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A fully quantal approach to proton collisions with hydrogen based on the atomic-orbital close-coupling
method is presented. The method leads to a system of coupled three-dimensional momentum-space integral
equations for the scattering amplitudes. These equations are reduced to two-dimensional ones using an on-shell
approximation. Furthermore, by considering the symmetry of the problem, we demonstrate that these can be
reduced to just one dimension. The resulting equations are solved without partial-wave expansion. Cross
sections for electron transfer in proton collisions with the ground state of atomic hydrogen are calculated and
shown to agree well with experiment over a wide energy range.
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I. INTRODUCTION

The dominant mechanism by which charge exchange in
ion-atom collisions takes place can be quite different at vary-
ing energies. The theory of this process for a particular en-
ergy range is well developed �1�. At very low energies the
whole ion-atom system can be considered as a quasimole-
cule. This feature is successfully exploited in expansion
methods utilizing molecular orbitals �MO’s�. A recent ex-
ample is the MO method of Krstic and Schults �2�. Methods
useful in the intermediate-energy region where the impact
velocity is comparable to that of the electron of the target
atom include atomic-orbital �AO� close-coupling �3�, hyper-
spherical close-coupling �4�, electron-nuclear dynamics
�END� formalism �5�, and pseudostate methods �6�. At
higher energies perturbation methods based on the distorted-
wave formalism are widely used �7� which include the con-
tinuum distorted wave �CDW� �8�, boundary corrected Born
�8� approximations, and first- and second-order methods
based on the Faddeev-Watson series �9�. The methods based
on the Faddeev equations �10,11� potentially span a wider
energy range including intermediate and high energies.

Despite the progress in theoretical descriptions of ion-
atom collisions mentioned above a single suitable theory to
deal with projectile energies ranging from low to high ener-
gies has been lacking. To fulfill this gap, the CDW method
has been applied at energies as low as 0.1 eV utilizing the
impact-parameter model �12�. This makes the method argu-
ably the most general theory of charge exchange in H+

+H�1s� collisions, spanning the entire nonrelativistic energy
regime. However, the CDW method assumes penetration of
the projectile into the target and therefore a more detailed
justification of the method at such low energies, as well as
verification of the validity of the impact-parameter model,
may be required. Though being a two-state approach, the
underlying theory for this semiclassical impact-parameter
method turns out to be complicated and numerical calcula-
tions are described as time consuming �12�.

The objective of the present paper is to demonstrate that
the basic physics �13� of the most fundamental ion-atom
process—scattering of a proton on the ground state of a hy-
drogen atom—can be described by a simple and transparent

quantum-mechanical approach in a wide nonrelativistic en-
ergy regime. This approach will provide a base on which a
fully quantal method will be built that is valid over a broad
energy range.

Practically all approaches to ion-atom collisions we men-
tioned earlier, except the high-energy perturbative ones, use
either the partial-wave method or the impact-parameter
model in their formalism. The use of the classical impact
parameter makes the method semiclassical. This naturally
imposes certain limitations on the realm of validity of the
method. Estimates based on a number of physical require-
ments show that the impact parameter model can be used at
collision energies of the order of 100 eV per atomic mass
unit �amu� or more �1�. The partial-wave expansion is a
method of choice for low-energy approaches. The same ap-
plies to fully quantal approaches intended to span wider en-
ergy ranges which include energies below the limit men-
tioned above. As the energy increases the number of
necessary partial waves can be as high as several thousand.
In this work we explore the alternative approach of solving
scattering equations directly without recourse to a partial-
wave expansion.

Our approach is based on momentum-space integral equa-
tions. The momentum-space integral-equation method is
widely used in scattering theory. Three-dimensional
momentum-space integral equations emerge, for example, in
approaches like the close-coupling approach to electron-
atom scattering �14� and positronium formation �15� and the
Faddeev approach to ion-atom collisions �11�. The standard
technique for solving these equations is the use of a partial-
wave expansion which transforms them into a sum of one-
dimensional equations. With today’s computer power, accu-
rate solution of a large set of one-dimensional integral
equations is a routine task �14�. However, as mentioned
above, for ion-atom collisions where an extremely large
number of individual partial waves contribute this technique
has clear disadvantages.

Recently we solved the three-dimensional momentum-
space Lippmann-Schwinger equations for an electron-
hydrogen scattering model directly, without the partial-wave
expansion �16�. The results reproduced those obtained with
the partial-wave method indicating that direct solution of the
three-dimensional integral equations for scattering can be a
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reliable alternative to the partial-wave expansion method.
Here we extend this method to ion-atom collisions. We use
atomic units except where otherwise specified.

II. MOMENTUM-SPACE INTEGRAL-EQUATION
FORMALISM

Consider the scattering of a proton on a hydrogen atom in
the ground state. There could be direct scattering of the pro-
ton or the proton may leave the reaction zone, having cap-
tured the electron of the atom. In the AO close-coupling
approach to the problem the total scattering wave function is
expanded in terms of asymptotic channel functions with un-
known coefficients. After substituting the expansion into the
Schrödinger equation for the scattering wave function and
using the Bubnov-Galerkin principle �17� one obtains a sys-
tem of integro-differential equations for the coefficients. Fol-
lowing �18� this system can be transformed into a set of
coupled effective two-body �Lippmann-Schwinger-type�
momentum-space integral equations for transition amplitudes
T��:

T���q�,q�� = V���q�,q��

+ �
�=�,�

� dq�

V���q�,q��T���q�,q��
�q�

2/2M − q�
2/2M + i0�

, �1�

where q� is the momentum of a freely traveling proton rela-
tive to the c.m. of the hydrogen atom in channel �, M
=m�m+1� / �2m+1� is the reduced mass of the two frag-
ments, and m is the mass of the proton. The effective poten-
tials are given by

V���q�,q�� = �q������H� − E���	�q�	 , �2�

where �� is the ground-state wave function of hydrogen
atom in channel �, H=H0+v is the total three-body Hamil-
tonian, H0 is the three-free-particle Hamiltonian, E is the
total energy, v=v�+v�+v� is the full interaction, and vi is
the interaction between particles of pair i, i=� ,� ,�, with v�

denoting the interaction in the proton-proton pair. Here we
use the arrow on the differential Hamiltonian operator to
indicate the direction in which it acts. In cases where there is
a residual Coulomb potential in reaction channels �for ex-
ample, scattering of multiply charged ions on atoms or ion-
ion collisions� the plane waves in Eq. �2� should be replaced
by corresponding Coulomb functions; however, this does not
change the general definition given in Eq. �2� �19,20�. In the
particular on-shell case, acting with the Hamiltonian operator
on the bra state we have

V���q�,q�� = �q������v − v����	�q�	 . �3�

Calculation of the effective potential for direct scattering
V���q�� ,q�� is straightforward. The effective potential for re-
arrangement V���q� ,q�� in the on-shell case is given by a
sum of the two terms evaluated by Oppenheimer �21�, Brink-
man and Kramers �22�, and Jackson and Schiff �23�.

At this stage conventional approaches use expansion of
V���q� ,q�� and T���q� ,q�� into partial waves. However, for
applicability of our approach across the entire energy range

of interest we do not do this. We solve Eq. �1� in an on-shell
approximation. A simple classical estimate shows that in
proton-hydrogen collisions neglecting off-shell effects
should be reasonably accurate. Since the probability that the
electron, while being transferred, changes the energy of the
incident proton is of order 1 /m, one may expect that off-shell
effects are also about 1 /m in order of magnitude.

For the purpose of practical calculations it is convenient
to make the following transformation: q�→−q�. This allows
one to introduce a combined amplitude T�q� ,q�
= 
T���q� ,q� ,T���q� ,q�� and effective potential V�q� ,q�
= 
V���q� ,q� ,V���q� ,q��. We use the spherical coordinate
system q= 
q ,� ,��. For simplicity we put the z axis along the
incident momentum and use the compact notation
T�q ,�� ,����T�q ,�� ,�� ;q ,0 ,0�. Then using the Cauchy
formulas for the singular integral in Eq. �1� and neglecting
the principal-value part we have the two-dimensional inte-
gral equation

T�q,��,��� = V�q,��,��;q,0,0� − i	q�
0

	

d�� sin ���
0

2	

d��


 V�q,��,��;q,��,���T�q,��,��� . �4�

We see that in the on-shell approximation our close-
coupling method coincides with that of Chaudhuri et al. �24�
based on a similar approximation �18� to the Alt-
Grassberger-Sandhas form �25� of the Faddeev equations.
However, Alt et al. �11� suggest that the results of Chaudhuri
et al. �24� are too low �by as much as a factor of 2 at 1 keV�
at the lower energies. Hence, the true potential of the on-
shell approach has not yet been assessed.

In solving Eq. �4� we use an important conclusion estab-
lished recently in �16�. By solving a three-dimensional inte-
gral equation for scattering amplitude T�q ,� ,�� in electron-
hydrogen collisions using a three-dimensional quadrature we
have explicitly shown that the result �when it has converged
and is correct� did not depend on the variable �. We can take
advantage of this fact to substantially reduce the complexity
of the problem. Since T�q ,� ,�� does not depend on the vari-
able �, we can simply set �=0. Then from Eq. �4� we have

T�q,��,0� = V�q,��,0;q,0,0�

− i	q�
0

	

d�� sin ��K�q,��,���T�q,��,0� ,

�5�

where

K�q,��,��� = �
0

2	

d��V�q,��,0;q,��,��� . �6�

We have verified that solutions of Eqs. �4� and �5� do in
fact yield the same results, though the latter required much
less computation due to effectively being one dimensional.
The reason that Eq. �5� can be used is that, in addition to
T�q ,� ,�� being independent of �, the effective potential
V�q� ;q�� entering Eq. �4� depends only on q and q� ·q�.
Since q� ·q�=q2�cos �� cos ��+sin �� sin �� cos���−����, we
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see that V�q� ;q�� is a periodic function of ��−��. This
shows that if the variable �� runs over the full period, the
value of �� is irrelevant. Thus, in our approach we have in
fact a one-dimensional integral equation with no singularities
which we solve using the standard Gauss-Legendre quadra-
ture.

III. RESULTS

We have calculated total electron capture and elastic scat-
tering cross sections for H+ collisions with H�1s� in a wide
range of energy of the incident proton spanning from 1 eV to
a few MeV in the laboratory frame. We considered the two
protons as distinguishable particles. Therefore, we start from
the impact energy of 1 eV, above which indistinguishablity
effects can be neglected. Table I shows our cross sections in
comparison with those of Chaudhuri et al. �24�, confirming
the expectations of Alt et al. �11�. We are confident that our
results are correct as we checked them using semiclassical
calculations at energies where the impact-parameter model is
reliable.

Figure 1 shows our results for electron-capture cross sec-
tions in comparison with other calculations and experimental
data �26–34�. Despite the simplicity of the present approach
the agreement between our results and the experimental data
is very good over a wide range of energy. The present
electron-capture cross sections underestimate the data in the
10–100-keV region. This is not surprising since at present

our approach is a simple two-state one. At these energies the
contribution from the excited states of hydrogen and the ion-
ization channel reach their maxima and become significant.
Also shown in this figure is the elastic scattering cross sec-
tion. In Fig. 2 we present a more detailed comparison of our
results with those obtained in rigorous low-energy methods
which require considerable computation, whereas our calcu-
lations take only a few minutes on a standard desktop PC.

TABLE I. Elastic scattering and electron capture cross sections for H+ collisions with H�1s� in units of
	a0

2 �a�±b� stands for a
10±b�.

Energy
�keV�

Elastic scattering Electron capture

Ref. �24� Present Ref. �24� Present

1.0�−3� 2.280�+2� 3.946�+1�
4.0�−3� 1.782�+2� 3.633�+1�
1.0�−2� 1.484�+2� 3.410�+1�
4.0�−2� 1.064�+2� 3.092�+1�
1.0�−1� 8.098�+1� 2.883�+1�
4.0�−1� 4.626�+1� 2.539�+1�
1.0 1.686�+1� 2.682�+1� 1.191�+1� 2.216�+1�
2.0 1.132�+1� 1.530�+1� 1.015�+1� 1.848�+1�
5.0 5.653 5.843 7.345 1.177�+1�
1.0�+1� 2.835 2.645 4.869 6.550

1.5�+1� 1.824 1.754 3.405 4.087

2.0�+1� 1.357 1.365 2.451 2.730

3.0�+1� 9.550�−1� 1.003 1.350 1.382

5.0�+1� 6.990�−1� 7.020�−1� 4.890�−1� 4.716�−1�
1.0�+2� 4.170�−1� 4.220�−1� 7.340�−2� 6.942�−2�
2.0�+2� 2.380�−1� 2.397�−1� 6.020�−3� 5.769�−3�
4.0�+2� 1.290�−1� 1.301�−1� 2.890�−4� 2.825�−4�
8.0�+2� 6.700�−2� 6.845�−2� 9.300�−6� 9.180�−6�
1.0�+3� 5.500�−2� 5.539�−2� 2.880�−6� 2.855�−6�
2.0�+3� 2.800�−2� 2.838�−2� 6.630�−8� 6.588�−8�

FIG. 1. Electron-capture cross sections for H+ collisions with
H�1s�. The symbols indicate experimental points while the lines
show the calculations. Present results for elastic scattering are also
given.
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Figures 1 and 2 also include data �26� for electron capture in
H++D collisions since at energies above 1 eV the isotopic
effects are negligible. In fact, the present results are equally
valid for all A++B systems, where A, B=H,D,T.

IV. CONCLUSION

Summarizing, in this paper we have presented a simple
fully quantum-mechanical approach to proton-hydrogen col-
lisions based on the atomic-orbital close-coupling method.
The method leads to a system of coupled three-dimensional
momentum-space integral equations for the scattering ampli-
tudes. These equations have been reduced to two-
dimensional ones using the on-shell approximation. The re-

sulting equations have been solved directly without partial-
wave expansion. Cross sections for electron transfer in
proton collisions with the ground-state hydrogen have been
calculated and shown to agree well with experiment over a
wide energy range. One of the main results of the present
paper is given by Eqs. �5� and �6�, where by considering the
symmetry properties of the problem, we showed that the re-
sulting two-dimensional integral equations can be further re-
duced to just one-dimensional ones. We emphasize that this
result is independent of the on-shell approximation and can
be applied generally.

The on-shell approximation used in the present work does
not include quantum effects like the role of virtual transi-
tions. These can only be determined by solving the integral
equations emerging in the present approach without approxi-
mation. Thus, steps in further developing this promising
method would be the removal of the on-shell approximation
and adding more atomic orbitals to the expansion. In addi-
tion, the lower limit of validity of the method can be shifted
to sub-eV energies by taking into account the indistinguish-
ability of the protons. A distinctive feature of the method is
that it ultimately allows one to include the ionization channel
in a convenient way using a square-integrable pseudobasis.
The results show that the expansion method based on fully
quantal formulation of the atomic-orbital close-coupling
method can be a suitable base on which a more rigorous
wide-energy method can be built.
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