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Smooth controllability of infinite-dimensional quantum-mechanical systems
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Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynam-
ics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to
the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that
such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic math-
ematical framework to describe quantum control systems possessing such controllability algebras. Then we
present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on
approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results
based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It
also opens up many interesting problems for future studies.
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I. INTRODUCTION

The laboratory successes in coherent control of quantum
dynamics in the late 1990s have dawned the dream of con-
trolling quantum phenomena. Nowadays, advances in laser
technologies and system control theory [1-4] have demon-
strated the abilities of effectively manipulating microscopic
systems both theoretically and experimentally. Owing to the
unique quantum coherence, quantum control has manifested
incredible novelties in contrast to the corresponding classical
control schemes [5]. With new perspectives obtained from
these achievements, more ambitious goals are being pursued
to control complex quantum dynamics subject to issues such
as large molecules [6], entanglements in quantum networks
[7.8], and decoherence in open quantum systems [9,10].
Moreover, the developments of quantum measurements,
which are in general weak and continuous in time, make it
possible to implement feedback techniques to enhance the
ability and robustness of control of nonunitary noisy evolu-
tions of quantum states [8,11].

In this paper, we are concerned with quantum control of
infinite-dimensional systems, especially those that contain
continuous spectra, which are fundamental in many practical
backgrounds. For example, as a long-standing problem in
controlling ultrafast molecular dynamics, the attempts to
break chemical bonds naturally fall under transitions of mo-
lecular states between discrete and continuous spectra
[12-14]. More recently, motivation has been generated by
the development of a continuous quantum computer [15,16]
that processes quantum information encoded in continuous
spectra. Serious theoretical studies have proved that they
might be more sufficient in some tasks in comparison to their
discrete counterparts.
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A large class of infinite-dimensional quantum systems
with discrete spectra can be well approximated to possess a
finite number of levels under weak control field interactions
that induce transitions between these levels. Mathematical
treatments to such systems can then be largely simplified by
linear approximations [17,18], perturbation theory or adia-
batic approximations [14]. However, in intense-field circum-
stances numerous levels have to be taken into account be-
cause they become strongly coupled by multiphoton
processes. For systems with continuous spectra, some of the
above approximations will not be applicable even in weak-
field cases due to the nonlocal nature of corresponding scat-
tering states. To exert the use of physical resources in con-
trol, we need to put the study back into the infinite-
dimensional prototype model of quantum-mechanical
systems so that arbitrary spectral types can be universally
handled. To the authors’ knowledge, not much theoretical
consideration has been received from this perspective. The
first studies date back to the work of Huang, Tarn and Clark
[1,19] in which analytic controllability is systematically
studied based on group representation theory. Their work
was later extended to time-dependent systems by Lan, Tarn,
Chi, and Clark [20]. These results embrace both cases of
discrete and continuous spectra [2,20], however, are still re-
stricted to systems with finite-dimensional controllability al-
gebras. Some other specific discussions can be found in Refs.
[21-23].

In this paper, the study of infinite-dimensional quantum
systems will be embedded in an algebraic framework that
can deal with infinite-dimensional controllability Lie alge-
bras. This framework also allows the use of strong fields and
unbounded Hamiltonians to enforce control over the quan-
tum states. On such a basis, we present new concepts of
smooth controllability and extend the existing results to more
general systems on infinite-dimensional manifolds. The orga-
nization of the paper is as follows. In Sec. II, we summarize
the existing results and present the algebraic framework ac-
companied with preliminary examples. In Sec. III, we give
the notions of smooth controllabilities based on the smooth
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domain. In Sec. IV, the main result is given and proved on
approximate strong smooth controllability. In Sec. V, we dis-
cuss two typical examples. Finally, in Sec. VI, we draw con-
clusions and give our perspectives.

II. PROBLEM FORMULATION

Generally, quantum control systems can be written in the
form of the following Schrodinger equation:

i) = (Hy+ H)U0. 0 = g, (1)

where the quantum state #(f) evolves in a separable Hilbert
space H. The free (unperturbed or internal) Hamiltonian H
of the quantum system is a Hermitian operator on . The H,
refers to the interaction (control) Hamiltonian that is used to
affect the quantum dynamics. In most situations, the interac-
tion Hamiltonian can be decomposed into a sum H,
=E}”=1uj(t)H;, where the u;’s are the controls that represent
some classical fields interacting with the system through the
Hamiltonians in the summation. To simplify the notations,
we rewrite Eq. (1) with skew-Hermitian operators H;
=(ifi)"'H!, which leads to the following quantum control
system:

%lﬂ(t) = [Ho"' > u,-(t)Hj] o), W0)=¢. ()
j=1

Throughout this paper, we always assume that the con-
trols are piecewise constant functions of time. A quantum
state ¢’ is said to be reachable from ¢ if there exists a time
instant 7 and some admissible (i.e., piecewise constant in
this paper) controls over [0, T] that steers the system from
to . Denote R (i) as the reachable set of all states that are
reachable from ¢, and R,(i) as the reachable set of all states
that are reachable from ¢ at a specified time > 0.

The controllability issue concerns itself with the problem
of whether or not the reachable set of the initial state can fill
up a prescribed set of quantum states. In particular, let the
manifold M be the closure of the set of states [21]

{esHay - eStHayys, € Ry =0,1, ... ,m;k e N}, (3)
where ¢ € H is the initial state, the reachable set of ¢y is
obviously contained in M because all possible control ac-
tions on the system are involved. In the rest parts of this
paper, we will concentrate the studies on controllability prop-
erties on this manifold.

Controllability problem is of great interests mainly in two
aspects. First, since the internal Hamiltonian H, may give
rise to unwanted complex dynamics (e.g., chaos), the con-
trollability characterizes the ability of the control system to
fight against such complexities. Secondly, the yes or no an-
swer of controllability provides important information in
many practical problems, e.g., possibility of 100% ratio of
preferred products in chemical reactions, or universality of
quantum computation realized by some physical structures.
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A. Existing results

Denote A={H,,H,,...,H,} the controllability algebra,
where the subscript “LA” denotes the Lie algebra generated
by operators in the curly bracket. For quantum control sys-
tems with a finite number of levels, the basic result is sum-
marized as follows [24].

Theorem I1.1. Suppose H is a N-dimensional Hilbert
space of quantum states and Sy, is the unit sphere in H. The
system is controllable over Sy, if the controllability algebra
A=su(N) or A=u(N). For homogeneous quantum control
systems, i.e., Hy=0, the condition is also a necessary condi-
tion.

Systems with an infinite number of levels are much more
complicated because the Hamiltonians may bring severe do-
main constraints. Providing that some of them are un-
bounded operators [25], the system evolution will have to be
restricted in a proper subset of quantum states in H, on
which the Hamiltonians are well defined, invariant, and the
state evolution can be expressed globally in exponential
form. For system with a finite-dimensional controllability
Lie algebra A={H,,H,,...,H,}; », Huang, Tarn, and Clark
[1] have suggested the analytic domain

: I, H, ol
D,=)we H:, > L oo

. . |
n=0 1<iy,....i,<m n:

as a candidate. The existence of a dense analytic domain in
‘H (with respect to the Hilbert space topology) and corre-
sponding group representation are guaranteed by the Nel-
son’s theorem [26]). Based on the analytic domain, the no-
tion of analytic controllability is as follows.

Definition 1.1 (Analytic Controllability). Quantum-
mechanical control system (2) is said to be analytically con-
trollable on M if the reachable set R(¢)=MND,, for all ¢
e MND,, If the reachable set R,(¢) equals to MND,, for
all e MND, at any time >0, the system is said to be
strongly analytically controllable.

Huang, Tarn, and Clark (HTC) presented a criterion of
strong analytic controllability [1].

Theorem II.2. Suppose the controllability algebra 2 is fi-
nite dimensional and the analytic domain exists. Let the Lie
algebra B={H,,....H}1o and C={ady B:k=0,1,...}1a,
where adZO‘B=% and adﬁol%=[H0,ad],‘,0‘B]. The system (2)
is strongly analytically controllable if the following condi-
tions are satisfied. (1) [®B,&]CYB and (2) for any ¢
eMND,, dim &(¢)=dim M.

Interested readers are further referred to Ref. [20] for ex-
tended results on time-dependent quantum control systems.
A common restriction of these results is that at most a finite-
dimensional manifold M in finite- or infinite-dimensional
Hilbert spaces can be taken into consideration, because the
corresponding controllability Lie algebra 2l is finite dimen-
sional. This limitation is manifested more clearly in the fol-
lowing HTC no-go theorem [1]:

Theorem I1.3. The system (2) is not strongly analytically
controllable on Sy, if the controllability Lie algebra 2 is
finite dimensional.
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The negative assertion of no-go theorem implies strongly
the necessity to explore quantum systems with infinite-
dimensional controllability algebras in order to drive systems
over infinite-dimensional manifolds. This is the primary mo-
tivation of the study in this paper.

B. Algebraic model and preliminary examples

Quantum Hamiltonians in traditional models are usually
expressed as combinations of kinetic and potential energies
according to the Hamiltonian formulation of mechanics. Spe-
cialized scalar or vector potentials are applied to affect the
quantum dynamics. For example, the dipole interaction of an
electrical field with atoms or molecules are widely used for
quantum control [3]. Such expressions are physically ex-
plicit, however, not convenient for calculation in structural
analysis of quantum control systems with complicated
Hamiltonians. In this regard, we adopt an algebraic frame-
work that has been systematically applied to study atomic
structure and molecular spectroscopy [27,28]. The method is
rooted on an intrinsic symmetry Lie algebra that describes
the quantum system under consideration, whose quantum ob-
servables are functions of the generators of the symmetry
algebra. Each of these physical observables can serve as a
control Hamiltonian interacting with external fields by some
realizable physical means, although, not necessarily under
present laboratory conditions. Rather broad classes of sym-
metries can be unified in this framework, such as geometri-
cal, dynamical, or even a priori prescribed symmetries [25],
hence the formulation benefits in gaining deeper insights into
the physical mechanism of quantum control.

In this paper, we are concerned with quantum control sys-
tems associated with finite-dimensional symmetry algebras,
say £={L,,...,Ls}.A. Assume that the system Hamiltonians
Hy,H,,...,H, can be expressed as skew-symmetric polyno-
mials of the generators of £, i.e., elements in the so-called
universal enveloping algebra E(£) (roughly speaking, the
minimal associative algebra of polynomial operators in terms
of the generators in £ that contains £, see Refs. [25,29] for a
rigorous definition). Apparently, E(£) is also an infinite-
dimensional Lie algebra equipped with the standard defini-
tion of Lie bracket [X,Y]=XY-YX, where X,Y € E(£). Ap-
parently, the controllability algebra A={Hy,H ,...,H,} o is
a Lie subalgebra of E(£).

From the well-known Poincaré-Birkhoff-Witt theorem
([29], p.138), all the ordered polynomials

(L L% - ay e N}

consist of a basis of E(£). Denote E(£) the subspace of
elements in E(£) whose orders are no greater than n, we
obtain a graded algebra structure

E(l)(ﬂ) C E(z)(E) cC - C E(”)(S) C---

that decomposes the infinite-dimensional vector space E(L)
into finite-dimensional subspaces. In this structure, the com-
putation with differential operators can be replaced by alge-
braic operations that are easier to carry out on the graded
finite-dimensional subspaces. This facilitates the noncommu-
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tative analysis [30] over an infinite-dimensional algebra.

To understand the concepts of symmetry algebra, infinite-
dimensional controllability Lie algebra, and infinite-
dimensional manifold, we present several illustrative ex-
amples of quantum systems with Pdschl-Teller potentials. As
one of the known solvable potentials in the literature
[2,27,28], Poschl-Teller potential has been widely used to
describe stretching or bending vibrations states in molecules.
In the following, various algebraic models of Poschl-Teller
potentials will be presented via separation of variables under
special coordinate systems.

Example 1. The first approach applies the so-called poten-
tial algebra su(1,1)={L;,L;,L}|  as the symmetry algebra,
where L/ is a compact operator and L, L, are noncompact
operators. Their commutation relations read

[L)'C,L;] = iL;,[L;,L;] =—iL,[L],L]=- iL;.
The su(1,1) can be realized in Cartesian coordinates

o ( I . a)
=—1 - e
* y&z dy

, [ @ J
va_’ Xx—+z—,
’ Jz ox

e ( g9 )

=—ilx—-y—|,

¢ dy Y ox

where L, and L; are the pseudoangular momentum operators
along x and y axes, and L is the angular momentum operator

along the z axis. We change them to the hyperbolic coordi-
nates

x =cosh p cos ¢,y =cosh p sin ¢,z =sinh p,

with a succeeding similarity transformation U=cosh!’? p on

the wave function. Then, we simultaneously diagonalize the
Casimir operator C=L/*+L!*~L!* and L! with simultaneous
eigenvectors {|; ,m)=u’]»”(p)e””¢}:

j.my=j(j+1)

where the j and m take values in the unitary representations
of su(1,1):

C

jom),  Lilj.m)=mlj,m),

Dij=3.1,5

=515, m=jj+1,..;

1 3

D;:j=5,l,5,...; m=—j,—j—-1,..;

Cjo»:j>0; m=0,+1,...;

172, . 1.
Cj J>

1 3
3, m= if’ii"” .

Finally, we arrive at the time-independent Schrodinger equa-
tion subject to Poschl-Teller potentials

& m2—i)m ( 1>2m
-—- "p)=\j+=| ulp).
( 4y cost? p) (p)=1J 5] Ui (p)

The free Hamiltonian reads Hy=a(C+1/4), a>0 is some
constant. It possesses discrete (corresponding to le and D;
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VPl

m=3 m=2 m=1

FIG. 1. (Color online) State transitions in example 1 with
Poschl-Teller potentials.

representations) or continuous (corresponding to CQ and C1?
representations) spectra. The potential strength m>—1/4 is
labeled by the eigenvalues of L.. Choosing control Hamilto-
nians from the universal envelopmg algebra of the potential
algebra, we can realize the quantum control over this system,
for instance, by the other two operators in the potential alge-
bra [2]:

9 1
iﬁ;lﬁ(t)={<c+ Z)+M1L§+”2L§]'ﬂ(”' @

Because both the control Hamiltonians commute with the
free Hamiltonian, they are not able to move the energy level
labelled by the eigenvalue (j+1/2)* of H,. However, as
shown in Fig. 1 [27], they can alter the potential strength
because the corresponding operator L. does not commute
with the control Hamiltonians. Hence these quantum controls
weaken or strengthen potentials while conserving the system
energy. It is not difﬁcult to verify that the controllability Lie
algebra A= {C +4 L L\,,L }LA is a four-dimensional Lie
subalgebra of E(su(l 1)). From the HTC theorem, this sys-
tem is strongly analytically controllable.

Example 2. The second approach describes the scattering
states in Poschl-Teller potentials. The corresponding symme-
try algebra is called scattering algebra su(l,1)
={L;,L;,L}; o with operators L compact and L;, L] non-
compact. The commutation relations read

[LL]=—iLl, [LLL]=—iL, [LLL]=

Here the su(l1,1) algebra takes a different realization

L ( J + a)
=—jly—+z7—
* r dy

L ( d a)
=—ilx—=-z—
Y dz dx
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V(p)

j=-1

FIG. 2. (Color online) State transitions in examples 2 and 3
under Poschl-Teller potentials.

L ( 9 a)
=—ilx—+
¢ dy Yox

where L, and L] are the pseudoangular momentum operators
along x and z axes, and L! is the angular momentum operator
along y axis. Followed by hyperbolic coordinate transforma-
tion

x=cos @ cosh ¢, y=cosQsinh ¢, z=sinQ

and a succeeding similarity transformation p=tanh™' cos @
on the wave function, the simultaneous diagonalization
of the operators C=L/*~L/*+L!* and L/ with simultaneous

=i (p)em?):

j=0,3,1,3.2,...,

,me R,

gives the time-independent Schrodinger equation subject to
Poschl-Teller potential

( & jG+1)
- oa-

cosh? p
The free Hamiltonian reads H():aLZ’Z, where a>0 is a con-
stant. The system possesses a positive continuous spectrum
{E=am?®, m e R} because L', is noncompact. The potential
strength j(j+1) is related to the Casimir operator C. Con-
sider quantum control system using two operators in the scat-
tering algebra [2]:

)u}"(p) =m*u'(p).

iﬁa%z,b(t) =[aL!? +u L} +u,L] (1), (5)

the potential strength is a conservative quantity because the
corresponding Casimir operator commutes with all system
Hamiltonians. As shown in the upper part of Fig. 2 [27], the
controls affect only the change of energies in continuous
spectra. The controllability algebra A={aL/*,L! Li}La is an
infinite-dimensional Lie algebra and contains arbitrarily
high-order elements in E(su(1,1)). Therefore, the former re-
sults cannot be used here.

Example 3. The third example describes bound states in
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Poschl-Teller potentials with a compact dynamical Lie alge-
bra su(2)={L)’C,L;,L£}LA. In a similar way, we first realize

this algebra in Cartesian coordinate system

. ,( d a)
=—1 — =2,
" y&z Zc?y

L ( d a)
=—ilx— -z
v 0z Cox

L ( 3 &)
=—ilx— -
‘ dy Y ox

where L]'- is the angular momentum operator along the j axis,
j=x,y,z. Changing them into spherical coordinates

X=C0S QCos ¢, y=cosQsing, z=sinQ

followed by a similarity transformation p=cos™! sech ¢ on
the wave function, and the simultaneous diagonalization
of the operators C=L"’+L'">+L'? and L'_ with simultaneous

= ()}

. 1 3
J=7%1352,...,

L,zj’m>:mjsm>’ m=—j,...,j,

we can get the time-independent Schrodinger equation sub-
ject to Poschl-Teller potentials

( & jG+1)
-

cosh?
The free Hamiltonian reads H0=—aLz' 2, where a >0 is a con-
stant. The potential strength is labeled by the eigenvalues of
the Casimir operator, while the quantum number m labels the
(2j+1) bound states in the jth potential. Consider the follow-
ing control system [31]:

)W)——mu(m

iﬁ%lﬂ(l) = [aLZ’2 +u L, + uzL;];’y(t), (6)

with control Hamiltonians selected from the su(2) algebra.
As shown in the lower part of Fig 2, the control Hamilto-
nians serve to shift discrete energy levels in Poschl-Teller
potentials. They cannot affect the potential strength, nor can
they drive the system out of discrete spectra to the con-
tinuum. More interestingly, this example shows that control-
lability algebra can still be infinite dimensional even if the
symmetry algebra is compact.

The above three examples reveal rich symmetry proper-
ties in the same Poschl-Teller potentials by which system can
be represented by simple algebraic variables. The concepts
of infinite-dimensional Lie algebra and infinite-dimensional
manifold should not be confused with the infinite-
dimensional systems (distributed-parameter systems [32])
widely used in the literature. All the three examples are in-
finite dimensional systems since they are described by partial
differential equations and their solutions are functions. How-
ever, in the first example, the controllability algebra is finite
dimensional and the corresponding manifold is a finite-
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dimensional submanifold of infinite-dimensional manifolds.
This is different from the finite-dimensional manifolds con-
tained in a finite-dimensional vector space, since the genera-
tors of the algebras consists of unbounded operators and the
solution of the Schrodinger equations are functions rather
than vectors in finite-dimensional vector spaces.

III. SMOOTH CONTROLLABILITY

No doubt that the domain problem is also nontrivial for
systems with infinite-dimensional controllability Lie alge-
bras. Normally, it is not difficult to find an analytic domain
for the symmetry algebra £, however, this domain is not
invariant under the actions of high-order operators in its uni-
versal enveloping algebra E(£). In fact, it has been demon-
strated that analytic domain is nonexistent for most infinite
dimensional Lie algebras [33]. Therefore, one needs to seek
another proper domain for the universal enveloping algebra.

What we are going to choose is the larger set of differen-
tiable vectors of £:

D.={¢p e H:|L}' - Lyp| <,V 5,=0,1,2,---}, (7)

which is well defined and invariant for all operators in E(£),
hence can be taken as a candidate. Parallel with the analytic
domain, we call D,, the smooth domain. Topologically, the
smooth domain occupies a special inverse limit Hilbert
(ILH) vector space structure that is inherited from, but com-
pletely different with, the Hilbert space structure of H (see
Appendix A). This ILH structure also makes it possible to
generate an infinite-dimensional ILH transformation group
on H from the universal enveloping algebra E(£) [34],
which establishes a solid mathematical basis for the follow-
ing discussions on infinite-dimensional quantum control sys-
tems.

Moreover, the smooth domain has crucial physical mean-
ings on describing scattering states, which can be intuitively
depicted as limits of bound states whose wave packets spread
widely in the configuration space. By definition, D, repre-
sents the set of bound states on which all the system observ-
ables (elements in the universal enveloping algebra) and
their commutations act legally, hence is comprised of all ex-
perimentally preparable states produced by the quantum con-
trol system (2). Denote the dual space of D, by D,”, i.e., the
space of continuous antilinear functionals on D... The scat-
tering states can be represented as ideal vectors in the larger
set D,.° that do not have finite norm in H [35,36]. Math-
ematically, the triad of linear spaces

D.,CHCD,

forms a so-called rigged Hilbert space [35,36] with D,, dense
in H and H dense in D, (with respect to the weak topology
of D). So D.. is also dense in D,". This shows that scat-
tering states can be identified as the ideal limits of some
sequences of bound states in D,, (note that the limit is called
“ideal” because it is outside the Hilbert space and is not
converged to with respect to the usual Hilbert space topol-
ogy).

Consider the manifold M defined by Eq. (3), which, cor-
responding to infinite-dimensional controllability algebras, is
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in general infinite dimensional. Parallel with the analytic
controllability, we present rigorous controllability concepts
of quantum control systems over this manifold.

Definition III.1 (smooth controllability). Quantum-
mechanical control system (2) is said to be smoothly control-
lable if the reachable set R(¥)=MND, for all
eMND..

Definition II1.2 (strong smooth controllability). The sys-
tem is said to be strongly smoothly controllable if the reach-
able set R(#)=MND, for all e MND,, at any time ¢
>0.

In the context of this paper, where only piecewise con-
stant controls are considered, the system can never be com-
pletely smoothly controllable on an infinite-dimensional
manifold M unless an infinite number of switches are applied
[1]. Hence we have to turn to the following weakened defi-
nition.

Definition 1I1.3 (approximate smooth controllability).
Quantum-mechanical control system (2) is said to be ap-
proximately smoothly controllable on M if the reachable set
R () is dense (with respect to the ILH topology) in MN D,
for all e MND,.

Definition I11.4 (approximate strong smooth controllabil-
ity). The system is said to be approximately strongly
smoothly controllable if the reachable set R,(i) is dense in
MND, (with respect to the ILH topology) for all
e MND,, at any time > 0.

The consideration of differential vectors has been sug-
gested by Huang, Tarn, and Clark in Ref. [1] as a possible
extension of the analytic controllability. In this paper, we put
it into a rigorous setting. The smooth domain not only en-
larges the system domain, but also gives a nice topology by
which one can carry out strict controllability analysis. More
important a by-product is that the smooth domain provides
an explicit picture of the control of scattering-state quantum
systems, which are non physical in a strict sense. Neverthe-
less, taking scattering states as ideal limits of bound states in
the smooth domain, we can directly translate the knowledge
of controllability properties on the smooth domain D, to
scattering states in the dual space D,," in the sense of an ideal
limit.

IV. MAIN RESULTS

The foregoing mathematical preliminaries provide a tech-
nical basis for us to explore quantum systems with infinite-
dimensional controllability algebras. In this section, we will
study the approximate strong smooth controllability of quan-
tum control systems over the manifold M defined by Eq. (3).
The main difficulty will be that only a finite number of con-
trols are available to guide the quantum states all over the
infinite-dimensional manifold M, while fighting against the
possibly complex free evolution.

In the following, the discussion will be focused on the
quantum control system of the unitary propagators:

iU(t):[HQ+Eui(t)Hj] u@, u)=1, (8)
dt = p .

where the system propagator satisfies ¢/(t)=U(t)is, and be-
longs to the infinite-dimensional Lie group G generated by

PHYSICAL REVIEW A 73, 012719 (2006)

the controllability algebra 2(. Controllability properties of
system (2) can be derived from this system, because the
manifold M can be equivalently expressed as the orbit, M
={Uyy,,U € G}, of G passing the initial state ¢, Providing
that a dense subset of propagators in G can be generated from
Eq. (8), the system will be consequently smoothly control-
lable on M. Our basic idea is to construct unitary transfor-
mations in G by repeatedly switching control interactions so
that the free evolution can be cancelled and recreated, hence
forms a dense subset of G as the number of switches in-
crease. Concretely, we are looking for a class of strongly
“adjustable” flows (i.e., one-dimensional subgroups in G)
generated by the so-called strongly attainable Hamiltonians.

Definition IV.1. Denote the infinitesimal-time reachable
set Ro(h)=N,~oR <, (), where R—,(¢)) denotes the reach-
able set within # units of time. A time-independent Hamil-
tonian X is said to be strongly attainable if its integral curve
{exp(X1)i,t € R} passing any ¢y € M N D,, is contained in the
closure of R(1). A set of Hamiltonians is said to be strongly
attainable if each element in this set is strongly attainable.

The strongly attainable Hamiltonians represent Hamilto-
nians of which the generated unitary propagators can be
achieved in an arbitrary small time interval. We are going to
seek plenty of strongly attainable Hamiltonians for the sys-
tem (8) so that flows passing 4, can be generated to steer the
system with full freedom in a dense subset of the infinite-
dimensional manifold M, which leads to the approximate
strong smooth controllability of Eq. (2). Before presenting
the main result, we will prove several preliminary lemmas
and theorems. Readers interested in the main result may pro-
ceed directly to theorem IV.3 and examples in Sec. V.

To apply these ideas, we will repeatedly use the
Campbell-Baker-Hausdorff formula that is already well es-
tablished on infinite-dimensional Lie groups [29,37]:

st s2t
XY= exp| sX+1Y + J[X.Y]+ [X.[X.Y]]

st?
+E[Y,[Y,X]]+ )

and the Trotter’s formula [38,39]

(X + Y)yd) = lim (XY/an/n)nd)9 (9)
[X.Y)ip=lim (X ¥ X RV )" d, - (10)

where X, and Y, are the flows generated by X and Y, respec-
tively. First, one can identify the following properties of
strongly attainable Hamiltonians.

Lemma IV.1. Let X and X,,...,X, be strongly attainable
Hamiltonians, then (1) (X; ) - (X;); ¥ € Ro(4), for all n
eN, iy,...,i,e{l,...,a}, s;,....s,€R and ¢ € D, and (2)
(Ho) X, € RA(D), X(Hphe R(H), for all yeR(e),
>0, and s € R.

Proof. Let U(t,u(-)) be the system propagator under con-
trol u(-)=(u;(-), - ,u,,(-)). According to the definition of
strongly attainable Hamiltonians, for arbitrary positive num-
ber € and arbitrary positive time ¢, there exist a sequence of
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unitary propagators U, ., ..., U, , such that U(t/n,u(-))
=Uy y for some u¥(-), and satisfies

ILX;)s, = Uram)(X;

-1

Joy o (i) < .
Because Uy ,’s are unitary operators,
1), X5,y X)), ¥ = UpUncvm ™ Urn ¥l
<X )5, = Unind(X; D= (X ) il + -+
U imUncr = LX), = Uyl
=0 )y, = Unand X; s+ (X)), |
+ o (X ) = Ut < e

From the choices of U, ,,,...,U, ;. it is obvious that
Un,t/nUn—l,t/n' o Ul,t/nl;b € Rt( ‘70) for any t>0. So
(Xik)sk(Xik—l)sk—l.“(Xil)sll’[,e R,(). As to the second asser-
tion, we similarly choose U, such that [[(H)X,¢
—(Hy),Ui| < €. Then

||(HO)ZXS(II_ (HO)Z—TUTlp” < ||(H0)[XS170— (HO)ZUTw”
+ ||(H())ZU7"70_ (HO)t—TUTI:b”'

Because of the continuity of the one-parameter group
{(Hp)};cr, the second term goes to zero as 7— 0. Therefore
(Hy) Xt € R(). Similar is the proof for X (H), € R ().

Lemma IV.2. X is strongly attainable if and only if (H,
+cX), e R(y) for all c e R.

Proof. To prove the sufficiency, we estimate the deviation
between the system evolution with that in absence of H, by
integrating the differential equation

Sn_]

d
;(EHO + X)I—SXS¢= - (EHO + X)I—S(EHO)Xsw
over the time interval [0, ]:

ety + X0 X = [ ety 0, et s
0

< eMt, (11)

where ||(eHy+X),_J|=1 by unitarity, 0<M =supy, |HoX,
<o, Hence for fixed ¢ and ¢, lim,_,|/(eHy+X),—X,44|=0.
This is to say, the integral curve X,y can be arbitrarily close
to (eHy+X)p=(Hy+ € 'X) € R () for € small enough.
Therefore X, € Ro(4), i.e., X is strongly attainable.

Conversely, if X is strongly attainable, the necessity can

be shown from the Trotter’s formula

(HO + CX)slp: linolc[(HO)s/n(CX)s/n]n¢7
in which the term at the right hand side belongs to the clo-
sure of R,(#) by repeatedly using lemma IV.1 (2). The end
of proof.

Lemma 1V.3. Denote 2Ug the collection of strongly attain-
able Hamiltonians. 2y is a Lie algebra containing ‘B
={H1""5Hr}LA'

Proof. Suppose X, Y e is strongly attainable. The
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strong attainability of ¢X for arbitrary nonzero ¢ € R is ob-
vious. Using Trotter’s formula and applying lemma IV.1 (1),
we observe that the right-hand sides of Egs. (9) and (10)
belongs to the closure of the infinitesimal-time reachable set,
so both X+Y and [X, Y] are strongly attainable. This proves
the Lie algebra property of 2. On the other hand, the control
Hamiltonians H,,...,H,, are strongly attainable according to
lemma IV.2. Therefore the Lie algebra 5 that is generated by
H,,...,H, is a strongly attainable Lie subalgebra of 2.

Theorem 1V.1. The Lie algebra € is strongly attainable if
the algebraic condition [25,E]C DB is satisfied.

Proof. Tt is sufficient to prove that ad’,;OH e 2 for arbi-
trary integer k& and strongly attainable Hamiltonian H € ‘B.
We invoke the Campbell-Baker-Hausdorff formula [29]

H_(H,)H = (HO + tadHOH

2 rl

t
+y J (9- 1)2H_9,ad§,H0H9,d0> o,
0 5

where ¢ € R. The last term

2!
Ri=7 f (0—1)’H_gad?HoH yd 6

0

is the Lagrange remainder. Under the condition [B,¢]C 9B,
the term adf,HO is strongly attainable, hence its translation
H_glad%IHOH o by a strongly attainable Hamiltonian H is also
strongly attainable (by lemma IV.1). Taking the integral as a
limit of summations, we can see that the Lagrange remainder
is also strongly attainable. Applying Trotter’s formula, we
have

(HO + z‘adHOI_I)sw= lim [H—t(HO)s/nHt(_ Rl)s/n]”lzb’

of which the right-hand side is contained in the closure of
reachable set R () by lemma IV.1. Hence (Ho+tady H)
€ Ry(1), which implies that ady H is strongly attainable
from lemma IV.2. Thus we proved the strong attainability of
adHO%.

Inductively, assume the subspace of Hamiltonians €
={ad{qO%, j=0,--+,k}C¢ is strongly attainable for some
positive integer k. Employ again the Campbell-Baker-
Hausdorff formula

(adyy H)_(Hy)(ady, H) ¢

2l
t
= (Ho - tadadll‘_IOHHO + Ef (0- 1)2(ad]1(10H)_0z
0

Xad, & HHO(adﬁ,OH)e,d(a) "
0

s

2 rl
t
= (Ho + tad’;;;lH+ Efo (6- 1)2(ad’,‘10H)_oz
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><[ad’§r01H, ad’;,OH](ad’;,oH) th0> . (12)
s

Making use of the formula [40]
‘ k
[adﬁ,;lH,ad’;,OH] => (- 1)-"<j )adﬁ,‘of[adf;of“H,H] c e,
j=0

together with the condition [9B,&]C B, we can see the
strong attainability of the Lagrange remainder R, in Eq. (12)
from the assumption that €, is strongly attainable. Using
Trotter’s formula, we have

(Ho+ tady; H) = lim [ (ady; H)_(Ho),y,(adjy H),

X (_ Rk)s/n]nlp?

where the right-hand side is contained in the closure of
reachable set R (/) by lemma IV.1. Similarly, we can prove
in the same line as carried above that each element in the
subspace ad’,‘;; 198 is strongly attainable. Therefore, we induc-
tively prove the strong attainability of €. In conclusion, €
is strongly attainable.

Next, we cite a useful theorem to connect the strongly
attainable Hamiltonians with the reachable sets R ().

Theorem IV.2 [40-42]. Let I(¢, €)= (exp &) be the maxi-
mal connected integral manifold of € containing the point .
Then  R/(p)CI'(4,€), where I'(f,&)=(Hy)I(f,<)
=I((Ho) ¥, ©).

Proof. Because the admissible control are piecewise con-
stant, we can always decompose the system flow into pulses
driven by constant controls. Consider the single pulse, we
have by Trotter’s formula and Campbell-Baker-Hausdorff
formula

(Ho+ H)p=1im[(Hy) ;,H,, )"

n—oo

= lim (HO)I{(HO)—[(n— 1 )/n]th/n (H())—[(n—l)n]t}
(13)

Xoeee {(H())—l/nHt/n(H())z/n}(HO)—t/n 17[,’ (14)

where H=2" u;H; are the control Hamiltonian. Because

(Ho)_H(Hy) = exp{ tH — st{H,H]
2

+ S?t[Ho,[Ho’H]] - }lﬁ € exp&y,

so each part in the curly brackets in Eq. (14) generates a
unitary propagator in exp €. Hence R, () CI'(¢,€). Induc-
tively, suppose the conclusion establishes for k pulses, then
for (k+1) pulses with #;+ -+t =t, let t' =1+ +1},

(Ho+ H*D),  (Hy+HY), -+ (Hy+ HY), ¢
& [exp €(Hy),, 1(Ho), 1(4,€)
€ exp €(Ho) (4, €)
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= (Ho),L[(Hy)—, exp €(H,) JI(1/,€)
= (Ho) d(4,€).

Thus the conclusion establishes for (k+ 1) pulses. The end of
proof.

Having the above properties of the strongly attainable
Hamiltonians and reachable sets in hand, now we can draw
the main result of the approximate strong smooth controlla-
bility.

Theorem 1V.3. The system (2) is approximately strongly
smoothly controllable if the following conditions are satis-
fied: (1) [B,€]CB and (2) For any ¢ e MND,, €(P)
=2A(¢) and they are infinite dimensional.

Proof. From theorem IV.2, € is strongly attainable under
the first condition. According to lemma IV.l, we have
I'(,€)=(H,), exp CYCR,(f) for some initial state o
eMND,. On the other hand, from theorem IV.2,
R () CI'(,€). Hence R ()=1'(¢, ).

By Frobenius theorem ([34], p. 215), the condition €(¢)
=2(¢) for any ¢ e MND,, guarantees that A and € have
identical maximal integral manifold passing #, i.e., exp A
=exp CyYy=MND... Since H, € 2, the unitary transformation
(Hy), leaves M invariant. Thus we arrive at the final conclu-
sion:

RA) = (Hp)lexp O)p= (Hp) (M N D..) =M N D.,.

V. EXAMPLES

To illuminate the ideas presented in this paper, we pro-
ceed to discuss several examples in this section.

Example 1. The first paradigm comes from the model of
continuous quantum computation over continuous variables
proposed by Lloyd and Braunstein [15]. The scheme encodes
quantum information in the continuous spectrum of the po-
sition operator of a harmonic oscillator. The control task then
becomes the manipulation of superpositions of eigenstates of
the position operator by the following control systems:

J
iagb(x,t) =[p? + 2%+ u (xp + px) + uop + usx

+uy(* + p?)* 1), (15)

where the commutation of the position operator x and the
momentum operator p=—ifid, reads [x,p]=ifi. Here the
Heisenberg algebra h(1)={x,p,i};4 plays the role of the
symmetry algebra of the system. The smooth domain for the
Heisenberg algebra h(1)={x,p,i} is the Schwartz space

d\#
x4 = vx)| <.
(dx) ) }
As argued in Ref. [15], arbitrary functions of variable x and
p can be approximated by repeatedly switching operations of
the control Hamiltonians, i.e. all the polynomials of x and p

in E(h(1)) can be generated by commutations and linear
combinations of the control operators

{v(x) e L2(R): sup

a,3=0
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H, =xp+px, H,=p, Hs;=x, H,=(x*+p?)>.

This is actually equivalent to say that all these polynomial
Hamiltonians are strongly attainable according to the termi-
nology used in this paper. According to theorem IV.3, the
system (15) is approximately strongly smoothly controllable.
In quantum computation field, this amounts to the universal-
ity of continuous quantum computation using model (15).

Physically, the linear optical interactions are used to shift
phase by x and translate the coordinate by p; the second-
order operator px+xp provides a squeezer operation. The
nonlinear Kerr Hamiltonian (x*+p?)2, which plays essential
roles in producing many interesting physical phenomena
such as entangled photons, is applied here to explode up an
infinite-dimensional controllability algebra that is necessary
for controllability over the whole continuous spectrum. It is
also easy to verify that many other higher-order operators in
E(h(1)) can replace the Kerr Hamiltonian for the same goal
of controllability [15].

Example 2. The physical model of the second example
has been described in Sec. II. The scattering states in Poschl-
Teller potentials are characterized using a noncompact sym-
metry algebra su(l, 1). Let |j,k), k=j, j+1,..., be simulta-
neous eigenvectors of the compact generator Ly’ and the
Casimir operator C for some fixed integer j>0. These vec-
tors expand a Hilbert space H;. The smooth domain con-
tained in H; consists of the “fast decreasing sequences”

oo
D,= x:Exk
k=j

0| lim K =0,¥ ne Np  (16)
‘k'—»oo

as described in Ref. [43]. The scattering states are contained
in the set of “slow increasing sequences”

0

D, =1x=2 x|l limk"x=0,¥ ne N[ (17)
k=j lk|—o=

For the quantum control system (5), one can verify induc-
tively that the controllability algebra 2A=FE(su(1,1)) (see
proof in Appendix B), which generates a unitary representa-
tion of the volume-preserving diffeomorphism group diffS"!
over a hyperboloid surface S''=SU(1,1)/SO(1,1) [44]. De-
note M the orbit of diffS"! passing the initial state i
e D.NH;

However, although we have an infinite dimensional con-
trollability algebra 2, the algebra B={L',L'}; =su(l,1)
is too small to fulfil the condition in theorem IV.3. Hence
nothing can be told according to the results obtained in this
paper. Nevertheless, if one can apply an extra second-order
control Hamiltonian L'i, which leads to the following con-
trol system:

a
iﬁalﬁ(t) =[aL’? +u, L, + woL] + usL'Jgfr),  (18)

the second-order control Hamiltonian helps to explode up an
infinite-dimensional Lie algebra 9B that coincides with 2
=E(su(1,1)). According to theorem IV.3, strong approximate
smooth controllability follows on M.
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Let us give some physical insights. At the first glance, the
operators K',=L' +L'  resemble the ladder operators in har-
monics oscillators. But intuitively, the “ladder” operators are
not allowed to generate discrete shift of levels on a continu-
ous spectrum. In fact, K', shift eigenvalues of L"_ by =i units
[45], which is of course absurd because the Hermitian L’z
has a real continuous spectrum. As interpreted in Refs.
[45,46], the contradiction originates from the fact that K',
act illegally upon the scattering states that are outside the
Hilbert space. Their operations are only well defined on the
wave packets of superposition of scattering states. Interested
readers may refer to Refs. [45,46] for more details.

The second-order Hamiltonian L!*=(K+K')?/4 is also
essential in expanding an infinite-dimensional controllability
algebra as well as the Kerr Hamiltonian in the first example.
Any other second-order operator that does not commute with
H, functions equivalently in controllability. As analogs of the
Kerr nonlinear process, these operators generate higher-order
harmonics on SU(1,1). On the other hand, whatever higher-
order operators in E(su(1,1)) are applied, they can never
move the system state out of the continuous spectrum due to
the symmetry predetermined by the scattering algebra.

VI. CONCLUSION

This paper provides a clearer understanding of system
control of infinite-dimensional quantum-mechanical systems.
The presented framework may be applied to quantum control
systems with finite or infinite dimensions, and with bound
states or scattering states. Back to the cases of finite dimen-
sional controllability algebras, the extension of analytic con-
trollability to the larger smooth domain, which has been con-
jectured in Ref. [1], can be taken as a corollary of theorem
IV.3. Most important is that the results open up much broader
applications to infinite-dimensional manifolds.

As has been earlier discussed by Zhao and Rice [13],
control of scattering-state system can be significantly influ-
enced by the presence of chaos. Since the strong controlla-
bility property is not altered because the evolution always
concerns itself on finite time intervals, our results affirm that
quantum scattering-state control system can be ‘“‘strong”
enough to overcome the chaos. However, controllability not
in the strong sense is indeed more complicated because cha-
otic dynamics manifests itself on long time intervals.

In the examples in Sec. V, the manifold M is not charac-
terized in detail. We conjecture that they are at least dense in
the unit sphere, which is most interesting to researchers on
controllability studies, but rigorous proofs have not been
found. Generally, it is a further task to investigate whether
the system is controllable on some prescribed manifolds.
Providing that the condition in theorem IV.3 is satisfied, this
problem can be reduced to the transitivity of the strong ILH-
Lie group G over Sy, (N.B. a group is said to be transitive if
any two points on the manifold can be connected by some
transformation in G [29]). While a complete list for finite-
dimensional systems has given in Refs. [47,48], it is worth
exploring the problem of classifying all possible controllabil-
ity algebras that act transitively over the hypersphere. This
remains to be studied in the future.
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APPENDIX A

In the viewpoint of functional analysis, the smooth do-
main can be related to the inverse limit Hilbert (ILH) chains
[34] defined as follows.

Definition A.1 (ILH space). Let N(d) be the set of integers
k such that k=d, where d is an integer. A family of complete
locally convex topological vector (CLCTV) spaces {E,E*;k
e N(d)} is called an ILH chain if the following conditions
are satisfied.

(1) Each EX, k e N(d) is a Hilbert space, EX*! is embed-
ded continuously in E*, and the image is dense in EX,

(2) E=Nien@E", and the topology of E is given by the
inverse limit of {E*;k € N(d)}, where the inverse limit topol-
ogy is the weakest topology such that the natural embedding
E— E* is continuous for every k e N(d).

For the universal enveloping algebra E(£) considered in
this paper, the smooth domain (7) can be equivalently ex-
pressed as an ILH space D..=N,_yH, by a series of Hilbert
spaces H=HqDH;D- -+ completed by the class of scalar
products [30]

(b )i =(b, A", k=0,1,2,...,

where the Nelson operator A=/ +Lf+ --+Lf, and (-, -) is the
inner product of H. To properly define the series of Hilbert
spaces, the Nelson operator is required to be essential self-
adjoint. With respect to this ILH-topology, the elements in
the universal enveloping algebra are continuous and the uni-
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versal enveloping algebra itself can be exponentiated to form
an infinite-dimensional Frechet (or ILH) Lie transformation
group [29,34] acting on D,,. This group is no longer a Hilbert
Lie group that covers most finite dimensional Lie groups.
Geometrically, the tangent space of the group manifold at
each group element is an ILH space instead of a Hilbert
space. Interested readers may consult [29,34] for more de-
tails.

APPENDIX B

Let L,=—iL,, a=x,y,z. To prove this fact, it is enough to
show that every ordered LYLIL. can be generated from the
Poincaré-Birkhoff-Witt theorem [29]. Let /=p+g+r. The
case for /=1 is obvious. Assume the case for /[=n—1 is cor-
rect, we prove the validity for /=n. First, if one of L{LJL; for
which p+g+r=n can be generated, any other of such opera-
tors can be generated, because we have

(17171, L] =LP[L

Xy

S LA+ LLYLL L]
=—qULT'L - L' 4 Q,

Xy
where Q,_; denotes the terms of order less than n. Continu-
ing calculating the commutations ads (LquLr) we can ob-
tain g+r+1 operators in which the orders of L, and L, range
from (g+r,0) to (0,g+r). Since the operators w1th dlfferent
(g,r) indices are linearly independent, we can obtain any
Li’L;’,,L;/ after proper linear combination of these commuta-
tions and operators with order less than n. Similarly, we can

obtarn any v Lqu and L7 Lq L’ from LYLJL;. Therefore any

v Lq Lr can be generated from LLIL.

So the case of /=n is valid if at least one LYLIL] of order
n can be generated by lower order terms. This can be easily
verified since [Li,Lﬁ_zLy]=2Lﬁ_1Lz+ 0,.-1. Hence all the Lie

algebras 2, 9B, € coincide with E(su(1,1)).

[1] G. M. Huang, T. J. Tarn, and J. W. Clark, J. Math. Phys. 24,
2608 (1983).
[2] T. J. Tarn, J. W. Clark, and D. G. Lucarelli (unpublished).
[3] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa,
Science 288, 824 (2000).
[4] V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, and A.
Peirce, Phys. Rev. A 51, 960 (1995).
[5] H. Rabitz, M. Hsieh, and C. Rosenthal, Science 303, 1998
(2004).
[6] J. Herek, W. Wohlleben, R. Cogdell, D. Zeidler, and M. Motz-
kus, Nature (London) 417, 533 (2004).
[7] A. Blais, Phys. Rev. A 64, 022312 (2002).
[8] W. Mao, D. V. Averin, R. Ruskov, and A. N. Korotkov, Phys.
Rev. Lett. 93, 056803 (2004).
[9] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[10]J. Zhang, C. Li, R. Wu, T. Tarn, and X. Liu, J. Phys. A 38,
6587C6601 (2005).
[11] H. M. Wiseman, Phys. Rev. A 49, 2133 (1994).
[12] Y. Alhassid, J. Engel, and F. Iachello, Phys. Rev. Lett. 57, 9

(1986).

[13] M. Zhao and S. Rice, J. Chem. Phys. 4, 2465 (1991).

[14] M. Shapiro and P. Brumer, Principles of the Quantum Control
of Molecular Processes (Wiley-Interscience, New York, 2003).

[15] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784
(1999).

[16] Quantum Information with Continuous Variables, edited by S.
L. Braunstein and A. K. Pati (Kluwer Academics, 2003).

[17] E. Zuazua, in Quantum Control: Mathematical and Numerical
Challenges, CRM Proceedings and Lecture Notes Series, ed-
ited by M. D. A. Bandrauk and C. L. Bris (AMS Publications,
Providence, 2003).

[18] N. Weaver, J. Math. Phys. 41, 5262 (2000).

[19] T. J. Tarn, G. M. Huang, and J. W. Clark, Math. Modell. 1,
109 (1980).

[20] C. Lan, T. Tarn, Q. Chi, and J. Clark, J. Math. Phys. 46,
052102 (2005).

[21] R. Brockett, C. Rangan, and A. Bloch (unpublished).

[22] W. Karwowski and R. Mendes, Phys. Lett. A 322, 263 (2003).

012719-10



SMOOTH CONTROLLABILITY OF INFINITE-...

[23] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).

[24] W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581
(1993).

[25] A. O. Barut and R. Raczka, Theory of Group Representations
and Applications (Polish Scientific Publishers, Wasazawa,
1980).

[26] E. Nelson, Ann. Math. 70, 572 (1959).

[27] Y. Alhassid, in Group Theoretical methods in Physics, edited
by W. W. Eachary (World Scientific, Singapore, 1984), pp.
337-347.

[28] F. Iachello and S. Oss, Eur. Phys. J. D 19, 307 (2002).

[29] Lie Groups and Lie Algebras I, edited by A. Onishchik
(Springer-Verlag, Berlin, 1993).

[30] V. Nazaikinskii, V. Shatalov, and B. Sternin, Methods of Non-
commutative Analysis (Walter de Gruyter, Berlin, 1996).

[31] S. Dong, Y. Tang, G. Sun, F. Lara-Rosano, and M. Lozada-
Cassou, Ann. Phys. (N.Y.) 315, 566 (2005).

[32] J. M. Ball and J. E. Slemrod, SIAM J. Control Optim. 20, 575
(1982).

[33] D. Arnal, J. Funct. Anal. 21, 432 (1976).

[34] H. Omori, Infinite Dimensional Lie Groups (American Math-
ematical Society, Providence 1997).

PHYSICAL REVIEW A 73, 012719 (2006)

[35] O. Melsheimer, J. Math. Phys. 15, 902 (1972).

[36] R. Madrid, A. Bohm, and M. Gadella, Fortschr. Phys. 2, 185
(2002).

[37]J. Teichmann, Ph.D. thesis, University of Vienna, Austria,
1999.

[38] H. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).

[39] E. B. Davis, One-parameter Semigroups (Academic Press,
London, 1980).

[40] H. Kunita, Appl. Math. Optim. 5, 89 (1979).

[41] H. J. Sussmann and V. Jurdjevic, J. Dyn. Differ. Equ. 12, 95
(1972).

[42] R. M. Hirschorn, SIAM J. Control Optim. 14, 700 (1976).

[43] G. Lindblad and B. Nagel, Ann. Inst. Henri Poincare XIII, 27
(1970).

[44] R. Floreanini and R. Percacci, Phys. Lett. B 261, 51 (1991).

[45] N. Mukunda, J. Math. Phys. 8, 2210 (1967).

[46]J. G. Kuriyan, N. Mukunda, and E. C. Sudarshan, J. Math.
Phys. 9, 2100 (1968).

[47] W. Boothby, J. Dyn. Differ. Equ. 17, 296 (1975).

[48] W. Boothby and E. Wilson, SIAM J. Control Optim. 17, 212
(1979).

012719-11



