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We describe quantum controllability under the influences of the quantum decoherence induced by the
quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle
with its controlled system and then cause quantum decoherence in the controlled system. In competition with
this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed
quantum control process. In association with the phase uncertainty and the standard quantum limit, a general
model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite
energy within a finite time. It is also shown that if the operations of quantum control are to be determined by
the initial state of the controller, then due to the decoherence which results from the quantum control itself,
there exists a low bound for quantum controllability.
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I. INTRODUCTION

Generally an external field can be utilized to manipulate
the time evolution of a quantum system from an arbitrary
initial state to reach any wanted target state. If the external
field is classical and can be artificially controlled to be time
dependent, then we refer to this kind of manipulation as a
classical control �1�. In quantum computations �2�, the quan-
tum logic gate operations can be regarded as classical con-
trols in most cases where the controller is essentially classi-
cal and the control can be turned on or off classically at
certain instants.

In this paper we consider quantum control in which the
controller is quantized and obeys the laws of quantum me-
chanics. It is shown that the back action of the controlled
system should be considered, which may have a negative
side effect on the controllability. There are two motivations
for our investigations.

First, it is exciting to explore the finiteness of human be-
ings’ abilities to control nature and a “down-to-earth” start-
ing point for this exploration in physics should be a concrete
model even though it is oversimplified. With some reason-
able models one could demonstrate how the fundamental
laws of physics impose limits on controllability in principle.
These refer to some basic issues in physics, such as the en-
ergy bound, the basic precision of measurement �or standard
quantum limit �SQL� �3��. It is emphasized that quantum
decoherence may result from the control itself when the con-
troller is essentially considered as a quantum subsystem.

Second, though the physical implementation of quantum
computation seems to be difficult, the huge power of quan-
tum computation has been demonstrated by some quantum
algorithms in principle. The limit of quantum control can
bring a physical limit to quantum computation architecture
since it is based on complete quantum blocks including the

controller. Lloyd discussed how the physical constants im-
pose a limit on the power and memory in the quantum com-
puter �4�, while Ozawa �5� and Gea-Banacloche �6� consid-
ered the conservation law and the minimum energy
requirement for quantum computation, respectively. Our
present study can also be regarded as a part of the growing
body of the explorations in this direction.

In Sec. II, we start with a model with a single-mode field
as a controller and a two-level system �qubit� as the con-
trolled system. We found that it is possible to implement
some phase gate controls without inducing decoherence to
the controlled system. However, the single-mode example is
far from practical cases, and thus we further study quantum
control in a more general case in Sec. III. In Sec. IV the
control-induced decoherence is explained as a phase uncer-
tainty by associating it with the SQL. In Sec. V the obtained
results are highlighted as the complementarity of controlla-
bility and control-induced decoherence. An inequality similar
to the Heisenberg uncertainty relation is presented as the
accurate bound of quantum gates under quantum control.

II. EXACTLY SOLUBLE MODEL
FOR QUANTUM CONTROL

To have a clear picture of quantum control, let us first
start with a simple model. The total system that we concern
is closed, which consists of the controller C with Hamil-
tonian Hc and the controlled system Q with Hamiltonian Hq.
The system is in the initial states ��c�0,R�� and ��q�0��
=�ncn�n�, respectively, where R represents the controlling
parameters. For a given target state ��t� of Q, quantum con-
trol is described as a factorized evolution

��q�0�� � ��c�0,R�� → ��q�T�� � ��c�T�� �1�

of the total system driven by the interaction Hamiltonian Hqc
within the time duration �0,T�. If one could choose an ap-
propriate initial state and the corresponding parameters R
such that the partial wave function ��q�T���Uq�T���q�0�� is
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just the target one ��t�, where a global phase difference is
allowed, then we could say that an ideal quantum control is
realized. Usually Uq�T� defines a quantum logic operation in
quantum computation.

We now consider an exactly soluble example, where the
controlled system is a qubit with two basis states �0� and �1�
and the controller is a single-mode boson field with free
Hamiltonian Hc=��a†a; here, a† �a� is the creation �annihi-
lation� operator. The interaction

Hqc = �1�	1� � V � �1�	1� � �ga + g*a†� �2�

between them is of nondemolition �3�—i.e., �Hqc ,Hc��0
and �Hqc ,Hq�=0. Since Hq is conserved during the evolution,
we take Hq=0 without loss of generality. In the interaction
picture the time-dependent potential

VI�t� = gae−i�t + H.c. �3�

acts only on the state �1�, but not on �0�. This Hamiltonian
originates from the atom-field system in the large detuning
limit, but the problem is greatly simplified for convenience
�7�.

Now we explore the possibility of automatically creating
a phase gate operation

��q�0�� = c0�0� + c1�1� → ��q�t�� = c0�0� + c1ei��1� �4�

driven by Hqc. Essentially, the phase gate operation is sup-
posed to generate a relative phase � between �0� and �1� and
the total system experiences a factorized evolution

�c0�0� + c1�1�� � ��c�0�� → �c0�0� + c1ei��1�� � ��c�T�� .

�5�

We will show that only a class of phase gates with special
phases depending on the global parameters, such as the cou-
pling coefficients g and the gate operation time T, can be
implemented precisely, while the other phase gates definitely
result in a decoherence in the qubit system and can only be
implemented in an inaccurate way.

Obviously the Hamiltonian H=Hqc+Hc describes a typi-
cal conditional dynamics �8�. Let the total system be initially
in a superposition of

���0�� = �c0�0� + c1�1�� � ��� , �6�

where the boson field is in a coherent state ���. The total
system will evolve into an entangled state

���t�� = c0�0� � ��� + c1�1� � ei�� ��� , �7�

where

ei�� = T̂ exp
− i�
0

t

VI�t��dt�� �8�

is a time-ordered integral. A formal phase operator can be
explicitly calculated as

�� �t� = ��t�a + H.c. + 	�t� + i
�t� , �9�

where the time-dependent coefficients

��t� = i
g

�
�1 − e−i�t� ,

	�t� =
�g�2

�2 ��t − sin �t� ,


�t� =
�g�2

�2 �1 − cos �t� �10�

are obtained through the Wei-Norman algebraic technique
�9�. Then we can write down the total wave function as an
entangled state

���t�� = c0�0� � ��� + ei	�t�−
�t�c1�1� � �� + ��t�� . �11�

Obviously, at the special instants

t = T = 2k�/� , �12�

where k�Z and both the decay factor 
�t� and the displace-
ment ��t� in the coherent state ��+��t�� vanish. And a real
phase

	�T� = �s =
�g�2

�
T �13�

occurs in the above entanglement state. Thus we realize a
phase gate operation, Eq. �4�, of a certain phase �s, which is
induced by the factorized evolution

���0�� → ���T�� = �c0�0� + c1ei�s�1�� � ��� . �14�

It defines the reduced density matrix of a pure state,

�q = �c0�2�0�	0� + �c1�2�1�	1� + c1c0
*ei�s�1�	0� + H.c., �15�

for the qubit system.
If the evolution time is not just at the instant t=T, the

reduced density matrix

�r = �c0�2�0�	0� + �c1�2�1�	1� + c1c0
*D�t��1�	0� + H.c. �16�

is not of a pure state due to the decoherence factor

D�t� = 	��W�t���� = ei��t�−
�t�, �17�

where

��t� = 2 Im
 �1 − e−i�t�g�

�
� +

��t − sin �t��g�2

�2 �18�

and


�t� =
�g�2

�2 �1 − cos �t� .

The difference between �q and �r can be characterized by
the control fidelity F�t�=Tr��q�r�, which is defined as the
overlap of the target state �q and the final state �r. By a
straightforward calculation, we have

F�t� = 1 − 2�c0�2�c1�2�1 − Re�D�t�ei�s��

= 1 − 2�c0�2�c1�2�1 − e−
�t� cos���t� − �s�� .

In Fig. 1 we plot the curve F�t�, where g=0.1, �=1, and
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�=1.5. For convenience, we have taken �c0�2= �c1�2=1/2 and
then

F�t� = 1 −
1

2
�1 − e−
�t� cos���t� − �s�� . �19�

It can be seen that F�t� is a periodic function with unity as
the maximum value. As a functional, the period T= f�F� is a
function of the function F�t�. f�F� is determined by the sys-
tem parameters g and �. When t= f�F�t��, the control fidelity
takes its maximum F�t�=1 and then we realized an ideal
phase gate operation with the phase �s= �g�2T /�.

In order to realize a real control we require that the effec-
tive interaction 	VI�t�� should be automatically switched on
and off at time 0 and T; i.e., the controllable condition
�CABC�

	VI�0�� = 	VI�T�� = 0 �20�

is satisfied for 	VI�t��= 	�c�t��VI�t���c�t��. For the above ex-
ample, this requirement means

Re�g�� = 0, �21�

Im�g��sin �T = − �
�T� , �22�

for sin �T�0. When there is no loss of qubit coherence at
the instance t=T �
�T�=0�, the requirement, Eqs. �21� and
�22�, for an ideal quantum control is just g�=0. It is absurd
and impracticable. However, there exist the situations
�sin �T=0� satisfying the requirement for quantum control:
Re�g��=0 and �T=2k�, k�Z, which is reasonable in prin-
ciple since a pure imaginary number g�= i�g�� does not van-
ish even though it has a vanishing real part. Therefore some
target states are obtained as the superposition states of �0�
and �1� with specific relative phases that can be implemented
perfectly by quantum control.

However, the above phase gate control could only gener-
ate particular phases �s on the qubit state �1�, which is com-
pletely determined by the coupling factor g and the controller
field frequency �. In this sense we cannot achieve a quantum
control of implementing universal phase gates for a given
total system with fixed g and the controller field frequency
�. To overcome this problem the local parameters of the
initial states of the controller should be used in the quantum
control rather than the fixed global parameters of the total
system. We will explore this possibility in Sec. V where the
quantum decoherence will be considered based on the uncer-
tainty relation that relates to a multimode coherent field.

III. QUANTUM CONTROL
BY A GENERAL CONTROLLER

Staring with an idealized model, the above investigations
provide us some insights into the quantum control problem.
In order to consider more practical cases, we will analyze
quantum controllability in this section. To focus on the cen-
tral idea we do not consider the influence of the environment
yet. The entire system that we consider is an isolated system
including the controller C with Hamiltonian Hc and the con-
trolled system Q with Hamiltonian Hq. To bring out more
clearly the physical picture of such a quantum control, the
minimal assumption is that the Hamiltonian includes only
two items: Hqc and Hc. Matching this assumption, there ex-
ists a practical case that the nondemolition control satisfies
�Hq ,Hqc�=0 and then the free evolution of the controlled
system is eliminated.

Conveniently we work in the interaction picture with the
Schrödinger equation

i�
d

dt
��I�t�� = Hqc

I �t���I�t�� . �23�

Formally, quantum control requires that the interaction
Hamiltonian

Hqc
I �t� = eiHct/�Hqce

−iHct/� �24�

be automatically turned on and off at certain instants t=0 and
t=T during the evolution of the controller system. Under
quantum control a quantum gate operation is accomplished
by the controlled system. Besides, it is also required that the
controlling parameters depend on the initial state of the con-
troller system. By applying them to quantum computing, the
quantum computer implements the operations programmed
by the controller.

Without loss of the generality, we still take the controlled
system as a qubit with two basis states �0� and �1�. An ideal
quantum control with Uq�T� exerting on the qubit can be
described as a factorized evolution

UI�T� = e−�i/���Hqc+Hc�T = Uq�T� � Uc�T� �25�

of the total system, so that a controlled evolution of the qubit
system is implemented as ��q�T��=Uq�T���q�0��, while
��c�T��=Uc�T���c�0�� defines the final state of the controller.
Here, ��q�0��=c0�0�+c1�1� and ��c�0�� are the initial states of
the qubit and controller, respectively. We note that, because

FIG. 1. The control fidelity F�t� defined as the overlap of �q and
�r, which varies with t. The above inset is a close-up of the curve,
which indicates the collapses and revivals of the controlled system.
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the Hermitian operators Hqc and Hc do not commute with
each other, thus there is not simply exp�−iHqcT�=Uq�T� in
practice. We emphasize that, due to the limitation resulting
from the Heisenberg uncertainty principle, realistic control
cannot be carried out in such a perfect way as a completely
factorized evolution.

Generally, the Hermitian operators Hqc and Hc do not
commute with each other and there exists an uncertainty re-
lation:


Hqc
I 
Hc �

1

2
�	�Hqc

I ,Hc��� , �26�

where the variations 
A=�	A2− 	A�2�, A=Hqc and Hc. In a
consistent approach for quantum measurement �12�, this un-
certainty relation is also responsible for the decoherences
induced by the detector as well as those induced by quantum
control. Roughly speaking, the variation 
Hqc

I �t� is relavent
to the induced decoherence in the qubit system, while the
term �	�Hqc

I �t� ,Hc��� indicates the influence of quantum con-
trol and 
Hc is associated with the power or the average
energy of the controller. The conservation laws throw some
limits on such an implementation of quantum gates �5�. For
example, a quantum control to complete a controlled-NOT

�CNOT� gate usually concerns the transfer of some conserva-
tion quantities between qubits. To focus on the problems in
the following, we will only consider the quantum control
itself, which does not involve the transfer of any known con-
servation quantities.

Now we assume a nondemolition controlling interaction
Hqc= �1�	1� � V with a potential V that acts only on the qubit
state �1� �see Fig. 2�. It does not play any role at the begin-
ning and end of the gate operation, but we require that it be
generated by the controller and a nontrivial phase be left on
the qubit state �1�. Actually, as for the quantum controls in
quantum information processing, it is expected that a quan-
tum computer could work like electronic computers: when
the programs are designed and then stored in it initially, the
quantum computer should be able to carry out computations
without any other assistance. The basic requirement for
quantum control is that the interaction can be switched on
and off automatically at certain instants—e.g., at t=0 and
t=T,

	VI�0�� = 	�c�0��VI�0���c�0�� = 0,

	VI�T�� = 	�c�T��VI�T���c�T�� = 0, �27�

where VI�t��exp�iHct /��V�−iHct /��. The above equations
�27� are the general controllable condition. The sandwich 	V�
is defined as the average of the operator V over the controller
state. This means that the effective interaction is obtained by
taking the average of VI�t� over the instantaneous controller
states ��c�t��.

Generally, the controller in physical implementations of
the quantum control are various fields that are supposed to be
classical. For example, microwave electromagnetic fields are
used to manipulate the nuclear spin qubits in NMR, the laser
fields are applied to control the atomic qubits, and classical
magnetic flux and voltage are utilized to adjust the
Josephson-junction-based qubits. However, the controlling
fields are essentially of quantization and are usually de-
scribed by coherent states or some quantum-mechanical mix-
ture.

Starting from the initial state where the qubit is in
��q�=c0�0�+c1�1�, the total system evolves according to the
entangled state

���t�� = c0�0� � ��c�0�� + c1�1� � ei��t���c�0�� , �28�

where we have defined the time-order integral

ei� = T̂ exp
−
i

�
�

0

t

VI���d�� . �29�

The decoherence factor �13� is an expectation of the unitary
operator

D�T� = 	�c�0��ei���c�0�� , �30�

which can be used to characterize quantum controllability.
Now we need to consider that in what cases the above

entangled state ���t�� can become a factorized state, Eq. �5�,
at a certain instant t=T so that the ideal quantum control is
realized by choosing the initial state ��c�0�� of the control-
ling system. The simplest illustration is that VI�t�=V is a
static potential and thus

ei� = exp�− iTV/�� . �31�

If we choose ��c�0��= ��� with the eigenvalue �, then
exp�i�� becomes a c-number phase factor 	 and the time
evolution automatically generates a phase gate operation
with the c-number phase:

���T�� = �c0�0� + c1ei	�1�� � ��c�0�� . �32�

Indeed, the phase � multiplied to the qubit state �1� is well
defined and can be generated with arbitrary precision at a
suitable instant T by choosing the initial state ��c�0��= ��� of
the controller. This is what we want: the qubit system to be
controlled by the parameters of the initial state as well as the
evolution time. It seems that no fundamental restrictions ex-
ist for ��c�0�� and T.

However, the above idealized situation is far from realis-
tic cases in practical quantum controls. First, the precision of
quantum control is guaranteed by the stability of the

FIG. 2. �Color online� Schematic illustration of the nondemoli-
tion interaction for phase quantum control: the effective potential V
only act on the component �1�, but not on the component �0� in the
superposition. Besides the wanted phase to be generated, such an
interaction also induced a fluctuation of phase reflected by the fac-
tor �D��exp�− 1

2 �
��2� with module less than 1.
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potential—i.e., �V ,Hc�=0= �Hqc ,Hc�. However, this means
that the free Hamiltonian evolution of the controller has no
influence on the effective interaction by Hqc and thus the
CABC cannot be satisfied automatically. Therefore, we infer
that, in order to realize a quantum control with the “switched
on and off,” the potential VI�t� could not be a static one. In
this case the c-number phase is not well defined by the initial
state of the controller and thus there exists a phase fluctua-
tion 
� in the implementation of quantum control.

To explore the possibility of assorting with the CABC and
the precision of quantum control, we distinguish two cases
by whether the potential VI�t� generated by the controller is
commutative or not at different instants, i.e.,

case 1: �VI�t�,VI�t��� = 0, �33�

case 2: �VI�t�,VI�t��� � 0. �34�

In the first case a phase factor operator can be simply
defined as

� = −
1

�
�

0

T

VI���d� . �35�

Under the small variation 
��1, the decoherence factor
can be calculated as

D�T� � ei	��−�
��2/2 � ei	��d�T� . �36�

Similar to the arguments about the exactly solvable model in
Sec. II, an observation is that the ideal quantum control can
be characterized by whether or not the decoherence factor
�D�T��= �	exp�i���� can reach unity. Actually the phase mul-
tiplied by the qubit state �1� is the real part of the expectation
value of the phase factor operator 	�� plus a decay factor
from its quantum fluctuation �
��2 �11�. Thus the quantum
controllability is destroyed by the phase fluctuation �
��2 in
general.

In the following, we will show that the phase fluctuation
�
��2 will result in a loss of quantum coherence or quantum
dephasing. To this end we calculate

�
��2 �
1

�2�
0

T

dt�
0

t


VI�t�
VI���d� , �37�

which shows that the phase fluctuation �
��2 is just the
correlated fluctuation of the Heisenberg interaction. Thus
d�T�=exp�−�
��2 /2� is a decaying factor in D�T� accompa-
nying the off-diagonal terms of the reduced density matrix of
the qubit system. To quantitatively describe that to what ex-
tent the target sate

��t� = c0�0� + c1ei	���1�

can be reached by the controlled time evolution ���t��, the
control fidelity

F�t� = Tr����t��	��t���1 � ��t�	�t���

= Trc�	�t���t��	��t���t��

= Tr��t�r� �38�

is defined in terms of the reduced density matrix �t and the

reduced density matrix �r=Trc����t��	��t���, where Trc indi-
cates tracing over the variables of the controller. In this case
the result is obtained as

F�t� = 1 − 2�c0�2�c1�2�1 − e−�
��2
/2� .

Thus the corresponding error measure

� = 1 − F�t� = 2�c0�2�c1�2�1 − d�t�� �39�

describes the failure probability of the quantum control.
For the second case, due to the nonvanishing commutator

between VI�t� at different instants, we cannot generally de-
fine a phase factor operator �, but we can still formally write
D�T�= 	exp�i��� or

D�T� = ei�−
 � exp
i	�� −
1

2
�
��2� . �40�

This can give all similar results as case 1. The exactly solv-
able model in Sec. II elongs to the second case. This result is
exact for the above example presented in the last section
where

1

2
�
��2 = 
�t�, 	�� = ��t� . �41�

As discussed above, the decoherence-induced limit to the
quantum control has been explained based on the phase un-
certainty. In fact, this understanding reveals once again the
inherence of quantum decoherence in the generalized two-
slit experiment about �0� and �1�, whose interference fringe
vanishes when one determines which slit the particle comes
from. According to Heisenberg, this is due to the randomness
of relative phases �10� from quantum control. Furthermore,
we can conclude from the above exact solution that the large
random phase change just originates from Heisenberg’s
position-momentum uncertainty relation 
xk
pk=1/2. This
observation will help us to discover a bound on quantum
control.

IV. PHASE UNCERTAINTY DUE TO THE STANDARD
QUANTUM LIMIT

Based on our previous explorations of the relation be-
tween the two explanations for quantum decoherence �12�,
using the position-momentum uncertainty relation, we now
can associate the physical limit of quantum control with the
standard quantum limit in a quantum measurement context
�3� through a concrete example as follows.

This is a more practical example, where the qubit is con-
trolled by a multimode electromagnetic field

E = �
k

�uk�x�ake
−i�kt + H.c.� , �42�

with the mode functions uk�x�. The controlling Hamiltonian
Hqc�t�= �1�	1� � VI�t� in the interaction picture reads as
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Hqc�t� = �1�	1� � �
k

Hk � �1�	1� � �
k

��gkake
−i�kt + H.c.� ,

�43�

where �k are the mode frequencies, ak and ak
† the creation

and annihilation operators, respectively, and gk the mode
coupling constants between the qubit and field modes. We
suppose that the electromagnetic field is initially prepared in
a multimode coherent state

��c�0�� = ��� � �
k

��k� �44�

as a direct product of the coherent state ��k� of the kth mode.
In such an initial state, the observable is the average of the
field operator,

	��E��� = �
k

�uk�x��ke
−i�kt + H.c.� , �45�

which is a wave packet, the superposition of many plane
waves. This means that, to realize a more realistic quantum
control, we need a wave packet rather than a single mode or
a plane wave.

The free Hamiltonian of the qubit system has been omit-
ted without loss of generality. The potential VI�t� exerts on
the qubit state �1�, but not on the qubit state �0�. Then the
evolution can be obtained as

U�t� = �0�	0� � 1 + �1�	1� � ei�,

where

ei� = �
k

ei�k = �
k

Uk � �
k

T̂ exp
−
i

�
�

0

t

Hk���d�� .

�46�

We can explicitly calculate the phase operator �=�k�k de-
fined above by a method similarly to that used for the ex-
ample about the single-mode field in Sec. II. It is obtained by

�k = �k�t�ak + H.c. + 	k�t� + i
k�t� ,

with three time-dependent parameters

�k�t� = i
gk

�k
�1 − e−i�kt� ,

	k�t� =
�gk�2

�k
2 ��kt − sin �kt� ,


k�t� =
�gk�2

�k
2 �1 − cos �kt� . �47�

The phase operator can be rewritten as �=��t�+�a in terms
of the constant phase ��t�=�k	k�t� plus the operator

�a = �
k

�ak�t� = �
k

��k�t�ak + H.c.� . �48�

The decoherence factor can be calculated similarly as

D�t� = 	��ei���� = ei��t�−
�t�, �49�

where 
�t�=�k
k�t� and

��t� = 2�
k
�Im
gk�k

�k
�1 − e−i�kt��� + �

k

�gk�2

�k
2 ��kt − sin �kt� .

�50�

It is easy to check that the phase generated by the quantum
control is just the average value of the phase operator

	������ = 	���a��� + ��t� = �
k

��k�t��k + H.c.� + �
k

	�t� .

�51�

The analytical expression of the phase fluctuation is

�
��2 = �
�a�2 = �
k=1

N

�
�ak�2 = �
k=1

N

��k�2 = 2�
k=1

N


k�t� = 2
�t� ,

�52�

where we have considered each uncertain phase change as an
independent stochastic variable. Namely, the relation

�t�= �
��2 /2 or the exact expression D�T�
=exp�i	��− �
��2 /2� still holds for the multimode case
with the specialized initial state. Correspondingly, the error
measure is estimated as

� = 1 − F�t� = ��
�a�2 = 2�
�t� , �53�

where �= �c0�2�c1�2. Different from the single-mode case, it is
hard to find a proper instant T such that �=
�T�=0 in gen-
eral. Namely, it is hard to achieve an ideal quantum control
without any error.

In the above discussions, the realization of quantum con-
trol boils down to the appearance of the c-number phase ��t�
that contains the controllable part depending on the initial
state of the controller. An ideal quantum control means a
vanishing error ��
�a�2. But it is almost impossible because
of the intrinsic decoherence due to quantum control itself. In
fact, if the electromagnetic field could carry out a completely
efficient control of the controlled system, then the interaction
Hamiltonian should not commute with that of the controller.
These facts are responsible for the inaccuracy of the phase
gate or decoherence in the controlled system under the quan-
tum control. We have to point out that the conclusion drawn
above seems to depend on the choice of initial state, but now
we can argue that this is not the case with the above consid-
eration. So we need to consider the universality of the con-
clusions.

Physically, every variable of the controller can indepen-
dently exert a different impact on the different components
of controller state. Since every uncertain phase is an inde-
pendent stochastic variable, we have

�
�a�2 = �
k=1

N

�
�ak�2 � N min��
�ak�2�k = 1,2, . . . ,N�

for a general initial state of the controller. We note that the
phase uncertainty �
�a�2 caused by the controller variables
can be amplified to a number much larger than unity when
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N→�; i.e., the system states acquire a very large random
phase factor. The decay factor

�D�t�� = e−�
��2/2 � exp
−
N

2
min��
�ak�2�k = 1,2 . . . N�� .

So �D�t��→0 when N→�; i.e., the macroscopic controller
can wash out the quantum coherence of the controlled sys-
tem.

To be more concrete we assume that, in the initial state
�0�= �k=1

N ��k� of the controller, each component ��k� is a
wave packet, symmetric with respect to both the “canonical
coordinate” xk= �ak+ak

†� /�2 and the corresponding “canoni-
cal momentum” pk=−i�ak−ak

†� /�2. So 	xk��	�k�xk��k�=0
and 	pk�=0. We do not need the concrete form of the initial
state. For convience we assume it to be of Gaussian type
with variance �k=
xk in xk space. Physically, once 
xk is
given, the variance of pk cannot be arbitrary since there is a
Heisenberg’s position-momentum uncertainty relation

xk
pk�1/2. In the following we will show that the uncer-
tainty relation will give a low bound to the variance of 
�a.
In the above reasoning about �D�t��→0 when N→�, we
have considered that there exists a finite minimum value of
�
�ak�2. In the quantum measurement theory, the finite
minimum value of ��
�ak�2 �k=1,2 , . . . ,N� is implied by the
so-called SQL on the continuous measurement of phase op-
erator.

To see this we rewrite the phase operator

�a = �
k

�ak = �
k

��k�t�xk + �k�t�pk� , �54�

in terms of the “canonical coordinate” and the corresponding
“canonical momentum,” and the coefficients are

�k�t� =
1
�2

��k�t� + �k
*�t�� ,

�k�t� =
i

�2
��k�t� − �k

*�t�� .

The existence of the SQL is guaranteed by Heisenberg’s
position-momentum uncertainty relation, because each
�ak=�k�t�xk+�k�t�pk is a linear combination of xk and pk

with a property 	xkpk�+ 	pkxk�=0 for the average over the
real initial state. The phase fluctuation 
�ak can be derived
as


�ak = ���k�t��2�
xk�2 + ��k�t��2�
pk�2 � ���k�t��k�t��

or

�
�ak�2 � 8
gk

2

�k
2�sin3 �kt

2
cos

�kt

2
� . �55�

Here, we considere the variance 
�
x�= �
��
x� for a stochas-
tic variable x and a real number 
, and suppose gk /�k being
a real number.

In the above arguments, xk and pk are not only regarded as
a pair of uncorrelated stochastic variables in the terminology
of a classical stochastic process, the uncertainty relation


xk
pk�1/2 of them is also taken into account. This con-
straint just reflects the uncertainty of the phase change in the
quantum control process. Therefore, we have a time-
dependent minimum value of phase uncertainty with a low
bound

�
�a�2 � N min���k�t��k�t���k = 1,2, . . . ,N�� .

This result qualitatively illustrates the many-particle amplifi-
cation effect of uncertain phase change due to quantum con-
trol itself. The large random phase variance �
�a�2 implies
that it is hard to satisfy the exact condition �
�a�2=0 in
principle, and thus one can only optimize both the system
parameters and the initial state of the controller to approach
what we want.

To see the above observation analytically, we calculate
	�� in comparison with 
� in the decoherence factor
D�T�=exp�i	��− �
��2 /2�. The most simple, but somewhat
trivial case is that all modes are degenerate—i.e., gk=g and
�k=�—then,


� = �8N
�g�
�
�sin

�t

2
� , �56�

while the phase we wanted is

��t� = 2N�Im
g�

�
�1 − e−i�t��� + 2N

�g�2

�2 ��t − sin �t� .

�57�

Obviously, for very large N, the phase fluctuation 
� can be
neglected since 
� / ���t���1/�N→0. In general, we need
to consider divergence of the phase fluctuation

�
��2 = �
k=1

N

16
gk

2

�k
2 sin2 �kt

2
= �

−�

�

16
gk

2

�k
2���k�sin2 �kt

2
d�k

�58�

for various spectrum distributions of the controller, where an
unspecific spectrum distribution ���k� is used to discuss the
case with a continuous spectrum. For example, when
���k�=� /gk

2, the decoherence factor is exponentially decay-
ing since the above integral converges to a number 8��t /9
proportional to time t. Another example is the Ohmic distri-
bution ���k�=2��k

2 / ��gk
2�, which results in a diverging

phase fluctuation for t�0.

V. LOW BOUND OF CONTROL-INDUCED
DECOHERENCE AND QUANTUM COMPUTATION

In this section we will show that it is the back action of
the controller on the controlled system, implied by Heisen-
berg’s position-momentum uncertainty relation, that disturbs
the phases of states of the controlled system and then induces
a quantum decoherence, which is relevant to the SQL. In
order to quantitatively characterize such a limit to quantum
controllability, we now return to the discussion about quan-
tum control with a multimode field initially prepared in a
coherent state.

The commutation relation of the number operator N and
the phase operator �a defines an operator
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� = i�
k

�− �k�t�ak + �k
*�t�ak

†� �59�

dual to the phase operator �a—that is,

� = i�N,�a� . �60�

To see the meaning of the defined �, we calculate the
commutation relation of N and �a to find a close algebra by

�N,�� = i�a,

��a,�� = iF�t� , �61�

where F�t�=2�k��k�t��2 is a time-dependent constant. This
means that P=� /F�t� is a conjugate variable with respect to
�a since we have the canonical commutation relation
��a ,P�=1. In this sense we call � a dual-phase operator
�DPO�. A constant uncertainty relation can be found for �a
and P, which can be minimized by the corresponding coher-
ent state ���=�k��k�.

The above arguments about minimization of the uncer-
tainty by ��a ,�� can enlighten us to find a low bound for
the control-induced decoherence. To this end we consider the
uncertainty relation

	N�
�a = 
N
� �
1

2
�	��,N��� =

1

2
�	�a�� �62�

about the DPO and photon number operator N=�kak
†ak.

To derive the above uncertainty relation �62�, we have
considered


N = 	N� ,

�
�a�2 = �
��2 �63�

for the average 	¯� over the coherent state ���. We check the
above results �63� by the straightforward calculations

�
�a�2 = 	���a
2 − 	�a�2��� = �

k

��k�t��2,

�
��2 = 	���2 − 	��2��� = �
k

��k�t��2.

The novel uncertainty relation �62� defines a low bound
for the phase variation 
�a for a given phase 	�a� to be
achieved by quantum control—i.e.,


�a �
�	�a��
2	N�

. �64�

Equation �64� clearly implies that we need much larger en-
ergy to reduce the low bound of the phase fluctuation. Actu-
ally, we can formally write down the expectation of the pho-
ton energy of the controller,

E = ���
k

�kak
†ak� � �	N�	�� , �65�

in terms of the average photon number 	N�=�k��k�2 and the
average frequency of photons

	�� =
�k

�k��k�2

�k
��k�2

. �66�

Then Eq. �64� becomes


�a �
�	��
2E

�	�a�� . �67�

The small low bound requires that a large quantum controller
�implied by large 	N� or large energy E� possess a very small
average frequency. In this sense Eq. �62� defines a necessary
condition for the quantum control that can manipulate the
qubit system reaching the target state accurately. This re-
quirement is very similar to that where the apparatus should
be sufficiently so “large” as to be “classical” in quantum
measurement in the so-called “Copenhagen interpretation.”
Since quantum control relies on the ability to preserve the
quantum coherence of the qubit system during controlling it,
the controller should be much “larger” than the controlled
system. In this sense, the back action of the qubit system on
the controller can be neglected.

Next we consider the controllable condition �27� that the
controller field is switched on and off over a time duration T,
which can be roughly realized as a periodic phenomenon
with the average period T�2� / 	��. Since the average fre-
quency of the field can be approximated by 	���2� /T,
there is a low bound

� �
�h2

4E2T2 �	�a��2 �
�h2

4S2 �	�a��2 �68�

for the error measure estimation of ����
�a�2 of the quan-
tum control. So the larger action S=ET from the controller is
brought on the qubit system, the less quantum decoherence
characterized by the control induced error � becomes; the
more one wants to change by the phase 	�a� of the qubit
system, the larger quantum decoherence is induced by the
quantum control. Therefore Eq. �68� imposes a fundamental
limit on the accuracy of quantum control. In the following
we can consider this physical limit for quantum computing.

It is well known that the controllability of qubits is a basic
requirement for universal quantum computations, but accord-
ing to the above arguments a well-armed control in quantum
computing would cause extra decoherence in the qubit sys-
tem. Thus, in competition with the induced decoherence, the
controllability for quantum computation is limited.

In the last section a low bound of decoherence from quan-
tum control is obtained. It throws an accuracy limit on the
quantum controls in quantum computation. According to Eq.
�68� this limit is about 10−20 for the typical setting 	�a�=�,
E=10−9 J and T=1 �s in an ion trap scheme. This is such a
small limit that it is negligible in comparison with other er-
rors, such as environment-induced errors in the current ex-
periments of implementing quantum computation. However,
in principle, Eq. �68� does throw a fundamental limit on the
accuracy of the quantum control and thus on quantum com-
putations. There are some numerical estimates in Fig. 3,
which demonstrate a similar limit to the power of quantum
computers. It is known that for an algorithm consisting of L
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operations on the qubits system, an upper bound of error �
�1/L is required in each operation for a faithful result of the
entire computation. Inequality �68� tells us that the minimum
amount of time needed for a single gate is

tmin =
h��L

2E
�	�a�� , �69�

and so the total time needed to carry out a particular algo-
rithm consisting of L elementary gates is about Ltmin.

For a general algorithm such as an arbitrary unitary op-
eration on n qubits, the amount of elementary gates L needed
is about O�n24n� �14�; for the Grover algorithm on n qubits,
the amount is about O��2n�; for the Shor large number fac-
torization, the amount is about O�n3 ln3 2�. The time duration
needed for a general algorithm, the Grover algorithm, and
the Shor’s algorithm are estimated with optimistic assump-
tions, in which the only restriction is from quantum control.
Thus, in Fig. 3 it could be found that the practice of quantum
computation heavily depends on sophisticated quantum algo-
rithms and arbitrary quantum operations on about several
tens of qubits is already inaccessible even in principle. This

handicap in quantum computation stands when quantum
computation is carried out by tandem elementary gates under
quantum control.

VI. CONCLUSION

In this paper we present a universal description for quan-
tum control based on the quantized controller. We discovered
the complementarity about the competition between the con-
trollability and control-induced quantum decoherence in the
view of quantum measurement. Starting with an exactly
soluble example, a general model of quantum control is pro-
posed to describe this novel complementarity or a new type
of uncertainty relation. Our investigations show that it is pos-
sible to realize decoherence-free quantum controls only with
some special phases at the finite-energy scale and in finite
time. If the parameters of the phase are to be determined by
the initial state of the controller, then there exists a low
bound for the systematic errors resulting from the decoher-
ence causedf by quantum control itself.

The above arguments also show that the decoherences
from quantum control are different from those induced by
the environment through unwanted interactions. This is be-
cause the negative influence of the controller happens in the
quantum control process itself. If one eliminates this influ-
ence out and out, the positive role of quantum control would
perish together. Therefore, for quantum computing, these
kinds of errors induced by the control itself cannot be over-
come totally by conventional error management protocols
�15�. At least it has not been proved that control-induced
decoherence can also be conquered efficiently by well-
estabilished error management protocols. A better method to
solve this problem is to optimize the control operations when
the target of control is given. Without a doubt, this is an open
question which is a challenge for the physical implementa-
tion of quantum computing as well as other protocols of
quantum information processing.
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