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Detection of weak forces with an accuracy beyond the standard quantum limit holds promise both for
fundamental research and for technological applications. Schemes involving ultracold atoms for such measure-
ments are now considered to be prime candidates for increased sensitivity. In this paper we use a combination
of analytical and numerical techniques to investigate the possible subshot-noise estimation of applied force
fields through detection of coherence dynamics of Bose-condensed atoms in asymmetric double-well traps.
Following a semiclassical description of the system dynamics and fringe visibility, we present numerical
simulations of the full quantum dynamics that demonstrate the dynamical production of phase squeezing
beyond the standard quantum limit. Nonlinear interactions are found to limit the achievable amount to a finite
value determined by the external weak force.
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I. INTRODUCTION

The detection of weak forces with an accuracy beyond the
standard quantum limit holds promise both for fundamental
research and for technological applications. An essential step
in achieving this goal is the availability of nonclassical
matter-wave sources, as can be generated in optical lattices
and multiwell traps. In particular, several studies have been
devoted to the analog of spin squeezing �1� in two-mode
condensates, both theoretically �2–4� and experimentally �5�,
and this effect holds promise of increased accuracy in inter-
ferometry �6,7�. In related work, the semiclassical dynamics
of these systems, which is amenable to a Gross-Pitaevskii
treatment analogous to that of Josephson junctions �8�, was
studied in particular in Refs. �9,10�.

Double-well systems such as recently realized experimen-
tally �11� also represent a particularly simple situation to
investigate the competition between two-body interactions
and quantum tunneling. They already contain much of the
physics known to take place in optical lattices, in particular
the transition from a Bosonic superfluid to a Mott insulator
characterized by significant number squeezing �12–14�. Re-
cent experiments on condensates in optical lattices indicate
that these properties make them suitable for the precision
measurements of weak applied forces �15,16�. In particular,
the so-called “contrast resonances” that appear when these
forces modify the potential have been proposed as a sensitive
tool to measure these forces.

The dynamics of quantum-degenerate Bosonic systems in
double wells �or lattices� depends, however, rather sensi-
tively on the rate at which the potential is changed. For ex-
ample, a recent study showed that nonadiabaticity can limit
the amount of achievable squeezing �17� in optical lattices.
Other studies focused on the loading of condensates into
lattices �18–20� and the subsequent collapse-revival dynam-
ics, as well as other nonequilibrium situations such as the
dynamics of the superfluid state �21,22�. Following the re-
cent experiments of Ref. �23� we also investigated the coher-
ence dynamics in symmetric double-well potentials after
sudden changes �24�.

In this paper we extend these results to the study of Bose-

Einstein condensates in asymmetric double-well potentials
subjected to sudden changes, and assess the potential use of
characteristic signatures of their dynamics to the detection of
weak forces. We concentrate on observable quantities such as
fringe visibility and phase noise, that is, on the dynamics of
the coherences of the matter-wave field, both first and second
order, as functions of holding time after a sudden change of
the Hamiltonian parameters. We rely on the combination of a
semiclassical approximation and of a Bloch-sphere qua-
siprobability representation to achieve a simple geometrical
interpretation of our results. For the problem at hand, the
Husimi quasidistribution on the Bloch sphere �24,25� is par-
ticularly convenient.

The paper is organized as follows: Sec. II establishes the
mathematical framework and derives a formula for the fringe
visibility in interference experiments. In Sec. III we apply a
semiclassical approximation and derive conditions under
which the visibility of the interference fringes vanishes tem-
porarily, thereby providing an intuitive understanding of the
“contrast resonances” observed by Kasevich and co-workers.
Section IV gives selected results from exact quantum-
mechanical simulations for varying particle numbers and
Hamiltonian parameters, and investigates the applicability of
the semiclassical model by comparison with the exact nu-
merics. This section concludes with a discussion of the ap-
plication of the system dynamics to the detection of weak
forces. Section V investigates possibilities for subshot-noise
performance, and Sec. VI is a summary and outlook.

II. MODEL

Provided that excitations to higher states can be ne-
glected, the field operator describing a Bose-condensed gas
in an asymmetric double-well trap can be expressed as the
superposition of a “right” and a “left” mode as

�̂�x� = âL�L�x�ei��/2� + âR�R�x�e−i��/2�, �1�

where �L/R�x� are mode functions �26�, taken to have a rela-
tive phase �, that are spatially localized in the two potential
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wells. For sufficiently harmonic potentials the mode func-
tions can be taken to be approximately Gaussian �4�. In this
two-mode approximation the condensate Hamiltonian is

Ĥ =
�E

2
�âL

†âR + âR
† âL� + g�âL

†2âL
2 + âR

†2âR
2� +

�

2
�âL

†âL − âR
† âR� ,

�2�

where we have introduced the tunneling energy

�E = �
−�

�

dx�L�x��−
�2

2M
�2 + V�x���R�x� , �3�

the two-body interaction

g = a0�
−�

�

dx��L/R�x��4, �4�

with a0 the two-body coupling constant, and

� = fex�
−�

�

�L�x�x�R�x�dx , �5�

where fex, assumed to be negative, is an unknown external
field gradient applied to the condensate and to be detected.

This two-mode problem is conveniently reexpressed in
the Schwinger angular-momentum representation of Bosonic
operators �27�. We proceed by introducing the angular mo-
mentum operators

Ĵz =
1

2
�âL

†âL − âR
† âR� , �6�

Ĵy =
1

2i
�âL

†âR − âR
† âL� , �7�

Ĵx =
1

2
�âL

†âR + âR
† âL� , �8�

which can be thought of as the orthogonal components of a
Bloch vector of length N /2. We then express the state of the
matter-wave field in terms of eigenstates �J ,m	 of the opera-

tors Ĵ2 and Ĵz, where

Ĵ2 = Ĵx
2 + Ĵy

2 + Ĵz
2, �9�

with

Ĵ2�J,m	 = �2J�J + 1��J,m	 , �10�

Ĵz�J,m	 = �m�J,m	 =
�

2
�nL − nR��J,m	 , �11�

and J=N /2, m=−J ,−J+1, . . . ,J.
In the angular momentum representation the Hamiltonian

�2� reads, apart from a physically irrelevant function of the
total angular momentum eigenvalue J,

Ĥ = 2gĴz
2 + �EĴx + �Ĵz. �12�

This Hamiltonian is known to produce spin squeezing �1�.

We consider the situation where the detection of the
atomic field is carried out after the transverse trap is rapidly
switched off and the atoms undergo a stage of ballistic ex-
pansion. During that stage the stationary mode functions
�L/R�x� are replaced by freely expanding Gaussians that are
centered around the minima x= ±d of the potential at the
time of release,

�L/R�x,t� = 
2��x2�1 + i	�t − texp���−1/4


 exp�−
�x ± d�2

4�x2�1 + i	�t − texp��
� . �13�

Here �x is the initial width of the Gaussians and texp is the
time at which the confining potential is turned off. At the end
of that stage, the spatial density of the condensate is

�G1�x,t,��	 = ��̂†�x��̂�x�	

= �n̂L�t�	��L�x,t��2 + �n̂R�t�	��R�x,t��2

+ �L
*�x,t��R�x,t�exp�− i���Ĵ+�t�	

+ �L�x,t��R
*�x,t��Ĵ−�t�	exp�+ i�� , �14�

resulting in an interference pattern with visibility

V =
max�G1�0,t,��	 − min�G1�0,t,��	
max�G1�0,t,��	 + min�G1�0,t,��	

. �15�

For Gaussian mode functions �and other suitably symmetric
functions� maxima or minima of the density profile are found
at x=0 when

��G1�0,t,��	
��

= ���0,t�L/R�2��Ĵy�t�	cos � − �Ĵx�t�	sin �� = 0,

�16�

where we have used �L�0, t�=�R�0, t�. Equation �16� gives
for the phase angle

tan � =
�Ĵy�t�	

�Ĵx�t�	
, �17�

and after some trigonometry

sin��� =
�Ĵy	

�Ĵx	2 + �Ĵy	2
. �18�

If the density �G1	 is maximal for the angle �, it is minimal
for �±�, and we have

max�G1�0,t,��	

= ���0,t��2
N + 2��Ĵx�t�	cos��� + �Ĵy�t�	sin����� ,

min�G1�0,t,��	

= ���0,t��2
N − 2��Ĵx�t�	cos��� + �Ĵy�t�	sin����� .

�19�

Using these results together with Eqs. �17� and �18� in the
definition �15�, we arrive at
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V�t� =��Ĵx�t�	
J

�2

+ � �Ĵy�t�	
J

�2

. �20�

In the angular momentum representation, the fringe visibility
is therefore given by the centroid of the quantum state, pro-

jected onto the Ĵx-Ĵy plane. From Eq. �20� the visibility dis-
appears at those times when

�Ĵx�t�	 = �Ĵy�t�	 = 0, �21�

i.e., either when the distribution is completely polarized or
when the phase uncertainty is total. In addition, our deriva-
tion shows that the external phase cancels the relative phase

of the quadrature components Ĵx and Ĵy in the case of ex-
tremal values of the density. Equivalently we can think of the

external phase as a rotation of the Bloch sphere around Ĵz, as
such actions are generated by this component of the pseu-
dospin.

III. SEMICLASSICAL DYNAMICS

In recent experiments by Kasevich and co-workers �15�, a
condensate subject to an �in principle unknown� external
force was prepared in a squeezed state of an optical lattice,
whose depth was then switched rapidly to the strongly inter-
acting regime, but still far from the Mott insulator regime.
After a variable holding time, the trapping potential was
turned off, the condensate visibility was observed after free
ballistic expansion, and the dependence of the visibility on
the holding time was then used to determine the external
force.

Motivated by these results, we investigate the dynamics
of the fringe visibility after a rapid change of either the well
depth or the two-body interaction energy in a two-well sys-
tem. We note at the outset that the time scale over which
these changes occur cannot be arbitrarily short, as the dy-
namics of the system has to remain adiabatic with respect to
the external mode functions of the confining potential in or-
der for the two-mode model to hold. Indeed, the two-mode
approximation is known to be valid provided that the inter-
action energy Ng is small compared to the energy separation
�	 between the trap levels of the individual traps, and in
addition, the spatial mode functions of particles localized on
each side of the double well are only well described by
shifted Gaussians provided that the interwell tunneling en-
ergy �E is much smaller than their frequencies, which are
also of order �	 �26�. Finally, the two-mode description also
requires that the double-well asymmetry is small compared
with the level spacing ���	 �33�. Provided that these three
conditions are met, it is possible to modify the energy ratio G
in a time 1/	�T�� /�E ,� /gN ,� /� such that the change is
adiabatic with respect to the double well, but practically in-
stantaneous as far as the many-body dynamics is concerned.

We consider first a semiclassical approach, expected to be
valid for large particle numbers and weak interaction
strengths. This approximation results from the factorization
scheme

�
Ĵi, Ĵj�	 � 2�Ĵi	�Ĵj	 , �22�

where 
,� is the anticommutator of two operators, which
amounts to setting the covariance matrix elements of the
angular momentum operators to zero. It should be empha-
sized that the ansatz, which holds exactly for Gaussian ran-
dom variables �28�, does not necessarily imply that all corr-
elators factorize, i.e.,

�ĴiĴ j	 � �Ĵi	�Ĵj	 , �23�

as would be the case for a fully classical system of point
particles. Equation �22� does not assume anything about the
angular momentum commutation relations, whereas Eq. �23�
violates them. As such, the factorization scheme �22� allows
us to handle situations characterized by a moderate amount
of squeezing, as further discussed later on.

Introducing the normalized Bloch-vector components

si �
�Ĵi	
J

, �24�

and with Eq. �9�, the semiclassical approximation �22� im-
plies that

sx
2 + sy

2 + sz
2 = 1 + 1/J � 1, �25�

which shows that in the limit of large particle numbers the
semiclassical dynamics is mapped onto the motion of a point
on the surface of a Bloch sphere. In that approximation, the
condensate energy, which is given by the expectation value
of the �suitably normalized� Hamiltonian

� �
�Ĥ	
J�E

=
G

2
sz

2 + sx + Fsz, �26�

where we have introduced the dimensionless interaction
strength �4,24�

G �
2gN

�E
, �27�

and the dimensionless energy offset between the two wells,

F �
�

�E
. �28�

For G=0, F=0, and also for large enough particle num-
ber, the ground state of the two-well system is well approxi-
mated by a coherent state, a state for which the semiclassical
approximation �22� is particularly well suited. The energy is
then proportional to sx, and is minimal for

sx = − 1 + 1/J � − 1, �29�

from which it follows that

sz = sy = 0 �30�

with corresponding normalized energy

�0 = − 1 + 1/J � − 1. �31�

Reference �15� indicates that so-called “contrast resonances,”
the temporary disappearance of the interference pattern, are
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of particular interest for the measurement of weak forces. As
we have seen, this happens when the Bloch vector describing
the condensate reaches the north pole of the Bloch sphere. At
these times, we have semiclassically that sx=sy =0 and

sz = 1 + 1/J � 1, �32�

corresponding to the energy

�NP =
G

2
sz

2 + Fsz �
G

2
+ F . �33�

The dynamics of the condensate is Hamiltonian and hence
its energy is a constant of motion. A given trajectory can
therefore connect two points on the Bloch sphere only if they
have the same energy. In particular, for the system to evolve
from its initial ground state to the north pole we must have

G = −
2

1 + 1/J
�F + 1� � − 2�F + 1� . �34�

This is the central result of this paper. It relates the offset of
the two potential wells, and hence the external force, to the
mean-field energy and the interwell tunneling rate, assumed
to be known and controllable in this measurement scheme.
Physically, the condition of vanishing visibility amounts to
having large enough energy offset to overcome the repulsive
interactions between particles, thereby making it possible to
accumulate all particles in either of the wells through Joseph-
son tunneling.

The semiclassical equations of motion for the angular mo-
mentum components are

dsx

dt
= Fsy + 2Gsysz, �35�

dsy

d
= − sz + Fsx + 2Gsxsz, �36�

and

dsz

d
= sy , �37�

where time is in dimensionless units

 � �Et . �38�

The approximation �22� implicitly assumes that the dynamics

of �Ĵi�t�	 is not influenced by the cross correlations and dis-
persions of the pseudospin components. This assumption
breaks down when large quantum correlations are present,
such as in a superposition state, or in a highly squeezed state.
It has been shown that the inclusion of second-order mo-
ments as dynamical variables, thus necessitating a factoriza-
tion of higher-order correlators in order to get a closed set of
equations, allows for accurate modeling of the centroid dy-
namics for slightly longer times �9�. We concentrate in the
following on situations where the condensate trajectories
reach the north pole. Using Eqs. �26� and �25� together with
the initial condition �31�, we eliminate both sx and sy from
Eq. �37�, which through separation gives a solution for  as a
function of sz as

�sz� =
2

G
�

0

sz dsz�

sz��1 − sz���sz�
2 −

4 + G

G
sz� +

2 + G

G
�

=
4l

G
�2K�k� + F��,k�� , �39�

where K�k� is the complete and F�� ,k� is the incomplete
elliptical integral of the first kind �29�. The prefactor l of the
solution and the amplitude k of the elliptic integrals are given
by

l =
1

AB
, �40�

and

k =1 − �A − B�2

4AB
, �41�

and � is given implicitly by

cos��� =
�1 − sz�B − szA

�1 − sz�B + szA
, �42�

where

A =
1

2
1 + 2�r+ + r−� + 4r+r−, �43�

and

B = r+r−, �44�

r± being roots of the second-order polynomial factor in the
denominator of the integrand in Eq. �39�,

r± =
4 + G

2G
±

1

2G
�G − G+��G − G−� , �45�

with

G± = 4�1 ± 2� . �46�

In the absence of two-body interactions, G=0, the conden-
sate trajectory is given by rotations of the initial state around
the vector �−1/2,0 ,1 /2�, a circle on the Bloch sphere; see
Fig. 1. With increasing G the classical trajectories with suf-
ficient energy to reach the north pole of the Bloch sphere
become more and more distorted. The value G+ denotes the
largest interaction strength for which the semiclassical trajec-
tories still passes through the north pole.

The zeros in the denominator of the elliptic integral �39�
indicate the presence of stationary points along the semiclas-
sical trajectories. For interaction strengths lower than G+, the
integrand has two complex poles, but at G=G+, they become
real and the trajectory bifurcates into two separate ones fol-
lowing the appearance of a new stationary point at

r+ =
1
2

, �47�

which corresponds to
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sx =
1
2
1 +

2

J
�

1
2

, �48�

and

sy = 0. �49�

This bifurcation makes it impossible to reach the north pole
from the initial ground state after that point. Figure 2 shows
the time dependence of the fringe visibility dynamics as a
function of the interaction strength when the energy condi-
tion �34� is fulfilled. As the trajectories approach the bifur-
cation point, the propagation time to reach zero visibility
goes to infinity.

Bifurcations are present on the Bloch sphere for all non-
zero values of G �10�, but they only affect the semiclassical
dynamics when any of them crosses the trajectory given by
Eq. �39�. We also note that the semiclassical trajectories can-
not intersect, since they correspond to a conservative Hamil-
tonian, whereas the quantum-mechanical expectation values,
representing the dynamics of a distribution, can intersect and
in general do so. It is also worth noting that the semiclassical
solutions are periodic in time and thus form closed orbits on
the Bloch sphere.

IV. QUANTUM DYNAMICS

In this section we investigate the limitations of the semi-
classical description of the dynamics by comparing the vis-
ibility dynamics obtained in the previous section with results
from exact quantum-mechanical simulations. We also inves-
tigate under which conditions the dynamics of the fringe

visibility can be used for metrological purposes, such as the
determination of weak potential gradients applied to the con-
densate, with an accuracy beyond the standard quantum
limit.

With the Hamiltonian �12� expressed in an angular mo-
mentum picture, it is natural and convenient to expand the
state of the condensate in terms of the azimuthal quantum
number eigenstates

��	 = �
m=−J

J

cm�J,m	 , �50�

where �cm�2 is then the probability for having an atomic
population difference of m between the two wells. Since m
�J is bounded, its conjugate variable, the phase difference
between the two wells, takes on discrete values �m only.
Instead of the expansion �50�, one can also expand the state
of the condensate into so-called relative phase states

��	 = �
m

c�m
��m	 , �51�

where �30�

��m	 =
1

2J + 1
�

m�=−J

J

exp�im��m��J,m�	 , �52�

and the discrete relative phases are given by

�m = �0 +
2�m

2J + 1
, �53�

for an arbitrary reference phase �0 between the two modes,
set equal to zero in the following without loss of generality.

Figure 3 illustrates the quantum dynamics of the conden-
sate both in the relative number basis and in the relative
phase representation. This example is for a system initially in

FIG. 1. Semiclassical trajectories with sufficient energy to reach

the north pole �Ĵz	=J. We see that the trajectories become increas-
ingly distorted with stronger interaction. At the value G+�9.657
�see Eq. �46�� of the interaction strength a bifurcation appears and
splits the trajectory through the north pole into two separated ones
thus making sz=1+1/J inaccessible for the initial condition sz

=0. The outline of the Bloch sphere is shown as a dashed line. The
two black dots mark the north pole and the initial state, respectively.

FIG. 2. �Color online� Visibility in the semiclassical limit as a
function of dimensionless time and interaction strength G as given
by Eq. �39�. At the parameter value G+=4�1+2�, the time required

to reach the north pole ��Ĵz	=J� goes to infinity due to the presence
of a bifurcation.

COHERENCE DYNAMICS OF TWO-MODE CONDENSATES… PHYSICAL REVIEW A 73, 013602 �2006�

013602-5



the ground state of the noninteracting condensate, corre-
sponding to a symmetric distribution with m=0. As the two-
body interactions are rapidly switched on to their final value
G=2, it evolves toward the point m=J, corresponding to all
particles in one well. The dynamics in the relative number m
resembles that of one-dimensional wave packets in anhar-
monic potentials �24�. When the wave packet reaches the
north pole m=J, a reflection occurs and interference fringes
appear in cm as a function of m. This occurs at the time of
vanishing visibility V��. At that time the relative phase dis-
tribution becomes broad as the relative number becomes well
defined around m=J.

While the example of Fig. 3 corresponds to a situation
when the semiclassical approximation holds quite well, it is
important to determine when this is the case in general. In
order to investigate this point we solved for the exact quan-
tum dynamics associated with the Hamiltonian �12� for the
initial coherent state associated with a noninteracting con-
densate, and rapidly changing the two-body interaction
and/or tunneling to satisfy the energy condition �34�. The
system was then allowed to evolve unitarily until the trap
was rapidly turned off and the condensate modes allowed to
expand and interfere. The results of these simulations are
summarized in Fig. 4 and should be compared with the semi-
classical results of Fig. 2. The full quantum simulations co-
incide with the semiclassical analytical solution in the case
of weak interaction strengths, higher particle numbers push-
ing the validity of the semiclassical description to higher G,
as would be intuitively expected.

Section III showed that the disappearance of the visibility
�“contrast resonance”� at specific times occurs as a result of
the energy balance condition �34�. This feature thus depends
on the precise values of the lattice and condensate param-
eters, and given that the interaction strength can be tuned, it
permits one to determine the energy offset caused by a weak
force. In order to investigate this scheme in more detail, we

simulated the quantum dynamics for variable interaction
strength while keeping the energy offset constant. The results
are shown in Fig. 5, where the visibility dip appears only
when the energy balance given by Eq. �34� is satisfied. The
visibility peaks sharply around the corresponding value of G,
provided, however, that the trajectories remain far from the
semiclassical bifurcation, which is the case in cases �a� and
�b�. In case �c� where the interaction strength is large the

FIG. 3. Density plots of the number �50� and phase distributions
�52� versus time. Darker shading corresponds to higher probability
density. The dynamics is shown here for N=100, G=2, F=−2. The
center of the distribution propagates up to the classical north pole
and bounces back, producing interference fringes during the
reflection.

FIG. 4. �Color online� Visibility for the exact quantum-
mechanical case as a function of dimensionless time and interaction
strength for N= �a� 5, �b� 50, �c� 500, and �d� 5000 atoms. The
energy balancing condition �34� was used here. For small values of
interaction strength G the visibility is well described by the semi-
classical approach in Fig. 2 and Eq. �39�, while larger values of
interaction strength show a breakdown of the semiclassical ap-
proach. The regime of validity is extended with increased number
of particles.

FIG. 5. �Color online� Visibility for the exact quantum-
mechanical case for N=50 as a function of dimensionless time and
interaction strength, for F= �a� −2, �b� −4, �c� −6. From Eq. �34� the
corresponding values of G are G= �a� 2, �b� 6, �c� 10. In �a� and �b�
the disappearance of the visibility is a sharp feature, whereas in �c�
the peak is smeared out and less distinct.
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“resonance” peak is no longer well defined, as its location
would fall in the regime where the semiclassical approxima-
tion ceases to be valid. This appears to indicate that the ap-
plication of “contrast resonances” for metrological applica-
tions works best in or near the semiclassical regime.

The semiclassical regime is characterized by the fact that
the phase space area of the quantum state is small compared
with the distances over which the semiclassical energy �26�
changes markedly. This does, however, not exclude the pres-
ence of quantum correlations in the form of squeezing, a
point to which we turn to next.

V. SQUEEZING

The ability to accurately determine applied forces in the
present scheme depends on how well the time of vanishing
uncertainty can be measured. This in turn depends on both
the fluctuations in visibility and on the phase fluctuations.
Using Eq. �19�, we have for the amplitude of the interference
fringes

V � max�G1	 − min�G1	 � �Ĵx�t�	cos��� + �Ĵy�t�	sin��� ,

�54�

and for the fluctuations in visibility we get

�V�� � �Ĵx�t�cos2��� + �Ĵy�t�sin2���

+ ��Ĵx�t�, Ĵy�t�	 − 2�Jx�t�	�Jy�t�	�sin���cos��� .

�55�

Figure 1 shows that as the trajectories pass through the north

pole of the Bloch sphere, they are parallel to the Ĵy axis. As

a result ��Ĵx��	�� ��Ĵy��	� around the time of vanishing vis-
ibility, so that cos���=0 and

�V�� � �Ĵy�� , �56�

i.e., the fluctuations in visibility are entirely due to phase
fluctuations. Phase noise is limited by its intrinsic quantum-
mechanical contribution and results in a fundamental limit in
the determination of weak external forces. The redistribution
of the noise in the quadrature components then holds the
possibility of increasing the precision in measurements be-
low the shot-noise limit. It is well known that nonclassical
correlations in the form of squeezing are induced by nonlin-
ear interactions. For the case at hand, Fig. 3 shows that when
the system reaches the north pole the phase distribution is
slightly concentrated at the values �m=0, ±�, an indication
of squeezing created dynamically during the time evolution.

A measure of the squeezing of phase noise relative to its
initial value is given by

� =
�Ĵy

2�min�	

�Ĵy
2�0�	

, �57�

where min is the time at which the expectation values of the

coherences �Ĵx	 and �Ĵy	 equal zero. �Note that decreasing �

indicates increasing squeezing of the Ĵy component.� This

measure does not take into account changes in the total co-
herence in terms of Bloch vector length, but assumes that the
quantum state is fairly well localized on the Bloch sphere.
Still, it is a good measure of phase squeezing around
V�min�=0 under the conditions that we are considering.

Figure 6 shows the squeezing �57� calculated numerically
at min for various particle numbers as a function of the in-
teraction strength G. Squeezing is seen to be present and
reaches a minimal value as a function of interaction strength
for each particle number.

Quantum dynamics are conveniently described and visu-
alized in terms of phase-space representations �31� such as
the Husimi distribution Q�� ,�� on the Bloch sphere

Q��,�� = ����t���,�	�2, �58�

where the angular Bloch states are given by �32�

��,�	 = �
m=−J

J � 2J

m + J
�sinJ+m��/2�cosJ−m��/2�


 exp�− i�J + m����J,m	 . �59�

The Q function �58� corresponds to the probability distribu-
tion of a joint measurement of the difference in particle num-
ber together with the relative phase between the condensate
modes. As such, the components of its dispersion can be
directly associated with experimental noise. Figure 7 gives
snapshots of the Q function for N=100, G=2, and F=−2, the
situation that corresponds to maximal phase squeezing. The

distribution is smeared out along the Ĵx direction as it flows
up toward the north pole, resulting in reduced phase noise.
At the same time the centroid describes a smooth trajectory
well approximated by the semiclassical dynamics of Sec. III.

For larger interaction strengths this picture becomes
slightly more complex, as shown in the snapshots of Fig. 8
for the case G=6, F=−4, N=100: the distribution becomes
increasingly distorted and also rotates during its propagation.
Although squeezing is still present, it no longer reduces the

phase fluctuations, as its orientation is no longer along Ĵy.

FIG. 6. Squeezing in phase noise, Eq. �57�, versus interaction
strength for various particle numbers. Dashed line: analytical esti-
mate �63�.
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It is possible to derive an estimate of the amount of
squeezing that can be achieved dynamically by the Hamil-
tonian �12�. Assuming the dynamics to occur in a minimal
uncertainty state, we have for the uncertainties at the north
pole of the Bloch-sphere

�Ĵx�t��Ĵy�t� =
1

2
��Ĵz�t�	� , �60�

which allows us to relate the uncertainties in different angu-
lar momentum components. If we further assume that these
uncertainties relate to energy changes in a linear way, we find
for the initial state

��0 � F�sz�0� = F
�Jz�0�

J
=

F

2�Ĵy�0�
. �61�

Similarly, we find at the north pole

��NP � �sx =
�Jx�min�

J
=

1

2�Jy�min�
, �62�

which, assuming ��0=��NP, gives for the squeezing param-
eter �57�

� = F−2 = �1 + G/2�−2. �63�

This shows that the amount of squeezing which can be cre-
ated dynamically by the Hamiltonian �12� through evolution
to the north pole of the Bloch sphere is limited by the value
of the energy offset F, the reason being that squeezing re-
quires redistribution of energy. Figure 6 compares the ana-
lytical estimate �63� of the squeezing to the exact numerical
results for various particle numbers, and shows a good agree-
ment between the two approaches for small values of G.

Figure 4 shows that increasing the number of particles
increases the regime of validity of the semiclassical approxi-
mation, whereas Fig. 6 shows that the phase squeezing at the
time of disappearing visibility also increases in this limit.
While it might appear incorrect that the dynamics of a
squeezed state can be described semiclassically, we note that
our factorization scheme actually preserves the angular mo-
mentum commutation relations, as already mentioned. The
fact that in that limit the centroid of the particle distribution
is governed by classical equations of motion is a conse-
quence of Ehrenfest’s theorem, which states that the expec-
tation values will follow classical trajectories when the width
of the distribution is small compared to the scale over which
the force fields, the right-hand side of Eqs. �35�–�37�, vary
appreciably �34�. The only requirement then is that the
squeezing is sufficiently weak for the width of the distribu-
tion in the antisqueezed direction to remain sufficiently
small.

VI. CONCLUSIONS

In this paper we have analyzed the dynamics of Bose-
Einstein condensates of interacting atoms trapped in asym-
metric double-well potentials whose characteristics are
changed suddenly.

An expression for the fringe visibility after ballistic ex-
pansion was generalized from earlier work and investigated
numerically for cases of interest for applications in metrol-
ogy, and the dynamics of the fringe visibility was shown to
be of potential use for the accurate measurement of small
forces.

All the cases described so far have involved repulsive
interactions. The dynamics involving attractive interactions
has, apart from stability considerations, received comparable
little attention. In principle, though, the scheme described in
this paper could be implemented also for the case G�0. In
Fig. 1 the semiclassical trajectories are shown for interaction
strengths −2�G�G+. The lower limit corresponds to F=0,
a completely symmetric double well. In this case the initial

FIG. 7. Q function for G=2, F=−2, N=100, parameters for
which maximum squeezing is obtained. Note its elongation elon-
gated as it passes through the north pole. Holding times: = �a� 0,
�b� 0.6, �c� 1.2, �d� 1.8.

FIG. 8. Q function for G=6, F=−4, N=100. Here the distribu-
tion becomes rotated and does not pass through the north pole with

its minor axis parallel to Ĵy. Also, there is seen to be some twisting
in addition to rotation. Holding times: = �a� 0, �b� 0.6, �c� 1.2, �d�
1.8.
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state will be centered on a saddle-node bifurcation point. The
unstable trajectories pass through the north and south poles
and return to the initial point. In the quantum description the
distributions are of course smeared out and never completely

pointlike for finite particle numbers, resulting in a coherent
splitting of the quasidistribution function. Figure 9 illustrates
the quantum dynamics at the bifurcation point for N=100.
The distribution is extended along the semiclassically un-
stable manifolds through the bifurcation point. After some
time the flow of the Q-function returns to the initial centroid
and produces interference fringes. It is obvious that under
such circumstances the dynamics cannot be modeled using a
single semiclassical trajectory, but rather must take the
spread in initial distribution into account. A detailed investi-
gation of the dynamics for this situation, although interesting
in its own right due to the highly nonclassical features, is not
useful for the interferometric schemes considered here and is
left for future work.
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