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Compact Jastrow-Slater-type correlated wave functions for three- and four-electron atoms and ions �Li, Be+,
B2+, C3+, Be, B+, and C2+� are proposed. The Jastrow factor we employed consists of one-body and two-body
functions including only two variational parameters in total. We found that a one-body Jastrow function with
one variational parameter, which is responsible for the screening effect around the nucleus, is effective for
reproducing good total energies of the three- and four-electron atomic systems if hydrogenoid orbitals are
adopted in the Slater determinant. On the other hand, a determinant composed of Hartree-Fock orbitals mul-
tiplied by the same Jastrow factor was found to give rather worse results than that composed of hydrogenoid
orbitals. This result clearly indicates that analytic hydrogenoid orbitals coupled with the one-body Jastrow
function are useful for describing simple wave functions and understanding the physical properties of these
systems.
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I. INTRODUCTION

It is well known that the mechanisms leading to excitation
or ionization of two or more electrons in atomic or molecular
systems in a collision cannot be understood within the
independent-electron approximation model. The correlation
in the many-body system due to the interactions between all
the electrons must be properly taken into account. This is an
important problem, and a great deal of experimental and the-
oretical work has been devoted to this question.

The determination of accurate wave functions for few-
body Coulombic systems can be achieved in many ways and
could be considered nowadays to be a resolved problem if
one uses expansions of many Slater determinants �configu-
ration interaction �CI��. However, the interest of constructing
simpler and more compact correlated wave functions still
remains because of its importance in theoretical studies of
inelastic processes occurring in collisions. In these problems,
the wave function of the system �target� is generally needed
to determine the cross sections of the inelastic processes in-
duced by the projectile interacting with the target.

Obviously the determination of both simple and accurate
wave functions for few-body systems could be a key task.
The presently available accurate wave functions usually con-
tain a lot of parameters even for few-electron systems. They
also include many Slater determinants �CI� optimized in a
self-consistent-field �SCF� procedure and a large number of
variational parameters included in the Hylleraas-correlated
term. The drawback of these approaches is that the physical

meaning of the correlation role is difficult to extract from
them. Developing simpler and still accurate wave functions
should provide a better understanding of the underlying
physical phenomena, which are governing the electronic dy-
namics. Moreover, the improved comprehension of the cor-
relation in a few-body system should be a valuable guideline
to understand dynamics of larger systems.

To the best of our knowledge, no simple and accurate
correlated wave function for three- or four-electron systems
is presently available using the Jastrow factor. We believe
that this challenge remains up to date and it motivates the
present work. Hence the goal of this paper is to determine
fully correlated wave functions for three- or four-electron
systems. It will be shown that ground-state energies of atoms
and ions with three or four electrons like Li, Be+, B2+, C3+,
Be, B+, and C2+ can be obtained accurately with a fairly
simple two-parameter wave function.

II. THEORY

The Schrödinger equation for an N-electron atomic sys-
tem is written in Hartree atomic units �m=e2=�=1�, used
throughout this paper, within the nonrelativistic approxima-
tion and using the usual notation

��
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2 − �
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Z

ri
+ �

i�j

N
1

rij
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where Z is the nuclear charge of the atom or ion. The wave
function �, a solution of the many-body Schrödinger equa-
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tion, is searched within a product of two functions—namely,
a Slater determinant � and a correlation function called Ja-
strow factor J:

� = J� . �2�

This type of wave function can satisfy the antisymmetry of
the wave function required for fermion systems if J is a
symmetric function. The Slater determinant � consists of the
one-body orbitals ���↑↓ ,ri�, where the arrows represent the
up- and down-spin electrons. The function J�ri ,rij� is the
Jastrow term defined below. This factor is introduced to
describe accurately the electron correlations.

In the present paper, we compare the results obtained
from two different Slater determinants. One is given by using
Hartree-Fock orbitals �HF, and the other is obtained from
hydrogenoid orbitals �0, which are built from the antisym-
metric solutions of the independent N-particle problem:

��
i=1

N

−
1

2
�i

2 − �
i=1

N
Z

ri
��m = Em�m. �3�

Thus, in the latter case, only the parameters in the Jastrow
factor J�ri ,rij� are optimized. Therefore, the expectation
values for the ground-state total energy are, respectively,
given by

EHF-J =
��HFJ	H	�HFJ

��HFJ	�HFJ


, �4�

EHydro-J =
��0J	H	�0J

��0J	�0J


. �5�

Here, H is the interacting many-body Hamiltonian depicted
in Eq. �1�. We will show that a convenient choice of the
symmetric function J�ri ,rij� takes into account the electron-
nucleus correlation and Ehydro-J gives significantly better re-
sults than EHF-J.

Determination of the variational parameters in the Jastrow
factor has been performed in two independent ways, in order
to check the numerical accuracy. The first one �approach 1� is
implemented by the variational Monte Carlo �VMC� method
by minimizing the variance defined by

�2 =� d3Nx	Heff� − E�	2, �6�

where

Heff �
1

J
HJ .

The variance minimization is known to be effective for the
optimization of the Jastrow factor �1,2�. The second one �ap-
proach 2� is made via a nonstatistical approach, using a
mathematical property of the wave function when is written
as a product of two functions. The interest of the transforma-
tion is the derivation of a convenient expression for the total
energy of the system. We show this briefly in the following.

Assuming the factorized wave function

�m = �m�↑↓,ri�J�ri,rij� ,

with �m given in Eq. �3�, the calculation of the diagonal
elements Hmm= ��m	H	�m
 or the off-diagonal matrix ele-
ments Hmn= ��m	H	�n
 reduces to the computation of a
single multivariate quadrature given below �more details
about the derivation of these formulas can be found in Refs.
�3–5��:

Hmm = Em +

�m��i

�� iJ · �� iJ

2
+ J2��i�j
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rij
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�7�
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Em + En

2
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2
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1

rij
���n�
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�8�

Here, �m is assumed to be a real function. The explicit math-
ematical form of the function J�ri ,rij� describing the
electron-nucleus and electron-electron correlations is pres-
ently chosen for the three- and four-electron atoms as

J�ri,rij� = exp��
i

ln�cosh�	ri�� + �
i�j

crij

1 + brij
� . �9�

The first set of brackets in the functions above describes the
electron-nucleus correlation. The parameter 	 can be under-
stood as a screening parameter. Such kind of hyperbolic
functions were found very efficient in the case of two-
electron systems �6,7� and are extended here to three and
four electrons. It can be noted that this choice fulfills the
electron-nucleus cusp condition. When the ith electron is
close to the nucleus, the function cosh�	ri� tends to 1 as ri

2,
giving the limit

lim
ri→0

��

�ri
= − Z��0� , �10�

in agreement with the cusp condition at the nucleus. It is
easy to see that 	 can be interpreted as a screening coeffi-
cient when ri→
 due to the exp�	ri� behavior of the cosh
function.

The second set of brackets of Eq. �9� is the well-known
factor proposed by Boys and Handy �8�. The two-body Ja-
strow factor includes the right description of the electron-
electron cusp conditions taking c=0.5 or c=0.25 when the
total spin value of the electron pair is S=0 or S=1, respec-
tively. One should remark that the actual product runs over
all the electron pairs.

Equations �7� and �8� can be written in a more convenient
way considering the exponential form of J:

J = eW.

One has
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�� iJ · �� iJ = J2�� iW · �� iW .

The expression of the ground-state energy E=H00 corre-
sponding to �0=�0eW can be written as

E = E0 +
� d3Nx�0

2��i

�� iW · �� iW

2
+ �i�j

1

rij
�

��0	�0

. �11�

This form is convenient for energy calculations. This neces-
sitates a multidimensional quadrature performed by non-
statistical methods in approach 2. Moreover, the present
choice of W gives a simple analytical expression of

�� iW ·�� iW.
In passing it is worthwhile to notice that Eq. �11� can

constitute a simpler alternative expression for the energy that
could be useful for Monte Carlo simulations in the future.
The main advantage is that it does not require the calcula-
tions of the derivatives of Slater determinants, and instead
only the calculations of the logarithmic gradient of the Ja-
strow factor plus a potential term are enough. Moreover, the
formula can be extended to nondiagonal terms �mJ and
�nJ—same Jastrow factor—considering Eq. �8�. This could
be used in the CI method.

III. RESULTS

A. Three-electron systems

The basic possibilities of the method are illustrated by
determining the wave function for some three-electron ionic
or atomic systems in their ground states. In Table I, we report
the total energy estimates given by Eq. �4� where numerical
solutions of the Hartree-Fock equation were adopted for the
Slater determinant and the two parameters 	 and b included

in the Jastrow factor were optimized by the VMC method
minimizing variance defined by Eq. �6�. Here, the Monte
Carlo sampling number for the 3N-dimensional integration
of Eqs. �4� and �6� was set to be 106�N. It can be noticed
that Hartree-Fock orbitals, which are screened within Hartree
and exchange electron interactions, cancel the role of the
cosh term, leading to the value 	�0.

In Table II we display the total energies for the same
systems calculated from Eq. �5� where hydrogenoid orbitals
were utilized for the Slater determinant and only the Jastrow
parameters were optimized by the VMC method minimizing
the variance of Eq. �6�. The optimum values of the param-
eters b and 	 are also reported in the table. The Monte
Carlo sampling number for the 3N-dimensional integration
of Eq. �5� was again set to be 106�N. Surprisingly, the
energies listed in Table II are better than those shown
in Table I. The agreement between the present results and
those that can be considered as exact �9� in Table II is within
1�10−2 hartree. In spite of the simplicity of the present
wave function including only two variational parameters, the
accuracy is considered to be satisfactory. The full correlated
wave function used to calculate the energy of Li�1s2 ,2s� is
explicitly written as

�Li = C1s�r1��1s�r2�2s�r3�

− 2s�r2�1s�r3��exp��
i

ln�cosh�	ri�� + �
i�j

crij

1 + brij
� .

�12�

The functions 1s�ri� and 2s�rj� are hydrogenoid orbitals;
1s�ri�=e−Zri , . . ., where Z is the nuclear charge of the atom or
ion under consideration �Z=3 for Li, etc.�, and C is a nor-
malization constant. It is well known that the spin-assigned
wave function such as Eq. �12� gives an identical expectation

TABLE I. Ground-state energy estimates for Li, Be+, B2+, and C3+ calculated from the VMC method with Hartree-Fock orbitals in the
Slater determinant. The optimized Jastrow parameters 	 and b are also listed. The expected statistical errors in the last digit of the total
energy are in parentheses. Exact values are from Ref. �9�.

System 	 b EHF-J Eexact

Li 0.11�10−5 1.00 −7.459�1� −7.4781

Be+ 0.50�10−5 1.39 −14.303�1� −14.3248

B2+ 0.44�10−5 1.75 −23.405�2� −23.4246

C3+ 0.22�10−5 2.09 −34.758�2� −34.7755

TABLE II. Ground-state energy estimates for Li, Be+, B2+, and C3+ calculated from the VMC method
with hydrogenoid orbitals in the Slater determinant. The optimized Jastrow parameters 	 and b are also listed.
The expected statistical errors in the last digit of the total energy are in parentheses. Exact values are from
Ref. �9�.

System 	 b Ehydro-J Eexact

Li 0.67 0.83 −7.470�1� −7.4781

Be+ 0.76 1.11 −14.320�1� −14.3248

B2+ 0.84 1.37 −23.418�1� −23.4246

C3+ 0.91 1.64 −34.765�1� −34.7755

DETERMINATION OF SIMPLE CORRELATED WAVE… PHYSICAL REVIEW A 73, 012512 �2006�

012512-3



value of any spin-independent operator as the full space-spin
antisymmetric wave function �10,11�. Thus, this simplifica-
tion of the wave function has been widely used in the VMC
method for the calculations of the total energy and variance.
Although the wave function �12� is not an eigenfunction of
S2 because of the satisfaction of the cusp conditions in the
Jastrow factor, the effect of spin contamination is known to
be very small �12�. It is important to recall here that the wave
function is given analytically and includes only two positive
parameters 	 and b. Unlike the values obtained by using
Hartree-Fock orbitals listed in Table I, the parameter 	
shown in Table II presents nonzero values. This indicates
that the cosh�	ri� one-body Jastrow factor works very well
for representing the screening effect around the nucleus in
these cases.

In approach 2, this analytical formula of the wave func-
tion �12� was utilized for the calculations of the total energy
estimates given by Eq. �11� with the nonstatistical method
and parameter optimization was performed by energy mini-
mization. The results obtained by using this strategy coincide
with those given in approach 1 by variational Monte Carlo
calculations, within the numerical accuracy.

B. Four-electron systems

The energy values for the ground state 1S of four-electron
atoms or ions using hydrogenoid orbitals for the Slater de-
terminant and the Jastrow factor given in Eq. �9� are reported
in Table III for the systems Be, B+, and C2+. In these cases,
the 2s-2p orbital degeneracies are taken into account by con-
sidering the interactions with the configuration 1S �1s22p2�.
For example, the wave function of Be is explicitly chosen as
Be�1s2 ,2s2�+dBe�1s2 ,2p2�. The determination of the matrix
elements for the 2�2 CI is performed using Eqs. �7� and �8�.
The results shown have been obtained by using the VMC
method.

The ground-state energy value for Be, using the two-state
configuration defined above, is found to be E=−14.6489�1�,
to be compared to the value E=−14.6332 deduced
with a nine-parameter wave function �13� and to the value
E=−14.647 reported by Lin et al. �14� obtained using a cor-
related quantum Monte Carlo approach, including a 42-
parameter wave function. The present correlated wave func-

tion provides similar accuracy to the other sophisticated
wave functions, which are optimized with a large number of
parameters as mentioned above. The accurate value for the
Be ground-state energy in the nonrelativistic fixed nucleus is
estimated to be E=−14.6674; see Ref. �15�.

Results for B+ and C2+ are reported in Table III. It can be
seen that, for all systems considered here, the agreement with
exact values deduced through much more sophisticated wave
functions is good. In spite of its simplicity, the accuracy of
the present wave function including only two variational pa-
rameters is gratifying.

IV. CONCLUSIONS

Determination of accurate fully correlated wave functions
necessitates generally complicated trial wave functions. We
show here that a suitable choice of the Jastrow factor, includ-
ing only two variational parameters, can give remarkably
good results which are comparable in accuracy to those de-
rived using a more sophisticated Jastrow factor. We found
also that the optimization of the proposed Jastrow factor is
more efficient with hydrogenoid orbitals rather than with
Hartree-Fock ones in the Slater determinant for three-
electron atoms and ions. Moreover, the hydrogenoid orbitals
are found to be effective for four-electron atoms and ions as
well.

We hope that the simple description of the correlated
wave function suggested in the present work for
few-electron systems can be useful for investigating
multielectron inelastic processes occurring in complex
atoms. Moreover, the simple wave function possesses an-
other possibility to be the starting point for more elaborate
calculations—i.e., the configuration interaction method
coupled with correlated functions that should accelerate the
convergence.
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TABLE III. Ground-state energy estimates for Be, B+, and C2+ calculated using Eqs. �7� and �8� with hydrogenoid orbitals in the Slater
determinant. The optimized Jastrow parameters 	 and b in Eq. �9� are also listed. The parameter c in the Jastrow factor is always equal to
0.5. In parentheses we show the statistical error.

System 	 b Eq. �11� Eexact

Be 0.84 1.6 −14.6489�1� −14.6674

B+ 0.86 1.5 −24.3371�2� −24.3489

C2+ 0.88 1.6 −36.5241�2� −36.5349
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