trapping occurs
with the S2M, when based on solutions of the Gross-
Pitaevskii equation. The calculated S2M frequency drops
rapidly before this point, as shown in Fig. 13�d�.

FIG. 12. �a� A comparison of calculated values for the param-
eters A , B, and C for 1D and for 3D, for �=1 and ḡ�10. �b� A
comparison of Josephson plasma oscillation frequencies �0 for 1D
and 3D, also for �=1 and ḡ=10.

FIG. 13. Josephson plasma oscillation frequencies calculated
from the TDGPE and from the I2M and S2M, using Eq. �29� and
the �± , ±, and �± parameters obtained from the 3D wave func-
tions, �±. For �a�–�c�, Gaussian barriers were used, as in all the 1D
calculations. For �d�, a cos2 function was used to reproduce the
barrier in Ref. �24�. Other parameters were �a� �=1.0; Vb=5.0; �b�
�=1.0,Vb=8.0; �c� �=100,Vb=8.0; �d� corresponding closely to
the experiments in Ref. �24� �see text�, �x=66 Hz, �y =90 Hz, �z

=78 Hz, barrier Vb=5.28 ��z times the cos2 function given in the
text. The values plotted are for z0=0.28 as in the experiments,
rather than for the limiting case of small z ,� and hence are labeled
� rather than �0.
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To understand this behavior better and to compare the
conditions of the experiment �24� with the discussion for 1D
above, we show in Fig. 14 a plot of the parameters A , B , C,
and 
�, analogous to Fig. 2 for conditions of the experiment,
but with variable atomic number. Figure 14�b� shows values
for B and K, the tunneling parameters in the I2M and S2M,
respectively, on a linear scale. Because interactions are ex-
pressed explicitly in B, this produces approximately three
times the tunneling rate as K. Therefore, as shown in Fig.
14�c�, there are indeed tunneling oscillations with the I2M,
but self-trapping oscillations with the S2M.

This correlates with our earlier statement that the major
difference between the two models is in the magnitude of the
tunneling parameters. Figure 15 shows the effect of another
feature of the I2M, namely, the variation of the tunneling
parameter over the oscillation period. In Fig. 15, the tempo-

ral variation of z is as shown in Fig. 14�c�. When z is maxi-
mally positive, the tunneling rate from left to right, namely,
K1, is largest, while when z is maximally negative, K2
reaches its maximum value. The maximum values are only
about 15% larger than the minimum values, so this is not as
large an effect as the B−K difference shown in Fig. 14�b�. It
is interesting to note that when z0=0.40 where the system
was observed to be in the self-trapping regime, the effective
tunneling parameters for the atoms in the left and right sides
differ also by about 15%, as shown in Fig. 15�b�.

The relative importance of the parameter C under the con-
ditions of the experiments, but with varying atom number, is
shown in Fig. 7�b�. For the experiments discussed here, gN
was equal to �56, so C /B�0.04. In more recent work �40�,
the atom number, and hence C, has been larger. We conclude
also, as long as the temperature is sufficiently low the aspect
ratio is not important, as indicated in Figs. 13�a�–13�c�. Re-
sults for �=100 and 1 are very similar, although the rela-
tively large value of the nonlinear term is important in deter-
mining the validity of two-mode models.

Using the TDGPE, we have calculated a value of zc
=0.39 for the stated conditions of these experiments, which
is consistent with the observed oscillations at z0=0.28�6� and
self-trapping for z�0�=0.62�6�, but lower than the value of
zc=0.50�5� quoted in Ref. �24�. See Figs. 14 and 15. In this
paper, the authors performed calculations with the transverse
Gaussian model of Ref. �39� and obtained good agreement
with experimental observations. Our contribution is simply
to show that a two-mode model, with parameters from GP
eigenfunctions, also comes quite close to reproducing the
experimental observations.

The other experiments that helped to motivate this study
were performed by Peil et al. with 87Rb atoms in a “pattern-
loaded” optical lattice. The atoms were first loaded into a
coarse lattice from Bragg-diffracted laser beams, and then a
finer lattice was turned on, such that every third lattice site
was occupied �25�. We are presently working to develop a
modification of the present approach to deal with such phe-
nomena in a periodic lattice.

IV. CONCLUSIONS

Two-mode models are useful wherever they might apply,
and in particular, they have yielded some compelling results
for the problem of Bose-Einstein condensates in a double-
well potential. In this work, our goal has been to extend the
validity of two-mode models to regimes of larger atom-atom
interactions. Our derivation of equations, starting with the
Gross-Pitaevskii equation and symmetric and antisymmetric
condensate functions, leads to an expression for the tunnel-
ing coupling energy that includes the nonlinear interaction.
This has commonly been neglected in previous discussions,
although given previously by Giovanazzi et al. �13�. On the
basis of numerical examples for various conditions, we es-
tablish that inclusion of such an interaction term explicitly in
the tunneling coupling energy is the most important step to
deal with larger nonlinear interaction effects. This term also
leads to a temporal variation of tunneling as the wave func-
tions expand or contract with changing atom number on ei-
ther side.

FIG. 14. �a� For the geometry of the experiments in Ref. �24�,
this plot shows values of A , B , C, and 
� vs gN on a log-log scale.
The value of gN corresponding to the experiments is indicated with
a diamond-headed arrow. �b� A plot of B and 2K on a linear scale
shows almost a factor of 3 difference at the experimental value of
gN. �c� Because the effective tunneling parameter is greater, the
I2M gives oscillations with �z�, while the S2M gives self-trapping
oscillations of smaller amplitude.

FIG. 15. These plots show variations of the real parts, KR1, and
KR2 �heavier solid and dashed lines, left axes� of the effective tun-
neling parameters, for atoms in the left and right wells, respectively,
during oscillations. The lighter solid lines and right axes show the
time variation of z. For �a�, z0=0.24, for which left-to-right oscilla-
tions occur, while for �b� z0=0.40, and there are self-trapping oscil-
lations. In the latter case the tunneling parameter for the well with
more atoms is always larger than that for the other well.
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A smaller effect, also arising from the nonlinear interac-
tion, is expressed by a term in the phase-space Hamiltonian
proportional to C cos 2�. This term leads to a reduction of
tunneling when the wave functions in the two wells overlap
and interact. Since the term is proportional to the nonlinear
interaction, we have labeled C the interaction tunneling pa-
rameter. When the I2M is subject to second quantization, this
term leads to correlated hopping. This effect is significant
only near the limit of the regime of validity of two-mode
models, when the value of the chemical potential is close to
the barrier height.

Results for oscillation frequencies and self-trapping ob-
tained with the improved two-mode model agree with
TDGPE results up to larger values of the nonlinear interac-
tion. For small values of the nonlinear interaction term and
moderate potential barriers, all the models agree nicely.

In particular, we show from calculations in 3D that the
I2M produces agreement with experimental oscillation fre-

quencies �24�, whereas the standard two-mode model, with
parameters obtained from the GP equation, produces self-
trapping rather than oscillations between the wells. The pri-
mary effect is the difference of the mean tunneling energy.

Finally, we note that here we have not considered damp-
ing effects on oscillations in the double well due to thermal
excitations, as considered in Refs. �6,46,47�.
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