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Properties of the Hohenberg-Kohn functional are considered. In particular, the Hohenberg-Kohn functional
should �a� give correct results in the variational principle and should be �b� continuous, �c� convex, and �d� size
consistent. All of these properties are satisfied by the Legendre-transform functional �equivalently, the density
matrix constrained search functional� and, moreover, this is the only functional that possesses all these prop-
erties. Not only that, but the Legendre-transform functional is determined uniquely by requiring �a�, �b�, and
either �c� or �d�. This shows how an “axiomatic” approach to constructing the Hohenberg-Kohn functional
leads naturally to the Legendre-transform functional. Among all functionals consistent with the variational
principle, the Legendre-transform functional is the smallest. One corollary to this approach is a simple proof of
the equivalence of the Legendre-transform and density-matrix constrained search functionals. For complete-
ness, the Appendix shows that ensemble-v-representable densities lie dense in the set of N-representable
densities.

DOI: 10.1103/PhysRevA.73.012513 PACS number�s�: 31.10.�z, 71.15.Mb

I. INTRODUCTION

Density-functional theory �DFT� has established itself as
the dominant approach to computational electronic structure
theory for large molecules, clusters, and solids �1–4�. Indeed,
at this stage much of the language of chemistry and physics
is based on density-functional theory, so that even when
density-functional theoretic methods are not used, computa-
tional results are often described using terminology associ-
ated with DFT.

From the very beginning, it was recognized that density-
functional theory is mathematically subtle and that, more-
over, understanding these mathematical subtleties is impor-
tant for the development of more accurate functionals. It is a
testament to these subtleties that, even now, multiple defini-
tions of the exact functional are in use, chiefly the wave-
function constrained search functional of Levy �5�, the
density-matrix constrained search of Valone �6�, and the
Legendre-transform functional of Lieb �7� �which is equiva-
lent to the density-matrix constrained search� �7�. Any ap-
proximate density functional can be viewed as an approxi-
mation of one of the exact functionals, though often it is not
at all clear which of the exact functionals is being approxi-
mated. In any event, one approach for improving the quality
of approximate functionals is to require the approximate
functionals to mimic the mathematical properties of the exact
functionals. This approach requires that one decide which
exact functional is to be approximated. In deciding which
exact functional will be approximated, it is very helpful to
explore the mathematical properties of the exact functionals,
as these yield constraints that approximate functionals should
satisfy.

Since there is no unique definition of the exact density
functional, formal analysis must always start with the ques-
tion: what is the best exact functional for a particular pur-
pose? When faced with such a question, it is usually clear
that it is desirable for the functional to have certain math-
ematical characteristics, but unclear whether a functional
with the desired characteristics exists and, if such a func-

tional does exists, whether it is unique. That is, one needs to
define a functional based on a set of desired properties, a task
that is arguably more difficult that determining the properties
of a given functional. This is the essence of an axiomatic
formulation: one defines the “axioms” that define the param-
eters of the theory, and then one determines what theory �if
any� satisfies the axioms.

Axiomatic constructions usually start by compiling a list
of desiderata—e.g., mathematical properties that we would
like the exact functional to satisfy—and exploring how these
axioms restrict the possible definitions. Sometimes no func-
tional can satisfy all these properties; in this case the pro-
posed set of axioms is said to be inconsistent. Even where
the set of axioms is consistent, sometimes only a few of the
desired properties are required to fully specify the functional,
at which point the other desired properties are automatically
fulfilled; in this case, the superfluous axioms are said to be
redundant. The strength of the axiomatic approach is that the
assumptions underlying the analysis are clear, and the func-
tionals obtained are defined not by how they are constructed
�there can be many ways to construct the same functional, as
is clear from the fact that the density-matrix constrained
search �6� and the Legendre-transform �7� approaches give
identical functionals �7�� but by the mathematical properties
the functionals possess. This extricates arguments over
“which functional is best” from the algorithmic ambiguities
of how a functional is constructed, so that the “best” func-
tional for a specific application can be simply identified: the
best functional is the one with the most useful mathematical
properties. Clearly, different applications may warrant differ-
ent functionals.

In this paper, an axiomatic approach to the Hohenberg-
Kohn functional is proposed. Specifically, in this paper a
functional is constructed that is �a� consistent with the varia-
tional principle, �b� continuous, �c� convex, and �d� function-
ally size-consistent.

To show this, the proposed functional is first defined for
v-representable densities �Sec. II�, and then—always taking
care to fulfill the above properties—the domain of definition
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is expanded to include ensemble-v-representable densities
�Sec. III� and then non-v-representable densities �Sec. IV�.
The resulting functional is the smallest possible functional
consistent with the variational principle, which shows that it
must be identical with the Legendre transform functional
�Sec. V�. The axiomatically-constructed functional is also
identical to the density-matrix constrained search functional.
Section VI elaborates on a few facts germane to the present
discussion.

Some confusion might arise between the present work and
the recent work of Pan, Sahni, and Massa �8,9�. The vocabu-
lary of this paper and those papers is superficially similar
because both papers are concerned with developing function-
als that have certain desired “properties.” In the work of Pan,
Sahni, and Massa, however, the properties of interest are
typically physical observables, and the constrained search is
used to construct functionals that give specified values for
those observables. �Their work, then, is just the direct gen-
eralization of the original constrained search �in which the
property of interest was the electron density or density ma-
trix� �5�.� Their approach is not axiomatic; for example, us-
ing ensembles instead of wave functions in the constrained
search would give different functionals. In contrast to their
emphasis on observable properties of electronic systems, this
paper is concerned with formal mathematical properties of
the Hohenberg-Kohn functional. The approach of this paper
is axiomatic: starting with a set of formal mathematical traits
that we desire for the functional to possess, a functional that
possesses those traits will be developed in a way that is in-
dependent of any particular method of functional construc-
tion �e.g., the constrained search formulation�.

II. v-REPRESENTABLE DENSITIES

The most important and fundamental properties of density
functionals date were already clear in the seminal work of
Hohenberg and Kohn �10�. Certainly, for any system, we
wish for the Hohenberg-Kohn functional—defined as the
sum of the kinetic and electron-electron repulsion
energies—to give the exact energy. The total energy of the
system with external potential v�r� and electron density ��r�
is defined as

Ev��� = F��� +� ��r�v�r�dr , �1�

with

F��� = T��� + Vee��� . �2�

Requiring the energy to be exact means that if �v�r� is the
electron density resulting from a N-electron ground-state
wave function for the external potential v�r�, then

FHK��v� = E�v,N� −� �v�r�v�r�dr , �3�

where E�v ,N� is the system’s ground state energy. Any func-
tional satisfying Eq. �3� is said to be exact.

From the beginning, it was recognized that Eq. �3� might
not adequately define the fundamental density functional,

F��� �10�. The difficulty arises because the ground state en-
ergy and density are usually determined by minimizing the
energy functional, Eq. �1� with respect to all N-electron den-
sities. The ground state energy is then the smallest value of
the energy,

Eg.s. = min
���r��=N

Ev��� = Ev��v� , �4�

and the ground state electron density is the density that
yields the minimizing energy

�v�r� = arg min
���r��=N

Ev��� . �5�

In the variational procedure, one minimizes with respect to
all N-electron densities that are nonnegative and integrate to
N electrons �7,11,12�. These candidate electron densities in
the are said to be N-representable. The difficulty is that the
variational principle requires that F��� be defined for any
reasonable electron density, and not just an electron density
that is the ground state for some external potential. Such
ground-state densities are said to be v-representable. Math-
ematical nuances related to v-representable and
N-representable electron densities are discussed in more de-
tail in the Appendix.

The original Hohenberg-Kohn functional, �3�, is defined
only for v-representable densities. Any functional, F���,
which gives the correct ground state energy and densities
when used in Eqs. �4� and �5� and is said to be variational.
Every variational functional is exact, but not every exact
functional is variational. An example of an exact, but nonva-
riational, functional can be constructed from Lieb’s Legendre
transform functional, FLegendre��� �cf. Eq. �26�� and Levy’s
constrained search functional F���� �cf. Eq. �39��. Specifi-
cally, the functional Fnon-var���=FLegendre���+ �FLegendre���
−F����� is exact, but not variational because the value of
this functional for non-v-representable densities is smaller
than FLegendre���, which is the smallest allowable functional.
That is, the value of Fnon-var��� is too small for non-
v-representable densities, so sometimes the density that
minimizes the energy is not v representable. For
v-representable densities, however, Fnon-var���=FLegendre���
=F����=FHK���.

Given the paramount importance of the variational prin-
ciple in density-functional theory, the preceding discussion
has a clear implication for axiomatic formulations of the
Hohenberg-Kohn functional: when extending the domain of
the Hohenberg-Kohn functional to encompass non-
v-representable densities, one must not compromise the
variational principle.

III. ENSEMBLE-v-REPRESENTABLE DENSITIES

For almost twenty years it was believed—or at least
hoped—that all “reasonable” electron densities would be
v-representable. Levy and Lieb showed, however, that this is
not the case �7,13�. In particular, they considered systems
with g-fold degenerate ground states, where g�3. For such a
system, the set of v-representable densities can be quantified
as

PAUL W. AYERS PHYSICAL REVIEW A 73, 012513 �2006�

012513-2



�v
�n��r� = �

i=1

g

�
j=1

g

�ki
�n��*kj

�n���i	�̂�r�	� j� , �6�

where 
�i�i=1
g is an orthonormal basis for the wave functions

of the degenerate ground state and the expansion coeffi-
cients, 
ki�i=1

g are subject to the normalization constraint

�
i=1

g

	ki	2 = 1. �7�

Here, the density operator is

�̂�r� � �
i=1

N

��ri − r� . �8�

Levy and Lieb showed that if one takes g densities of the
form �6� and formed the ensemble average,

�e�r� = �
n=1

g

w�n��v
�n��r� , �9�

where the normalization of the density is preserved �which
requires �n=1

g w�n�=1�, w�n��0, and at least three of the w�n�

are not zero, then the resulting density, �e�r�, will not arise
from the ground state wave function of any external poten-
tial. However, since this density is clearly associated with the
external potential of the degenerate state, it is not “totally”
non-v-representable; instead, we call such densities
ensemble-v-representable.

How should one define F��� for ensemble-v-representable
densities? One obvious choice is to select, in analogy to Eq.
�3�,

Fens��e� = E�v,N� −� �e�r�v�r�dr . �10�

Choosing this definition and using Eqs. �3� and �9� and, one
finds that

Fens��e� = �
n=1

g

w�n�
E�v,N� −� �v
�n��r�v�r�dr�

= �
n=1

g

w�n�FHK��v
�n��r�� . �11�

Note that for densities that are not only ensemble-
v-representable but also v-representable �the special case
where one of the w�n� is one and all the others are zero�, then
Fens��e� is equivalent to the original Hohenberg-Kohn func-
tional, Eq. �3�.

Yang, Zhang, and Ayers showed that Eq. �11� is a conse-
quence of functional size consistency �14�. A functional,
Q���, is said to be functionally size consistent if, given a set
of p densities that are infinitely far apart,

Q��
n=1

p

�v
�n�� = �

n=1

p

Q��v
�n�� . �12�

Equation �12� is consistent with the fact that electronic sys-
tems that are infinitely far apart do not interact. If F��� is

functionally size consistent, then Eq. �11� must hold.
It is important to note that Fens��� gives the smallest pos-

sible values for ensemble-v-representable densities. That is:
Theorem 1. If F��� is variational, then F��e��Fens��e� for

all ensemble-v-representable densities, �e�r�.
Proof. Suppose that F��e��Fens��e�. Using the fact that

�n=1
p w�n�=1 and the definition of Fens��� �Eq. �11��, we have

that

E�v,N� = �
n=1

p

w�n�E�v;N�

= �
n=1

p

w�n�
FHK��v
�n�� +� �v

�n��r�v�r�dr�
= Fens��e� +� �e�r�v�r�dr

� F��� +� �e�r�v�r�dr . �13�

Consequently,

E�v;N� � min
���=N

F��� +� ��r�v�r�dr �14�

and so F��� is not variational, contrary to our original
assumption. �

It is possible for F��� to be exact and variational but have
F��e��Fens��e� for some ensemble-v-representable electron
densities. In fact, Levy’s wave-function constrained search
functional satisfies this inequality �5,15�. This property of
Levy’s wave-function constrained search is explored in more
detail at the end of this paper; see Eq. �39� and the subse-
quent discussion.

A functional is said to be convex if

Q��
n=1

p

w�n���n��r�� 	 �
n=1

p

w�n�Q���n��r�� �15�

whenever 0	w�n� and �n=1
p w�n�=1. Clearly, if F��e�

�Fens��e�, then F��e� is not convex. Consequently, Levy’s
constrained search functional is not convex. Since the in-
equality in Eq. �15� is forbidden by theorem 1, we have the
following.

Theorem 2. If F��� is both exact and functionally size
consistent, then F���=Fens��� for ensemble-v-representable
densities.

Theorem 3. If F��� is both variational and convex, then
F���=Fens��� for ensemble-v-representable densities.

Convexity is a useful property to require because if F���
is convex, then the total energy functional, Eq. �1�, will also
be convex �since the energy is the sum of a convex func-
tional and a linear functional�. As such, the energy functional
will have only one stationary point and that stationary point
will be the minimum in the variational principle, which is
associated with the ground state energy of the system. For
systems with degenerate ground states, there will be many
different minimizing densities, but even then there will be

AXIOMATIC FORMULATIONS OF THE HOHENBERG-… PHYSICAL REVIEW A 73, 012513 �2006�

012513-3



only one minimizing value of the energy. Non-convex func-
tionals can have multiple stationary points, which can be
useful in some contexts and inconvenient in others. Noncon-
vexity can be useful, for example, in excited-state density-
functional theory: when Levy’s constrained-search functional
the energy can be stationary for certain special excited states
�16,17�. Nonconvexity can be computational inconvenient
when one is interested in the ground state, however, because
variational calculations can become “trapped” in an excited
state.

In this section, we have taken the original Hohenberg-
Kohn functional and, by requiring either convexity or func-
tional size consistency, constructed a unique extension of its
domain of definition to encompass densities that are
ensemble-v-representable.

IV. NON-v-REPRESENTABLE DENSITIES

For a short while, it was supposed that perhaps every
reasonable density was at least ensemble-v-representable.
Before long, however, Englisch and Englisch showed that
this was not the case: there are N-representable densities that
are not ensemble-v-representable �18�. We call such densities
totally non-v-representable. Not only are there an infinite
number of totally non-v-representable densities, but it seems
that the number of totally non-v-representable densities is a
dense subset of the set of all reasonable densities �18–20�.
That is, for every ensemble-v-representable density, there ex-
ists a totally non-v-representable density that resembles
it arbitrarily closely. Henceforth, we will often refer to
“totally non-v-representable densities” as simply
non-v-representable, reserving the full term for when confu-
sion with ensemble-v-representable densities is likely to
arise.

In conceptualizing the concept of a dense set, it is helpful
to recall that the irrational numbers are a dense subset of the
real numbers. The rational numbers are also a dense subset
of the real numbers. However, the number of rational num-
bers is infinitely smaller than the number of irrational num-
bers because almost every real number is irrational. Just be-
cause the set of non-v-representable densities is dense does
not imply anything about the “relative abundance” of non-
v-representable densities. It is possible that almost every rea-
sonable electron density is ensemble-v-representable; it is
also possible that almost every reasonable electron density is
totally non-v-representable; it is also possible that the num-
bers of ensemble-v-representable and totally non-
v-representable densities are roughly comparable.

Insofar as there is no practical way to tell whether a den-
sity is ensemble-v-representable or not, the domain of F���
must be extended to encompass totally non-v-representable
densities. Fortunately, Englisch and Englisch showed that the
set of ensemble-v-representable densities is also a dense sub-
set of the set of N-representable densities �19,20�. This result
does not seem to be widely known, but it is of prime impor-
tance to the present paper. Because of this result’s impor-
tance, the Appendix presents a different, and arguably more
intuitive—albeit less mathematically rigorous—derivation.

It seems advisable to pause and reiterate the different
types of electron densities that are being considered in this

paper. The fundamental variational principle in density-
functional theory searches over “reasonable” electron densi-
ties. Reasonable electron densities must be nonnegative and
normalized to the number of electrons and, as discussed in
the Appendix, it is often useful to impose further constraints
on the form of reasonable electron densities. “Reasonable”
electron densities are said to be N-representable because they
can be associated to an N-electron wave function. Among the
N-representable densities, those that are the ground state
electron density for some choice of external potential have
special importance; such densities are said to be
v-representable, and it is these densities that feature in the
original work of Hohenberg and Kohn. The set of
v-representable densities can be augmented by adding to it
all the electron densities that can be constructed by taking a
convex linear combination of the degenerate ground-state
electron densities from some external potential, Eq. �9�; this
gives the set of ensemble-v-representable electron densities.
The set of ensemble-v-representable densities contains the
set of v-representable densities and is a dense subset of the
set of N-representable densities. Thus, every reasonable elec-
tron density is either ensemble-v-representable or can be ap-
proximated arbitrarily closely by an ensemble-
v-representable density; this is important because every
ensemble-v-representable density can be associated with a
specific external potential. There are N-representable densi-
ties that are not ensemble-v-representable; these electron
densities are totally non-v-representable. The set of totally
non-v-representable densities is also a dense subset of the set
of N-representable densities, and so every ensemble-
v-representable density can be approximated arbitrarily
closely by a totally non-v-representable density, and vice
versa.

Mathematically, the fact that every totally non-
v-representable density can be approximated arbitrarily
closely by an ensemble-v-representable density implies that
for any totally non-v-representable density, �t�r�, we can find
a sequence of ensemble-v-representable densities, �e

�k��r�,
such that

lim
k→


�e
�k��r� = �t�r� . �16�

�Equation �16� indicates that, as k→
, the norm of
��t�r�−�e

�k��r�� approaches zero.� Based on Eq. �16�, it seems
logical to define F��� for totally non-v-representable densi-
ties as

Faxiomatic��t� � lim
k→


Fens��e
�k�� . �17�

This functional is well-defined if and only if the limit exists,
which requires that Fens��e

�k�� be a continuous functional on
the set of ensemble-v-representable densities.

Fens��� is a continuous functional on the set of ensemble-
v-representable densities because the functional �defined on
this limited set� is actually differentiable �19,20�. That is, if
�e

�
��r� is an ensemble-v-representable density associated
with the ground state of the external potential v�
��r�, and
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�e
�k��r� is a nearby ensemble-v-representable density associ-

ated with the external potential ve
�k��r�, then �21�

Fens��e
�k�� − Fens��e

�
�� = −� v�
��r���e
�k��r� − �e

�
��r��dr

+ O„��e
�k��r� − �e

�
��r��2
… . �18�

Assuming that the last term is small enough to be negligible,
one has that �22�

	Fens��e
�k�� − Fens��e

�
��	 	 �v�
��r����e
�k��r� − �e

�
��r�� .

�19�

Thus, for any ��0, there exists a

� � �

�v�
��
�20�

such that whenever ��e
�k��r�−�e

�
��r����, then 	Fens��e
�k��

−Fens��e
�
��	��. In plain language: whenever two ensemble-

v-representable densities are close together, their respective
values of Fens��� are also close together. A proof of the con-
tinuity of Fens��� that does not use the differentiability of
Fens��� will be presented later, following the proof of theo-
rem 8.

Faxiomatic��� is our desired functional. It is variationally
stable, convex, and size-consistent. Because Eq. �17� holds
whenever Eq. �16� holds, Faxiomatic��� is continuous. Unlike
existing approaches, however, this construction is entirely
axiomatic: Faxiomatic��� is derived from the properties we as-
sert it to have, so that we can say the following.

Theorem 4. There is only one functional, Faxiomatic���, that
is �a� consistent with the variational principle, �b� continu-
ous, �c� convex, and �d� size-consistent. Every functional that
possesses all these properties is totally equivalent to
Faxiomatic���.

Furthermore, if we accept �a� and �b� as axioms defining
the functional, then Theorems 2 and 3 indicate that axioms
�c� and �d� are redundant. Thus:

Theorem 5. Axioms �a�, �b� and either �c� or �d� suffice to
completely specify the functional, Faxiomatic���.

Recapping the arguments of the preceding sections, we
started by requiring that the functional gives correct answers
for v-representable densities �Sec. II�. Then, using convexity
or size consistency, we extended the domain of definition to
include ensemble-v-representable densities �Sec. III�, obtain-
ing the functional denoted Fens���. Because the set of
ensemble-v-representable densities is a dense subset of the
set of all reasonable �i.e., N-representable� densities, the do-
main of the functional could be extended yet again by simply
requiring that the functional be continuous �i.e., that nearby
densities have similar values for F����. This procedure “fills
in the holes” in the domain of Fens���, yielding the universal
functional Faxiomatic���. �This last step is analogous to how
one would “naturally extend” a function defined only on the
rational numbers so that its domain encompassed all real
numbers.�

Here we have focused on the Hohenberg-Kohn functional,
F���. In practical density-functional theory calculations, the

Kohn-Sham formalism is usually used instead �23�. The
Kohn-Sham kinetic energy functional, Ts���, can be defined
axiomatically also. The analysis is exactly same as the pre-
ceding, but since the electrons in the Kohn-Sham reference
state do not interact, the Hamiltonian for the Kohn-Sham
system contains no explicit electron-electron repulsion terms
and so all of the Vee��� terms in the preceding analysis are
zero. Using the axiomatic descriptions of F��� and Ts���, one
can obtain an axiomatic description of the exchange-
correlation functional,

Exc,axiomatic��� � Faxiomatic��� − Ts,axiomatic���

−
1

2
� � ��r���r��

	r − r�	
dr dr�. �21�

It should be pointed out that just because Faxiomatic��� and
Ts,axiomatic��� possess a property �e.g., convexity� does not
mean that Exc,axiomatic��� will also possess that property. On
the other hand, Exc,axiomatic��� is continuous and functionally
size-consistent because it is a linear combination of continu-
ous, size-consistent, functionals. Insofar as all of the usual
formulations of approximate exchange-correlation function-
als give continuous, size-consistent functionals, the approxi-
mate functionals can be regarded as approximations to
Exc,axiomatic���.

One could also perform the preceding analysis at any
point along the adiabatic connection path �24–27�; in that
case the electron-electron repulsion terms in the Hamiltonian
are neither totally neglected �as they are in the formulation of
Ts,axiomatic���� or totally included �as they are in the formula-
tion of Faxiomatic����.

V. PROPERTIES AND RELATIONSHIPS TO OTHER
FUNCTIONALS

In the formal mathematical treatment of functionals, one
often obtains upper bounds that depend on the norm of the
functional. �For example, one often encounters inequalities
like Eq. �19�.� For this reason, it is convenient to define a
functional that is smallest possible functional consistent with
the variational principle. Fortunately, the preceding construc-
tion gives exactly this functional.

Theorem 6. Among all functionals that are consistent with
the variational principle, the function defined in Sec. IV,
Faxiomatic���, is the smallest.

Proof. Because Faxiomatic���=Fens��� for all ensemble-
v-representable densities, Theorem 1 asserts that Faxiomatic���
has the smallest possible value among all variational func-
tionals for ensemble-v-representable densities.

What happens for non-v-representable densities? Suppose
it were possible to define a variationally consistent func-
tional, Fproposed���, that is smaller than the axiomatically con-
structed Faxiomatic��� for some non-v-representable density,
�t�r�. Let 
�e

�k��r�� be a sequences of ensemble-
v-representable densities that converges to �t�r�. Let

v�k��r�� denote the sequence of external potentials associated
with 
�e

�k��r��. Then, since Faxiomatic���=Fens���=E�v ;N�
−���r�v�r�dr for ensemble-v-representable densities,
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Fproposed��t� � lim
k→


E�v�k�;N� −� �e
�k��r�v�k��r�dr . �22�

There exists some point in the sequence at which the in-
equality in Eq. �22� begins to hold. That is, there exists some
finite K so that for all k�K,

Fproposed��t� � E�v�k�;N� −� �e
�k��r�v�k��r�dr . �23�

Thus, for k�K,

Fproposed��t� +� �t�r�v�k��r�dr

� E�v�k�;N�

+� ��t�r� − �e
�k��r��v�k��r�dr . �24�

As k→
, the sequence of ensemble-v-representable
densities, 
�e

�k��r�� approaches �t�r�, so the integral on the
second line converges to zero. Thus, at some point in the
sequence, the predicted energy of the non-v-representable
density is less than the true ground state energy energy

Fproposed��t� +� �t�r�v�k��r�dr � E�v�k�;N� . �25�

This shows that if Fproposed��t��Faxiomatic��t�, then
Fproposed��� is not consistent with the variational principle.
Consequently, any F��� that is consistent with the variational
principle must be greater than or equal to Faxiomatic���. �

Theorem 6 indicates that any functional that is smaller
than Faxiomatic��� will violate the variational principle.

Theorem 6 provides the easiest way to prove that this
“axiomatic” construction of F��� gives the same functional
as the Lieb’s Legendre transform functional, which is defined
as the supremum over all external potentials of Hohenberg-
Kohn definition �7�

FLegendre��� = sup
v�r�

�E�v;N� −� ��r�v�r�dr� . �26�

The key insight is that FLegendre��� is also the smallest pos-
sible functional because if Fproposed����FLegendre���, then
there exists an external potential, w�r�, with

Fproposed��� � E�w;N� −� ��r�w�r�dr �27�

and so

Fproposed��� +� ��r�w�r�dr � E�w;N� , �28�

in contradiction to the variational principle �28,29�. Thus,
every functional that is consistent with the variational prin-
ciple is greater than or equal to FLegendre��� �28,29�. From
theorem 6, every functional consistent with the variational
principle is greater than or equal to Faxiomatic���. It must be
true, then, that:

Theorem 7. The axiomatic formulation that defines

Faxiomatic��� gives identical results to the Legendre-transform
functional [Eq. (26)],

FLegendre��� = Faxiomatic��� . �29�

It is often considered somewhat mysterious that the
density-matrix constrained search functional introduced by
Valone,

F���� = min
�N→��r�

Tr��T̂ + V̂ee��N� �30�

is also identical to FLegendre���, and thus also Fgen���. In Eq.
�30�, the sum of the kinetic and electron-electron repulsion
energies is minimized subject to the constraint that the
N-electron density matrix,

�N = �
i

wi�i�r1, . . . ,rN��i
*�r1�, . . . ,rN� � �31�

�0	wi	1; �iwi=1� is associated with the targeted electron
density. That is, the constraint in Eq. �30� is that

��r� = Tr��̂�r��N� , �32�

where the density operator was defined in Eq. �8�. Here and

in Eq. �30�, the “trace” notation, Tr�Q̂�N�, means “operate

with Q̂ on �N, set the primed and unprimed variables equal,
and then integrate with respect to the remaining coordi-
nates.”

Though it is well-known that F����=FLegendre���, the
usual derivation of the result requires rather sophisticated
functional-analytic arguments �7�. From the present perspec-
tive, a more elementary proof can be provided.

Theorem 8. The density-matrix constrained search func-
tional, F����, and the axiomatically defined Faxiomatic��� are
identical to each other. In light of Theorem 7, then F���� and
FLegendre��� are also identical.

Proof. The starting point of this derivation is the fact that
the ensemble-v-representable densities are dense. Thus, for
any totally non-v-representable density, �t�r�, there exists a
sequence of ensemble-v-representable densities, 
�e

�k��r��,
with associated potentials 
v�k��r��, such that �e

�k��r�→�t�r�.
Let 
�N��e

�k��� denote the sequence of N-electron density ma-
trices that corresponds to the ensemble-v-representable den-
sities 
�e

�k��r��. Then, using the definition of F���� �cf. Eq.
�30��

F���t� − F���e
�k�� = min

�N→�t�r�
Tr��T̂ + V̂ee��N�

− min
�N→�e

�k��r�
Tr��T̂ + V̂ee��N�

= min
�N→�t�r�

Tr��T̂ + V̂ee���N − �N��e
�k����

= min
�N→�t�r�

Tr��T̂ + V̂ee + �
i=1

N

v�k��ri��

��N − �N��e

�k����
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−� ��t�r� − �e
�k��r��v�k��r�dr . �33�

Note that T̂+ V̂ee+�i=1
N v�k��ri� is exactly the Hamiltonian for

which �N��e
�k�� is a ground-state N-electron density matrix,

Ĥ�v�k� ;N�. So

F���t� − F���e
�k�� = min

�N→�t�r�
Tr�Ĥ�v�k�;N���N − �N��e

�k����

−� ��t�r� − �e
�k��r��v�k��r�dr . �34�

Owing to the variational principle for the N-electron density
matrix, the energy will be stationary with respect to small
changes in the density matrix about �N��e

�k�� �30�. As the
ensemble-v-representable densities, �e

�k��r�, approach �t�r�, it
will be possible to find �N that give �t�r� that are very close
to �N��e

�k��. The stationary principle for the energy indicates
that, to first order, small changes in the density matrix about
its minimal value do not change the expectation value of the
energy. This then implies that the first term in Eq. �34�
should become negligible as k→
, and so

F���t� − F���e
�k�� � −� ��t�r� − �e

�k��r��v�k��r�dr . �35�

As �e
�k��r�→�t�r�, the right-hand-side of Eq. �35� will ap-

proach zero, and so F���e
�k��→F���t�. Since the density-

matrix constrained search functional, F���e
�k��, has the same

value as Fens��e
�k�� for ensemble-v-representable densities,

this is equivalent to stating that Fens��e
�k��→F���t�. Referring

to Eq. �17�, we recognize this as precisely the same proce-
dure we used in the axiomatic formulation of Faxiomatic���.
Thus the density-matrix based constrained search proposed
by Valone and the axiomatic formulation proposed here give
the same functional. �

In the discussion of the continuity of Fens��e� that follows
Eq. �19� it was mentioned that one can establish the continu-
ity of Fens��e� without using the differentiability of this
Hohenberg-Kohn functional at ensemble-v-representable
densities. To do this, one traces through this argument again,
but assumes this time that �t�r� is ensemble-v-representable,
one establishes the continuity of Fens��e� without exploiting
the differentiability of this functional. This result was alluded
to in the discussion following Eq. �19�. Footnote 30 dis-
cusses the exceptional case where unconventional density
variations might be encountered �16�, in which case; in this
case the relationship in Eq. �19� is replaced by a more gen-
eral proportionality,

	Fens��e
�k�� − Fens��e

�
��	 � ��e
�k��r� − �e

�
��r�� �36�

but the same essential conclusion—Fens��e� is continuous on
the set of ensemble-v-representable densities—still holds.

The argument in theorem 8 can also be applied to provide
an alternative proof of the equivalence of the axiomatic and
Legendre-transform approaches �theorem 7�. Specifically, the

Legendre transform functional for non-v-representable den-
sities can be constructed as a limit of its values for ensemble
v-representable densities. Specifically,

FLegendre��t� = lim
k→


�E�v�k�,N� −� �t�r�v�k��r�dr�
= lim

k→


Fens��e

�k��

− �� ��t�r� − �e
�k��r��v�k��r�dr�� , �37�

where the term in curly brackets approaches zero as �e
�k��r�

converges to �t�r�.
Based on Eq. �37�, one might be tempted to conclude that

�t�r� is a ground state density associated with

v�
��r� = lim
k→


v�k��r� . �38�

This is true whenever the sequence of external potential con-
verges in the appropriate norm �22�, which occurs whenever
�t�r� is ensemble-v-representable. More generally, however,
v�
��r� is not a legitimate external potential, but instead a
generalized function �31�. Thus non-v-representable densi-
ties can be regarded as ground state densities for an “external
potential” that is a generalized function �31�. Unfortunately,
the Hohenberg-Kohn theorem does not hold for generalized
functions: multiple generalized functions can have the same
ground state density �31�. Nonetheless, this provides a useful
way of categorizing electron densities: one starts with
v-representable densities, which correspond to a ground state
wave function for some external potential. This set is then
expanded to encompass ensemble-v-representable densities,
which correspond to a ground-state density-matrix ensemble
for some external potential. The leftover electron densities
are totally non-v-representable, and are ground state densi-
ties for one or more “generalized function” external poten-
tials.

VI. DISCUSSION

By using an axiomatic approach, one can construct func-
tionals that satisfy certain desired properties. Here, this tech-
nique is used to address the Hohenberg-Kohn density func-
tional, F���, defined as the sum of the kinetic and electron-
electron repulsion energies. In particular, there is only one
functional that �a� satisfies the key variational principle for
the electronic energy as a functional of the density, and is
also �b� continuous, �c� convex, and �d� “functional” size-
consistent �theorem 4�. This functional, which we term
Faxiomatic���, is identical to the functionals obtained using the
Legendre-transform and density-matrix constrained search
techniques �theorems 7 and 8�. Moreover, no functional con-
sistent with the variational principle can be smaller than this
functional �theorem 6�.

It is interesting to study to what extent even these con-
straints can be relaxed. Forcing �c� convexity and �d� size-
consistency is certainly redundant �theorems 2, 3 and 5�. Be-
cause the set of ensemble-v-representable densities is dense,
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intuition would suggest that the requirement of continuity
can be relaxed, since the requirement of variational stability
keeps F��� from getting too small for non-v-representable
densities and—provided that all the non-v-representable can
be written as a convex linear combination of nearby
ensemble-v-representable densities—the requirement of con-
vexity would keep F��� from getting too large. The author
has not been able to prove this last statement, but if it is true,
then axioms �a� and �c� would be sufficient by themselves.
Whether the axiom of size-consistency could replace the
axiom of convexity in this context is unclear.

It is clear from theorem 2 that if one forces functional size
consistency, then the requirement that F��� be consistent
with the variational principle �axiom �a�� can be replaced by
the weaker requirement that F��� give exact results, as de-
fined by Eq. �3�, for pure-state v-representable densities. So
requiring that F��� be exact, continuous, and size consistent
is also sufficient to fully define the functional. The size con-
sistency requirement cannot be replaced by convexity in this
context, since without forcing the variational principle to
hold, convexity alone does not provide enough information
to specify the value of the functional for ensemble-
v-representable densities.

The power of the axiomatic approach taken here is that it
disentangles the particular mathematical technique or algo-
rithm used to construct a functional from the actual definition
of the functional. The author believes that the axioms chosen
here are eminently reasonable. The requirement that the
variational principle be satisfied and that the functional be
continuous would seem beyond question: it is difficult to
conceive of any useful functional that would not satisfy those
key properties. The requirement of functional size consis-
tency is also very elegant, and seems desirable. One can
argue about the desirability of convexity: the results concern-
ing unique stationary points that follow from convexity are
unquestionably convenient, but also inessential. However,
the convexity constraint is rendered redundant if one im-
poses size consistency, so these arguments are immaterial.

Traditional definitions of F��� seem to always satisfy the
variational principle and be continuous, but are not always
functional size consistent or convex. For example, the wave
function constrained search proposed by Levy �5�,

F���� = min
�→��r�

��	T̂ + V̂ee	�� �39�

is neither functional size consistent nor convex, yet it has
played, and continues to play, an essential role in the theo-
retical development of density-functional theory. More gen-
erally, every functional of the form

FP������ = P���F���� + �1 − P����FLegendre��� �40�

satisfies the variational principle for any nonnegative func-
tional P���, but unless P���=0, FP������ is neither size-
consistent nor convex �32�. The converse is also true; every
functional that is consistent with the variational principle can
be written in the form of Eq. �40� for some P����0. �If
P���	0 for a density that is ensemble-v-representable, then
FP������ is not variational though, of course, it is still exact.�

The fact that Eq. �40� provides a complete description of the
set of variationally-consistent functionals emphasizes the
vast universe of possible forms for the functional F���. In
this context, it is rather impressive that Faxiomatic��� is com-
pletely determined by either of two choices of three simple
axioms �theorem 5�.

One advantage of nonconvex functionals like Eq. �40� is
that higher-valued stationary points in the energy correspond
to stable excited states �16,17�.

Unsurprisingly, the greatest insights gleaned from the
present construction are related to the Legendre-transform
and density-matrix constrained search functionals. Both
functionals satisfy all of the key properties here—
consistency with the variational principle, continuity, func-
tional size consistency, and convexity—and are thus not only
identical to each other, but identical to any other functional
that possesses these useful properties. That is, the Legendre
transform and density-matrix constrained search are math-
ematical constructions of the same functional, and that func-
tional is the only functional that satisfies the reasonable cri-
teria studied here. At least based on these criteria, this
functional should be preferred to all other functionals. It is
also significant, at least conceptually, that this functional can
be systematically determined from the desired properties
alone, independent of any hypothetical computational ansatz.
This has the obvious benefit of clarifying what assumptions
are essential to the Legendre-transform–density-matrix con-
strained search functional �variational stability; continuity�,
what assumptions are optional �either convexity or size con-
sistency�, and what assumptions are totally superfluous
�seemingly, everything else�.

Finally, it is useful to reiterate that all of these results can
be extended to the Kohn-Sham kinetic energy or, indeed, any
point along the adiabatic connection path, by omitting �for
the Kohn-Sham kinetic energy� or adjusting the strength of
�for the adiabatic connection� the electron-electron repulsion
terms. �See the discussion at the end of Sec. IV.� This allows
one to construct “axiomatic” approaches to the exchange-
correlation energy. It will be interesting to see what insights
into the construction of approximate exchange-correlation
functionals might be gleaned from the present construction.
Little seems obvious, but this is definitely an area meriting
future work.
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APPENDIX

The purpose of this appendix is to show that the set of
ensemble-v-representable densities is a dense subset of the
set of all N-representable densities. For electron densities
that are N-representable, the supremum in Lieb’s variational
principle exists, i.e.,

FLegendre��� � sup
v�r�

E�v;N� −� ��r�v�r�dr � 
 . �A1�

Here, we consider all densities that are non-negative, appro-
priate normalized, and have finite Weisacker kinetic energy,
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 �� ����r� · ����r�
2

dr �A2�

to be N representable. Additional constraints can be imposed
if desired. For example, we can restrict ourselves to electron
densities that are �essentially� bounded with �essentially�
bounded Weisacker kinetic energy densities,


 � ess sup
r

��r� ,


 � ess sup
r

	����r�	2, �A3�

but this is not required. The essential supremum of a function
is the least upper bound, l, such that that bound is exceeded
on at most a set of measure zero. We call the set of all
allowable densities D and note that the set of all linear com-
binations of densities in D forms a Banach space, D. The
space of all bounded linear functionals on D is denoted
V�D*, where D* indicates the “dual space” of D. The exter-
nal potentials in the Legendre transform, Eq. �A1�, are re-
stricted to the space V.

The norm of an electron density, ��r��D�D, is defined
as

���r��D � sup
�w�V=1

� w�r���r�dr . �A4�

Recalling that the supremum is just the least upper bound,
the meaning of this expression is clear: the norm of ��r� is
the least upper bound to the expression ���r�w�r�dr on the
set of all external potentials with unit norm. The norm for
external potentials is defined in the same way, but it is im-
portant to remember that because D contains the space of
integrable functions, L1, the dual space of V is not D.
�V*= �D*�* contains D, but also includes generalized func-
tions like the Dirac delta function.�

Recalling the definition, Eq. �A1�, FLegendre��� is equal to
the smallest number, k, for which

k � E�v;N� −� ��r�v�r�dr �A5�

for all external potentials. Suppose that �t�r� is a totally non-
v-representable density. Then, for any positive number, �,
there must exist an external potential for which

FLegendre��t� − �E�v;N� −� �t�r�v�r�dr� � � . �A6�

(Otherwise the supremum in Eq. �A1� would be at most
FLegendre���−�.) Rearranging Eq. �A6� into a form reminis-
cent of the variational principle gives the key result

Theorem 9. For every ��0, there exists a v�r��V such
that

0 � FLegendre��t� +� �t�r�v�r� − E�v;N� � � . �A7�

Since � could be infinitesimal, this indicates that every non-
v-representable density gives an “almost perfect” approxima-

tion to the ground-state energy for some external potential.
Intuitively, this seems to suggest that every non-
v-representable electron density would also give an “almost
perfect” approximation to the ground state density for some
external potential, which would indicate that �t�r� was arbi-
trarily close to some ensemble-v-representable density,
which would suffice to demonstrate that the set of ensemble-
v-representable densities is a dense subset of the set of “al-
lowed” densities, D.

Confirming this hunch requires two key theorems.
Generalized-Hellmann-Feynman theorem. Let E�v� de-

note the set of ensemble-v-representable densities associated
with the ground state of the external potential, v�r�. Because
this set consists of weighted sums of the pure-state
v-representable densities associated with the (possibly de-
generate) ground state of this system, E�v� is a closed, con-
vex set. Consider a small change in the external potential of
this state. The resulting change in energy is given by the
expression

E�v + �v;N� − E�v;N� = min
�e�r��E�v�

� �e�r��v�r�dr

+ O„��v�r��2
… . �A8�

This theorem will be proved at the conclusion of the appen-
dix, but it is clearly related to the generalization of the
Hellmann-Feynman theorem to degenerate states.

Minimum Norm Duality Theorem. Let �t�r� be a distance,
�, from the convex set E�v�. Then

� = max
�w�V=1

� w�r���t�r� − ��r��dr �A9�

for every ��r��E�v�. That is, there exists some external po-
tential, w�r��V, with norm one, such that

� w�r���t�r� − ��r��dr � � �A10�

for every ��r� in E�v� �33�.
Discussion. The minimum norm duality theorem has a

simple geometric interpretation in a Hilbert space. In a Hil-
bert space, hyperplanes are linear functionals of the form
n̂ ·x=� for some constant �, where n̂ is the unit normal to
the hyperplane. �The plane goes through the origin if �=0;
otherwise the plane is shifted from the origin, but parallel to
the plane n̂ ·x=0.� There is always a hyperplane that sepa-
rates a point, xt, that is not in the convex set from the points
in the convex set. That is, there is always a unit vector, n̂sep,
such that

n̂sep · x � n̂sep · xt ∀ x � C �A11�

for all x�C. Usually, in fact, there are many different sepa-
rating hyperplanes. The minimum norm duality theorem
sharpens this result, indicating that if xt is � units away from
the set C, then at least one of the separating hyperplanes
satisfies
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n̂sep · x + � 	 n̂sep · xt ∀ x � C . �A12�

This is easily demonstrated. Let xmin be the point in the clo-
sure of C that is closest to xt. �Clearly, �xt−xmin�=�.� The
hyperplane that satisfies Eq. �A12� is just

n̂sep �
xt − xmin

�xt − xmin�
. �A13�

This is quite intuitive since the hyperplane should be normal
to the vector that starts at xmin and ends at xt.

The following derivation is essentially a refinement of the
intuitive argument presented previously. We will use the fact
that every non-v-representable density provides a very accu-
rate approximation to the energy for some external potential
to prove that every non-v-representable density can
be approximated very accurately by an ensemble-
v-representable density.

The proof is by contradiction. If the ensemble-
v-representable densities was not dense, then there would
exist at least one totally non-v-representable density, �t�r�,
that could not be constructed as a limit of a sequence of
ensemble-v-representable densities. Let E denote the set of
ensemble-v-representable densities. If no sequence of densi-
ties in E approached �t�r�, then the distance between �t�r�
and the set of ensemble-v-representable densities would be
greater than zero. The distance between the �t�r� and the set
of ensemble-v-representable densities would then be equal to
some number ��0

0 � � = dD��t,E� . �A14�

The distance between �t�r� and the set of ensemble-
v-representable densities is constructed using the norm in the
space D, as

dD��t,E� � inf
�e�E

��t�r� − �e�r��D. �A15�

Choose a small positive number, �. Then, using the defi-
nition of the supremum, there must exist an external poten-
tial, v��r�, such that E�v� ;N�−��t�r�v��r�dr approximates
FLegendre��t� with error less than �. That is,

FLegendre��t� − 
E�v�;N� −� �t�r�v��r�dr� � � .

�A16�

Let E�v�� denote the set of ensemble-v-representable densi-
ties associated with the �possibly degenerate� ground state of
the external potential v��r�. E�v�� is a closed, convex set. The
distance of �t�r� from the set E�v�� must be at least �, and so
we can use the minimum norm duality theorem to construct
an external potential with unit norm, w��r�, such that

� 	� w��r���t�r� − ��r��dr �A17�

for every electron density in E�v��. From the definition of the
Legendre-transform functional,

FLegendre��t� � E�v� − �w�;N� −� �t�r��v��r� − �w��r��dr .

�A18�

From the generalized Hellmann-Feynman theorem,

E�v� − �w�;N� = E�v�;N� + min
�e�r��E�v�

� �e�r��− �w��r��dr

+ O��2� . �A19�

Choose � to be small enough so that only the linear term is
non-negligible. Then,

FLegendre��t� − 
E�v�;N� −� �t�r�v��r�dr�
� min

�e�r��E�v�
� ��e�r� − �t�r���− �w��r��dr ,

� � �� . �A20�

However, � can be any arbitrarily small positive number. If
��0 is some positive number, then one could always obtain
a contradiction to Eq. �A20� by choosing � to be sufficiently
small. From a different perspective, since we can always find
a potential for which �t�r� approximates the energy arbi-
trarily closely, we can take the limit of the first line of Eq.
�A20� as �→0. This forces the limit of the second line,
which related to the distance of �t�r� from the set of
ensemble-v-representable densities, to also approach zero.
This is exactly the construction anticipated at the beginning
of this appendix: the fact that �t�r� approximates the energy
very accurately for some external potential means that there
must be some ensemble-v-representable density that approxi-
mates �t�r� very accurately.

To conclude this appendix, the generalized Hellmann-
Feynman theorem used in the preceding derivation is de-
rived.

The Generalized Hellmann-Feynman Theorem. Recall the
equations for the v-representable densities associated with a
degenerate state �cf. Eqs. �6� and �7��. Again, letting 
�i�i=1

g

denote any orthonormal basis for the wave functions of the
degenerate ground state, all of the v-representable densities
can be written in the form

�v
�n��r� = �

i=1

g

�
j=1

g

�ki
�n��*kj

�n���i	�̂�r�	� j� , �A21�

where

�
i=1

g

	ki	2 = 1. �A22�

We denote the pure-state v-representable densities associated
with the external potential v�r� as V�v�. It is useful to re-
phrase Eqs. �A21� and �A22� as
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�v�r� = �
i=1

g

�
j=1

g

cij��i	�̂�r�	� j� , �A23�

where it is understood that

0 	 cii 	 1, �A24�

�
i=1

g

cii = 1, �A25�

cij = cji
* , �A26�

	cij	2 = ciicjj . �A27�

The set of ensemble-v-representable densities associated
with the external potential v�r�, denoted E�v�, is by definition
the convex closure of the set of pure-state v-representable
densties, V�v�. Thus, the ensemble-v-representable densities,
�e�r��E�v�, can be written as

�e�r� = �
i=1

g

�
j=1

g

cij��i	�̂�r�	� j� , �A28�

where the constraints �A24�–�A26� still hold, but Eq. �A27�
is replaced by the inequality

	cij	2 	 ciicjj . �A29�

E�v� is a closed convex set, and V�v� is its boundary.
For a nondegenerate state, one has that

E�v + �v;N� − E�v;N� =� �v�r��v�r�dr + O„��v�r��2
… ,

�A30�

where �v�r� is the ground state density of the state. Equation
�A30� is just the Hellmann-Feynman theorem.

For a degenerate state, the ground state energy is given by
the lowest eigenvalue of the perturbation matrix,

Vpq = ��q	�
i=1

N

�v�ri�	�p� �A31�

which can be found as

E�v + �v;N� − E�v;N�

= min

kp�p=1

g
��

q=1

g

kq�q��
i=1

N

�v�ri���
p=1

g

kp�p� + O„��v�r��2
…

�A32�

or, equivalently, as

E�v + �v;N� − E�v;N� = min
�v�r��V�v�

� �v�r��v�r�dr

+ O„��v�r��2
… �A33�

or even

E�v + �v;N� − E�v;N� = min
�e�r��E�v�

� �e�r��v�r�dr

+ O„��v�r��2
… . �A34�

The last equality follows uses the fact that E�v� is the
convex closure of V�v�. Equation �A34� is the “generalized
Hellmann-Feynman theorem” relevant in this appendix.
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