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The one-loop self-energy is evaluated for d3/2 and d5/2 states in hydrogenic ions, and good agreement found
with previous calculations. Results are compared to what is known of the Z� expansion and higher-order
binding corrections inferred for these states as well as for their fine structures. Screened Kohn-Sham potentials
are then used to evaluate the one-loop self-energy corrections to n=2 states of lithiumlike ions for Z
=10–100, n=3 states of sodiumlike ions for Z=20–100, and n=4 states of copperlike ions for Z=40–100.
The importance of these screened calculations for the interpretation of recent high accuracy experiments is
emphasized.
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I. INTRODUCTION

The one-loop self-energy has been extensively studied
both as an expansion in Z� and ln�Z�� and in an exact man-
ner using various numerical techniques: a useful review of
the theory has been given by Mohr in Ref. �1�. The numeri-
cal approach, starting with the basic idea of Brown, Langer,
and Schaefer �2� in the late 1950s, was first correctly imple-
mented in the calculations of Desiderio and Johnson �3� in
the early 1970s. A different, and more accurate, numerical
approach was developed by Mohr �4� for hydrogenic ions at
around the same time. Exploiting the analytic control avail-
able when the Dirac-Coulomb Green’s function is expressed
in terms of Whittaker functions, Mohr and collaborators have
systematically increased the accuracy of their method, which
applies primarily to one-electron atoms with a point nucleus
�5,6�, but has been extended to the case of a finite nucleus
modeled as either a shell or uniform distribution of charge
�7�. The method of Brown et al. �2�, however, can be applied
to any local central potential, and a number of groups have
developed methods to calculate self-energies in potentials
more appropriate to many-electron atoms, with greater accu-
racy afforded by further subtractions of the electron propa-
gator �8�, as will be described in more detail below. In this
paper, we will describe extensions of a method that we have
developed in collaboration with Johnson �9�. Other groups
have also treated the problem of self-energies in many-
electron systems. We note in particular calculations carried
out around the same time as our earlier work by Blundell and
Snyderman �10� and the Göteborg group �11�, and more re-
cent computational methods developed by Shabaev and Yer-
okhin �12� and Goidenko et al. �13�.

It is the purpose of this paper to first briefly describe the
method of Ref. �9�, which has significantly been improved in
accuracy since its first introduction. We then apply the

method to calculations of the self-energy for point-Coulomb
hydrogenic ions in the nd3/2 and nd5/2 states with n=3 and 4,
with the purpose of comparing with earlier work and making
a comparison with the Z� expansion, particularly for the fine
structure of these states. Since experiments on highly
charged, many-electron ions are producing more and more
high-precision spectroscopic data, we also present tables of
self-energy contributions in realistic local potentials for n
=2 lithiumlike, n=3 sodiumlike, and n=4 copperlike ions,
including ns and np states in addition to nd states for com-
pleteness.

In the next section, improvements in our method for cal-
culating the one-loop self-energy are described. In the fol-
lowing section, 3d and 4d results for hydrogenic systems are
presented and compared with those from the Z� expansion.
Screened results using Kohn-Sham model potentials are pre-
sented in the next section, and the role of the present calcu-
lation for the interpretation of a recent high-accuracy experi-
ment in copperlike ions �14� is discussed in the conclusion.

II. CALCULATIONAL SCHEME

Because the method used to evaluate the self-energy has
been given in some detail in Ref. �9�, we describe it here
only schematically. The basic idea is to rewrite the electron
propagator in an arbitrary local central potential V�r� as

SF = �SF − S0 − S0VS0� + �S0 + S0VS0� � SF
main + SF

pspace,

�1�

where S0 is the free electron propagator. Specifically

SF
main�x�,y� ;E� = SF�x�,y� ;E� − S0�x�,y� ;E�

−� d3rS0�x�,r�;E�V�r�S0�r�,y� ;E� �2�

and
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SF
pspace = S0�x�,y� ;E� +� d3rS0�x�,r�;E�V�r�S0�r�,y� ;E� . �3�

When the electron propagator in the dimensionally regular-
ized self-energy of state v,

�vv = − ie2� d3x� d3y� dnk

�2��n

eik�·�x�−y��

k2 + i�
�̄v�x����

�SF�x�,y� ;	v − k0����v�y�� , �4�

is replaced with SF
main, an ultraviolet finite expression is en-

countered that can be evaluated in coordinate space after
partial wave expansions of the propagators are made. Math-
ematically, this is equivalent to the direct evaluation of the
ultraviolet finite “two-potential” term �vv�S0VSFVS0�, the
last term in the expansion of the electron self-energy in an
external potential V shown in Fig. 1, an approach proposed
by Snyderman �8�.

The bound and free propagators can be formed from com-
binations of solutions of the Dirac equation regular at either
the origin or infinity �15�. Here, radial functions of these
solutions are obtained numerically, partial wave by partial
wave, using an Adams predictor-corrector method modified
to handle high angular momentum states l and high photon
energies 
=k0. This numerical approach works for any local
potential, including V�r�=−Z� /r for point-Coulomb poten-
tials and, in particular, V�r�=0 so that the free propagator S0

is evaluated in exactly the same way as the bound propagator
SF, greatly simplifying the numerical calculations. While sig-
nificant cancellation takes place between the three compo-
nents of SF

main, present computer capability allows the use of
extremely fine radial grids with 5000–50 000 points, which
leads to control of the calculation to high partial waves, typi-
cally up to l=50 without any problem. An advantage of be-
ing able to calculate high-l terms directly is the fact that in
some cases the 1/ l3 asymptotic behavior of the partial wave
series is not reached at lower values. This happens when the
partial wave series converges very slowly, as is usually the
case for low-Z ions or for the valence states of near neutral
atoms, or when a sign change of the series occurs at
intermediate-l values. Once the series is close to its
asymptotic limit, contributions from higher-l partial waves
can be obtained by extrapolation with accelerated conver-
gence methods to achieve higher accuracy. While under good
control in general, the high-l behavior is still the ultimate
limit of the accuracy of this method. However, this problem

is greatly ameliorated when fine structure is considered, as
the difficult high-l terms cancel substantially. We will exploit
this fact when treating hydrogenic d states, where we will be
able to provide answers for the fine structure an order of
magnitude more accurate than for the individual states. We
note that high-l partial waves of bound states with the same
principal quantum number n also largely cancel, making self-
energy corrections to intrashell ��n=0� transitions signifi-
cantly easier to calculate than self-energies of individual
states, an effect noted in Ref. �16�.

When the Wick rotation k0→ i
 is carried out, poles are
passed that are easily evaluated. However, the small-
 re-
gion of the integral can suffer from numerical instabilities
associated with the fact that the energy of the bound electron
propagator E=	v− i
 is very close to the eigenenergy of the
bound state 	v. The source of the problem is that for the
partial wave with angular quantum number �=�v, the two
independent solutions of the Dirac equation with E=	v− i

regular at the origin and at infinity, which are used to form
the electron Green’s function as mentioned earlier, are now
both very close to the eigenfunction of the bound state v,
resulting in severe numerical cancellation and rapid loss of
accuracy as 
→0. This problem can be eliminated by intro-
ducing a regulator � through 	v→ �1−��	v and taking the
limit �→0 for the affected partial waves. In particular, the
extrapolation to �=0 can be avoided altogether by taking the
average of the results regulated with ��� and −���. This
symmetric-averaging approach is found to give very accurate
results when changes in the pole term contributions due to
the introduction of the regulators are properly taken into ac-
count.

The remaining part of the calculation involving SF
pspace are

individually ultraviolet divergent in the limit n→4, but these
divergences can be analytically isolated, and completely can-
cel when the self-mass counter term is included. The ultra-
violet finite terms remaining are evaluated in momentum
space, with the “zero-potential” S0 term being a two-
dimensional integral and the “one-potential” S0VS0 term ini-
tially a five-dimensional integral that we reduce to four di-
mensions by carrying out one of the Feynman parameter
integrals. The needed Fourier transforms of the bound-state
wave function �v are carried out using a modification of
Filon’s method which works for nonlinear radial grids com-
monly used in atomic structure calculations. The numerical
four-dimensional integrations are carried out with very high
accuracy with the use of the multidimensional integration
routine CUHRE, a part of the CUBA suite of integration pro-
grams described in Ref. �17�. While not presented here, we
note that accurate methods for the treatment of vacuum po-
larization are described in Ref. �18�, and can easily be ap-
plied to d states.

III. POINT NUCLEUS HYDROGEN RESULTS

The one-loop self-energy is given in terms of the dimen-
sionless function F�Z�� as

ESE =
�

�

�Z��4

n3 F�Z��mc2. �5�

Results for d3/2 states of hydrogenic ions with Z=10–110
have been reported in Ref. �5�, while those for d5/2 states

FIG. 1. The expansion of the electron self-energy into zero-,
one-, and two-potential terms. Single and double lines refer to free
and bound electrons, respectively. Dashed lines ending with a cross
refer to interactions with the potential V�r�.
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with Z=60–110 have been given in Ref. �19�. We find good
agreement with these results, and present our 3d and 4d re-
sults with Z=10–100 in Table I. As mentioned above, diffi-
culties in the precise extrapolation of the partial wave sum-
mation limit our accuracy for individual states. In general,
we calculate up to l=50 which is good enough to give F�Z��
accurate to four digits past the decimal point in most cases.
But for Z=10 in three dimensions and Z=10 and 20 in four
dimensions, the convergence of the partial wave series is so
slow that even with l going up to 70, it is still difficult to
maintain the same level of accuracy. Specifically, for the 4d
results at Z=20, uncertainties in F�Z�� are close to 1% at
about 0.0004. For the 3d and 4d results at Z=10, however,
uncertainties can be two to five times higher. For these low-
Z ions, the results in Table I are derived from the known Z�
expansion �20�

F�3d3/2� = −
1

20
−

4

3
ln k0�3d� + � 4

405
ln�Z��−2

+ 0.005551573�2�	�Z��2, �6�

F�3d5/2� =
1

30
−

4

3
ln k0�3d� + � 4

405
ln�Z��−2

+ 0.027609989�2�	�Z��2, �7�

F�4d3/2� = −
1

20
−

4

3
ln k0�4d� + � 1

90
ln�Z��−2

+ 0.005585985�2�	�Z��2, �8�

F�4d5/2� =
1

30
−

4

3
ln k0�4d� + � 1

90
ln�Z��−2

+ 0.031411862�2�	�Z��2, �9�

where the first ten significant digits of the Bethe logarithm
terms are �21�

ln k0�3d� = − 0.005 232 148 141, �10�

ln k0�4d� = − 0.006 740 938 877. �11�

By fitting the difference between the calculated and the ana-
lytic results for Z30 to higher-order Z�-expansion terms,
we can extend the above equations to include additional
�Z��4 terms with coefficients given by 0.12�1�, 0.07�1�,
0.16�1�, and 0.09�1� for F�3d3/2�, F�3d5/2�, F�4d3/2�, and
F�4d5/2�, respectively. In Figs. 2 and 3, calculated results are
compared with the analytic ones with and without the fitted
�Z��4 terms for F�3d3/2� and F�3d5/2�, respectively. It can be
seen that analytic results from the above equations are good
up to about Z=20 but deviate more and more from the cal-
culated results beyond that point. The addition of the fitted
�Z��4 terms extends the validity of the Z� expansions to Z
=40. Similar behaviors are found for F�4d3/2� and F�4d5/2�
and are not shown here. By using analytic results with the
fitted �Z��4 terms for Z=10 and 20, results in Table I should
be consistently accurate to the last digit shown.

While accuracies of our d3/2 and d5/2 results at low-Z are
severely limited by the slow convergence of the partial wave
series, those of the fine structures d5/2−d3/2 are under much
better control because of strong cancellations between the

TABLE I. F�Z�� for the hydrogenic 3d and 4d states and their fine structure �f.s.� splittings.

Z 3d3/2 3d5/2 f.s. �3d� 4d3/2 4d5/2 f.s. �4d�

10 −0.0427 0.0407 0.0834 −0.0407 0.0428 0.0835

20 −0.0420 0.0417 0.0838 −0.0399 0.0439 0.0839

30 −0.0410 0.0432 0.0843 −0.0387 0.0457 0.0844

40 −0.0396 0.0452 0.0848 −0.0371 0.0479 0.0850

50 −0.0378 0.0475 0.0853 −0.0348 0.0507 0.0855

60 −0.0353 0.0503 0.0857 −0.0318 0.0541 0.0858

70 −0.0321 0.0536 0.0857 −0.0277 0.0580 0.0856

80 −0.0279 0.0572 0.0851 −0.0222 0.0624 0.0846

90 −0.0225 0.0612 0.0837 −0.0149 0.0673 0.0822

100 −0.0154 0.0654 0.0808 −0.0053 0.0727 0.0779

FIG. 2. Comparisons between the analytic and calculated hydro-
genic results of F�3d3/2�.

HYDROGENIC AND SCREENED SELF-ENERGIES FOR d… PHYSICAL REVIEW A 73, 012503 �2006�

012503-3



individual states at high l noted above, which lead to much
faster partial wave convergence. Fine-structure results shown
in Table I are valid to all digits. In particular, at Z=10 and
20, the calculated results are the same as those from the
following analytic formulas derived from previous equa-
tions:

Ffs�3d� =
1

12
+ 0.022 058 416�2��Z��2, �12�

Ffs�4d� =
1

12
+ 0.025 825 877�2��Z��2, �13�

where the lowest order term 1/12 is entirely due to the one-
loop electron anomalous magnetic moment. If we carry out a
fit to our data to the form A+B�Z��2+C�Z��4, where A and
B are fixed to the values given in the above equations, we
find C=−0.050�2� and −0.067�2� for 3d and 4d states, re-
spectively, consistent with but more accurate than those from
the difference of fitted coefficients for individual d states
shown above. If this is extrapolated to the case of neutral
hydrogen, we predict a very small contribution of −0.004 Hz
from the higher-order terms in the Z� expansion, showing

that the expansion to order �Z��2 is all that is needed for low-
Z ions.

Comparisons between our calculated 3d fine-structure re-
sults with those from the analytic formulas are shown in Fig.
4. As in individual d-state results shown in Figs. 2 and 3,
analytic fine-structure results including up to the �Z��2 term
are seen to be good only up to about Z=20. Unlike indi-
vidual 3d results, however, when the fitted �Z��4 term is
included, analytic fine-structure results are now in excellent
agreement with the calculated results for the entire Z region.
Similar behaviors are found for the 4d fine-structure results
and are not shown here. This suggests that higher-order
Z�-expansion terms, while important for individual d states,
largely cancel between fine-structure components.

IV. SCREENED CALCULATIONS

While radiative corrections in few-electron ions can be
treated by interpolating or scaling the hydrogenic results, as
is done, for example, in Ref. �22�, for many-electron systems

TABLE II. F�Z�� for the 2s1/2, 2p1/2, and 2p3/2 states of lithi-
umlike ions with Z=10–100.

Z 2s1/2 2p1/2 2p3/2

10 3.4768 −0.0978 0.0365

20 2.9787 −0.0890 0.0903

30 2.5479 −0.0662 0.1221

40 2.2626 −0.0368 0.1484

50 2.0820 −0.0009 0.1730

60 1.9796 0.0427 0.1971

70 1.9423 0.0971 0.2211

80 1.9673 0.1680 0.2451

83 1.9877 0.1938 0.2523

90 2.0607 0.2657 0.2690

92 2.0889 0.2900 0.2738

100 2.2423 0.4110 0.2925

TABLE III. F�Z�� for the 3s1/2, 3p1/2, 3p3/2, 3d3/2, and 3d5/2

states of sodiumlike ions with Z=20–100.

Z 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

20 1.4435 −0.0431 0.0317 −0.0109 −0.0003

30 1.6845 −0.0403 0.0721 −0.0201 0.0061

40 1.6980 −0.0193 0.1070 −0.0242 0.0130

50 1.6742 0.0127 0.1388 −0.0260 0.0190

60 1.6616 0.0549 0.1694 −0.0263 0.0244

70 1.6767 0.1092 0.1997 −0.0255 0.0294

80 1.7296 0.1807 0.2304 −0.0235 0.0342

83 1.7545 0.2067 0.2397 −0.0227 0.0356

90 1.8313 0.2787 0.2616 −0.0203 0.0389

92 1.8588 0.3029 0.2679 −0.0195 0.0399

100 2.0006 0.4222 0.2934 −0.0157 0.0436FIG. 4. Comparisons between the analytic and calculated hydro-
genic fine-structure results of F�3d�.

FIG. 3. Comparisons between the analytic and calculated hydro-
genic results of F�3d5/2�.
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such as lithiumlike, sodiumlike, and copperlike ions, it is
much better to start with a more realistic potential so as to
build in the bulk of the screening in lowest order. This ap-
proach has been used by Blundell �23� in treating these iso-
electronic sequences using a screened core-Hartree potential.
Here we use a slightly different model potential, the Kohn-
Sham potential �24�, defined by

VKS�r� = VC�r� + �� dr�
1

r

�t�r�� −
2

3
� 81

32�2r�t�r�	1/3�

r
,

�14�

where

�t�r� = gv
2�r� + fv

2�r� + 

a

�2ja + 1��ga
2�r� + fa

2�r�� . �15�

Here VC�r� is the nuclear Coulomb field, including finite
nuclear size using a Fermi distribution, and g�r� and f�r� are
the upper and lower radial components of Dirac wave func-
tions, determined self-consistently. For lithiumlike ions, v
=2s and the sum is over a heliumlike core. For sodiumlike
ions, v=3s and the sum is over a neonlike core. Finally for

copperlike ions, v=4s and the sum is over a nickel-like core.
These potentials give results similar to the Hartree-Fock po-
tential, which we do not use because its nonlocality makes it
difficult to incorporate into a complete QED framework such
as the S-matrix theory. The factor 2 /3 in the Kohn-Sham
potential can take other values: for example, 1 for the Slater
potential and 0 for the Hartree potential. However, we have
invariably found good agreement with experiment when us-
ing the Kohn-Sham potential and would recommend that it
be generally adopted as a standard for the many-electron
problem. While a great advantage of restricting oneself to the
hydrogenic self-energy is that it is a natural standard, it can
only be applied to ions with many electrons through interpo-
lating or scaling procedures or perturbation theory, which
become more and more problematic as the number of elec-
trons in the ion increases.

We present, in Tables II–IV, results for n=2 lithiumlike
ions, n=3 sodiumlike ions, and n=4 copperlike ions, respec-
tively. While our interest is in d states, results for the s and p

TABLE IV. F�Z�� for the 4s1/2, 4p1/2, 4p3/2, 4d3/2, and 4d5/2

states of copperlike ions with Z=40–100.

Z 4s1/2 4p1/2 4p3/2 4d3/2 4d5/2

40 0.6045 −0.0070 0.0334 −0.0070 0.0019

50 0.8338 0.0058 0.0649 −0.0117 0.0060

60 0.9758 0.0320 0.0964 −0.0143 0.0109

70 1.0859 0.0711 0.1279 −0.0152 0.0159

80 1.1938 0.1259 0.1597 −0.0146 0.0210

83 1.2288 0.1462 0.1694 −0.0142 0.0226

90 1.3193 0.2030 0.1922 −0.0125 0.0263

92 1.3481 0.2221 0.1988 −0.0119 0.0273

100 1.4829 0.3164 0.2253 −0.0086 0.0315

FIG. 5. Comparisons between the hydrogenic and screened self-
energy functions F�Z�� for the ns states. Dotted, dashed, and solid
lines without symbols are hydrogenic 2s, 3s, and 4s results, respec-
tively. Solid lines with symbols are Kohn-Sham results.

FIG. 6. Comparisons between the hydrogenic and screened self-
energy functions F�Z�� for the np1/2 states. Dotted, dashed, and
solid lines without symbols are hydrogenic 2p1/2, 3p1/2, and 4p1/2

results, respectively. Solid lines with circles, inverted triangles, and
triangles are Li-like 2p1/2, Na-like 3p1/2, and Cu-like 4p1/2 Kohn-
Sham results, respectively.

FIG. 7. Comparisons between the hydrogenic and screened
Kohn-Sham self-energy functions F�Z�� for the np3/2 states.
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states are also shown for completeness. In Fig. 5, our
screened ns self-energies are compared with the hydrogenic
results of Mohr and co-workers �5,6�. It can be seen that
hydrogenic results of F�Z�� for 2s, 3s, and 4s are very simi-
lar throughout the Z range, but such is not the case when
screening corrections are included. In fact, with more and
more electrons in the ion, the screened F�Z�� functions for
the ns states deviate more and more from the hydrogenic
results. Similar comparisons are made for the np1/2, np3/2,
nd3/2, and nd5/2 results in Figs. 6–9, respectively. Except for
np1/2, all screened self-energies are found to be quite differ-
ent from the corresponding hydrogenic results.

V. DISCUSSION

While little data involving the nd states in high-Z sodium-
like and copperlike systems are available, a high-precision
experiment on transition energies involving the 4d state for
copperlike ions has recently been carried out �14�, and we
discuss these measurements in some detail so as to show the
role of radiative corrections in screened potentials for this
case. The transition is 3d104p �J=1/2�−3d104d �J=3/2�,
and the energies for Bi54+, Th61+, and U63+ have been deter-
mined to be 366.72�2�, 491.94�10�, and 535.15�5� eV, re-
spectively. It is quite straightforward to carry out relativistic
many-body perturbation theory �MBPT� calculations �25� for
these transitions using, for consistency, a Kohn-Sham poten-
tial. The results of a calculation including Coulomb interac-
tions through third order, instantaneous Breit and Breit-
Coulomb interactions, and the effect of retardation on the
Breit interaction are 367.21, 492.42, and 535.69 eV. The dif-
ference between experiment and this “structure” calculation
implies QED effects of −0.24, −0.48, and −0.54 eV. With
vacuum polarizations estimated to be 0.09, 0.19, and 0.24 eV
from expectation values of the Uehling potential calculated
with Kohn-Sham wave functions, the deduced self-energy
corrections are given by −0.33, −0.67, and −0.78 eV. Pos-
sible errors from the combined theoretical and experimental
uncertainties are likely to be around 10–20 %. Were one to

use hydrogenic values for the Lamb shift, one would get
−0.79, −1.37, and −1.59 eV, which are twice as big as the
deduced values, indicating the presence of a significant level
of screening. Likewise, interpolating the hydrogenic values
to Zeff=Z−28=55, 62, and 64 for copperlike Bi54+, Th61+,
and U63+, respectively, leads to overcorrected results of
−0.06, −0.12, and −0.14 eV which are too small by a factor
of 5. If we instead use the Kohn-Sham values from Table III,
we get the much more reasonable set of values −0.40, −0.74,
and −0.88 eV. Thus this relatively simple procedure gives
self-energy results which are consistent with experiment to
within 20% and are almost within the expected error bars of
the deduced self-energies.

To explain the remaining difference involves a number of
rather complex issues which we have discussed before else-
where �26�. They involve the direct evaluation of screening
corrections to the one-loop self-energy and vacuum polariza-
tion diagrams �also discussed by Indelicato and Mohr in Ref.
�27��, the inclusion of recoil corrections, and the correct
treatment of “two-photon” Feynman diagrams beyond the
dominant two-photon exchange graphs which have been in-
cluded in MBPT. The Wichmann-Kroll corrections to the
vacuum polarization, though expected to be small, have to be
evaluated also. In the case of 2s-2p transitions in lithiumlike
Bi80+, we have shown that the Kohn-Sham potential is a
much better starting point than the Coulomb potential for
treating these small corrections �26�. We expect the same to
be true here, especially since there are significantly more
electrons in copperlike than in lithiumlike ions. We are pres-
ently extending the S-matrix methods developed for lithium-
like bismuth to the sodiumlike case, and the same methods
should also be applicable to copperlike ions.
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FIG. 9. Comparisons between the hydrogenic and screened
Kohn-Sham self-energy functions F�Z�� for the nd5/2 states.

FIG. 8. Comparisons between the hydrogenic and screened
Kohn-Sham self-energy functions F�Z�� for the nd3/2 states.
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