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Triple excitations in the relativistic coupled-cluster formalism and calculation of Na properties
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A practical high-accuracy relativistic method of atomic structure calculations for univalent atoms is pre-
sented. The method is rooted in the coupled-cluster formalism and includes nonperturbative treatment of single
and double excitations from the core and single, double, and triple excitations involving valence electron.
Triple excitations of core electrons are included in the fourth order of many-body perturbation theory. In
addition, contributions from the disconnected excitations are incorporated. Evaluation of matrix elements
includes all-order dressing of lines and vertices of the diagrams. The resulting formalism for matrix elements
is complete through the fourth order and sums certain chains of diagrams to all orders. With the developed
method we compute removal energies, magnetic-dipole hyperfine-structure constants A, and electric-dipole
amplitudes. We find that the removal energies are reproduced within 0.01-0.03 % and the hyperfine constants
of the 35/, and 3p,,, states with a better than 0.1% accuracy. The computed dipole amplitudes for the principal

351/2-3p 172,312 transitions are in an agreement with 0.05%-accurate experimental data.
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I. INTRODUCTION

This work is aimed at designing a practical ab initio
atomic structure method capable of reaching accuracy at the
level of 0.1% for properties of heavy univalent many-
electron atomic systems. The improved accuracy is required,
for example, for a refined interpretation of atomic parity vio-
lation (APV) with atomic Cs [1-3] and planned experiment
with Ba* [4]. At present namely the accuracy of solving the
basic correlation problem is the limiting factor in the APV
probe of “new physics” beyond the standard model of el-
ementary particles. In addition, it is anticipated that the im-
proved accuracy would unmask so far untested contributions
from quantum electrodynamics (QED) in heavy neutral
many-electron systems [5].

Here we report developing a many-body approach based
on the coupled-cluster (CC) formalism [6,7]. In the CC for-
malism the many-body contributions to wave function are
lumped into a hierarchy of multiple (single, double,...)
particle-hole excitations from the lowest-order state. Due to a
computational complexity, previous relativistic CC-type cal-
culations [8-13] for univalent atoms were limited to single
and double excitations. Triple excitations were treated only
in an approximate semiperturbative fashion [8,9,12-15].
Compared to these previous calculations, here we fully in-
clude valence triple excitations in the CC formulation; we
will designate our approximation as the CCSDvT method.
Further, compared to calculations by the Notre Dame group,
here we also incorporate a subset of so-called disconnected
excitations (nonlinear CC terms). For sodium atom, such
nonlinear CC terms were previously included in Ref. [10]
and in nonrelativistic calculations [16]. Finally, in calcula-
tions of matrix elements we include CC dressing of lines and
vertices [17] and we also directly compute complementary
fourth-order diagrams (mainly due to core triple excitations).
The resulting formalism for matrix elements is complete
through the fourth order of many-body perturbation theory
(MBPT) and also subsumes certain chains of diagrams to all
orders.
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As a first application of our method, we carry out numeri-
cal calculations for atoms of sodium. Sodium (11 electrons)
has an electronic structure similar to cesium (55 electrons),
but it is not as demanding computationally. By computing
properties of the Na atom we observe that a simultaneous
treatment of triple and disconnected quadruple excitations is
important for improving theoretical accuracy, as the two ef-
fects tend to partially cancel each other. We compute re-
moval energies, magnetic-dipole hyperfine-structure (HFS)
constants A, and electric-dipole amplitudes for the principal
3512-3p; transitions. We find that the removal energies are
reproduced within 0.01-0.03 % and the HFS constants of the
3s and 3p;,, states with a better than 0.1% accuracy. The
computed dipole amplitudes are in a perfect agreement with
the 0.05%-accurate experimental data. However, our result
for the HFS constant of the 3ps,, state disagrees with the
most accurate experimental values [18,19] by 1%, while
agreeing with less accurate measurements [20,21].

The paper is organized as follows. First we discuss gen-
eralities of the coupled-cluster formalism and many-body
perturbation theory in Sec. II. Explicit CCSDvT equations
and analytical expressions for energies, matrix elements, and
normalization corrections are presented in Sec. III. In Sec. IV
we tabulate and analyze the results of numerical calculations
of properties of the sodium atom. Finally, we draw conclu-
sions in Sec. V. Unless specified otherwise, atomic units |e|
=h=m,=4me =1 are used throughout.

II. GENERALITIES

In this section we recapitulate relevant formulas and ideas
of atomic many-body perturbation theory (MBPT) and the
coupled-cluster formalism for systems with one valence elec-
tron outside the closed-shell core.

A. Atomic Hamiltonian and conventions

The Hamiltonian of an atomic system may be represented
as
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H= (E Tre(1;) + E Upnr(ry) ) ( E E Upnr(r;) )

HW Tij
(1)

where h,,. is the Dirac Hamiltonian including the kinetic
energy of the electron and its interaction with the nucleus,
Uppyr is the Dirac-Hartree-Fock (DHF) potential, and the last
term represents the residual Coulomb interaction between
electrons. To reduce the number of MBPT diagrams, we em-
ploy the frozen-core (or V¥') DHF potential [22]. The
single-particle orbitals ¢; and energies &; are found from the
set of DHF equations,

(hyue + Upnp) @ = €;¢;. (2

The Hamiltonian in the second quantization reads (omit-
ting common energy offset)

H= H0+G 2 N[aa]+ Egljk[N[a

i ]kl

Jad, (3)

where operators a; and a}L are annihilation and creation op-
erators, and N[---] stands for a normal product of operators
with respect to the core quasivacuum state |0,). Labels i, j, k,
and / range over all possible single-particle orbitals. In the
following we will employ a labeling convention where let-
ters a, b, c¢ are reserved for core orbitals, indices m, n, r, s
label virtual states, and letters v and w designate valence
orbitals. In this convention valence orbitals are classified as
the virtual orbitals. In Eq. (3), the quantities g;;, are two-
body Coulomb matrix elements,

8ijk = f d’r f &’r' o] (r) g} (r’ | |<pk(r)¢>l(r) (4)

Notice the absence of the one-body contribution of G in the
second-quantized Hamiltonian, Eq. (3); this simplifying fea-
ture is due to the employed VV~! approximation and leads to
a greatly reduced number of terms in the CC equations.

In MBPT the first part of the Hamiltonian (3) is treated as
the lowest-order Hamiltonian H,, and the residual Coulomb
interaction G as a perturbation. In the lowest order the
atomic wave function with the valence electron in an orbital
v reads |‘If,(jo)>=aZ|Oc). Further, the wave operator () is intro-
duced; it promotes this lowest-order state to the exact many-
body wave function,

W,y = Qv (5)

In the conventional order-by-order MBPT, a perturbative ex-
pansion for operator () is built in powers of residual interac-
tion G resulting in a hierarchy of approximations for corre-
lated energies and wave functions.

B. Coupled-cluster method

One of the mainstays of practical application of MBPT is
an assumption of convergence of series in powers of the
perturbing interaction. Sometimes the convergence is poor
and then one sums certain classes of diagrams to “all orders”
using iterative techniques. The coupled-cluster formalism is
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one of the most popular all-order methods. The key point of
the CC method is the introduction of an exponential ansatz
for the wave operator [23],

Q:N[exp(K)]:l+K+%N[K2]+ (6)

where the cluster operator K is expressed in terms of con-
nected diagrams of the wave operator (). The operator K is
naturally broken into cluster operators (K), combining n si-
multaneous excitations of core and valence electrons from
the reference state |\If£0)> to all orders of MBPT,

total number of electrons

K= >

n

(K),=S+D+T+ ---, (7)

i.e., K is separated into singles [S=(K);], doubles [D
=(K),], triples [T=(K)3], etc. For the univalent systems we
further separate the cluster operators into two (core and va-
lence) classes,

(K) = (Ko, + (K, (8)

Clusters (K_), involve excitation from the core orbitals only,
while (K,), describe simultaneous excitations of the core and
valence electrons. Then S=S.+S,, D=D_.+D,, etc.

A set of coupled equations for the cluster operators (K),
may be found from the Bloch equation [23] specialized for
univalent systems [24],

(Su - HO) (KL)}’[ = {QGQ}connected,m

(Sy + 5Ev - HO) (Kv)n = {QGQ}Connected,n’ (9)
where the valence correlation energy
OE, = (W |GQIw"), (10)

and Q=1 —|\Iff)0)>(\lff)0)| is a projection operator. Notice that
only connected diagrams are retained on the right-hand side
(rhs) of the equation, rhs diagrams being of the same topo-
logical structure as clusters (K),. The resulting CC equations
for the core clusters do not depend on the valence state.

Although the CC approach is strictly exact, in practical
applications the full cluster operator K is truncated at a cer-
tain level of excitations, e.g., at single and double excitations
(CCSD method). In particular, for univalent atoms the CCSD
parametrization may be represented as

K°=S.+D.+S,+D,

— _ T T T
E pmaa ag+ 21 2 Pmnab@md abaa+ 2 Pmv Gty

ma mnab m#v

+ 20 Pumoaliy gy (11)

mna

The cluster amplitudes p__ are to be determined from Eq. (9).

A linearized version of the CCSD method discards non-
linear terms in the expansion of exponent in Eq. (6) of the
coupled-cluster parametrization, ie., Q5°=1+K5P. This
leads to discarding disconnected excitations from the exact
many-body wave function. We will refer to this approxima-
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tion simply as the singles-doubles (SD) method. For alkali-
metal atoms the SD method was employed previously by the
Notre Dame group [8,9,12,13]. The resulting SD equations
are written out in Ref. [8]. A typical ab initio accuracy at-
tained for properties of heavy alkali-metal atoms is at the
level of 1%.

Successive iterations of the CC equations (9) recover the
traditional order-by-order MBPT. As discussed in Ref. [8],
the core and valence doubles appear already in the first order
in the residual interaction G:

8mnab
Pmnab = $’ (12)
Eatep—&,— 8y
8
Prnva = (13)
e, + €& & &

v a” °m™ ©n

Valence and core singles appear at the second iteration of the
CC equations and are effectively of the second order in G.
We will employ this “effective order” classification to de-
velop our approximation to the CC equations.

C. Triple excitations: Motivating discussion

Certainly the truncation of the CC expansion leads to a
neglect of many-body diagrams containing excitations be-
yond singles and doubles. For example, both the SD and the
CCSD methods recover all the diagrams for valence energies
through the second order of MBPT, but start missing dia-
grams associated with valence triple excitations in the third
order [8]. Similarly, for contributions to matrix element of a
one-body (e.g., electric dipole) operator, the SD method sub-
sumes all the diagrams through the third order but misses
approximately half of the diagrams in the fourth order of
MBPT. The omitted fourth-order diagrams are entirely due to
triple and disconnected quadruple excitations [24]. Our
group has carried out calculations of these 1648 complemen-
tary diagrams for Na [25] and Cs [17]. Close examination of
our computed complementary diagrams reveals a high (a fac-
tor of a hundred) degree of cancellation between different
contributions. Such cancellations could lead to a poor con-
vergence of the MBPT series. Poor convergence calls for an
all-order summation scheme and this is what we address
here. The resulting formalism will recover the dominant
fourth-order contributions to matrix elements and all third-
order MBPT contributions to the valence energies in a non-
perturbative fashion.

The next systematic step in improving the SD method
would be an additional inclusion of triple excitations,

T.= E 2 pmnrabcajnalLalacabaa’ (14)
mnrabc
1 D Pt
T,= 6 Pmnrvab@ @, aplady (15)
mnrab

into the cluster operator K (see Fig. 1). However, considering
the present state of available computational power, the full
incorporation of triples (specifically, core triples) seems to be
yet not practical for heavy atoms.
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T,

FIG. 1. Diagrammatic representation of valence triple excita-
tions. The double-headed arrow represents the valence state.

To motivate more accurate, yet practical extension of the
SD method, we consider numerical results for the reduced
electric-dipole matrix elements of 3s;,,-3p;,, transition in Na
[25]. From Table I of that paper, we observe that the contri-
butions from valence triples T, (total—4.4 X 10~?) and nonlin-
ear doubles (disconnected quadruples) D, (total 1.3 107%)
are much larger than those from core triples T.(total 8
X 107°). Similar conclusion can be drawn from our calcula-
tions for heavier Cs atom [17]. Because of this observation
we will discard core triples and incorporate the valence
triples into the SD formalism. We will refer to this method as
SDvT approximation. Contributions of core triples to matrix
elements are treated in this work perturbatively.

In addition to triples, we will include effects from discon-
nected excitations. The relevant diagrams contribute at the
same level as the valence triples and the full treatment of
disconnected excitations will recover a part of the otherwise
missing sequence of random-phase-approximation diagrams
(see also the discussion in Ref. [17]). The resulting approxi-
mation will be referred to as the CCSDvT method.

III. FORMALISM

Below we write down the CC equations for cluster ampli-
tudes p in the CCSDvT approximation. The equations in the
SD approximation are presented in Ref. [8]. We retain con-
vention for the single and doubles from that paper and focus
on additional terms due to valence triples and disconnected
excitations. Some of the equations involving triple excita-
tions were given in Refs. [12,13]; we use a different conven-
tion for the triples amplitudes.

A. Valence triples

In the following, we employ fully antisymmetrized va-
lence triples amplitude p,,,,,,,a5- The object p,,,pap 1S antisym-
metric with respect to any permutation of the indices mnr or
ab, e.g.,

Pmnrvab =~ Pnmrvab = ~ Pmnrvba = Pmrnvba = * " - (16)

It is straightforward to demonstrate that the contribution to
the wave operator (and therefore all the resulting equations)
can be expressed in terms of this antisymmetrized object.
Explicitly,

1 ~ Tog ot
Tu = E E pm;zruabamajzarabaaav- (17)
mnrab

Computationally the use of p,,,,,.;, Substantially reduces stor-
age requirements, as it is sufficient to store ordered ampli-
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B VA

T, [D v]

FIG. 2. Representative contributions to the rhs of the valence
triples equation. The horizontal dashed line denotes Coulomb inter-
action and the solid lines denote cluster amplitudes.

tudes with m>n>r and a>b only. In the equations below,
we will also use antisymmetrized combinations for doubles
5mnab= Pmnab = Pmnba= Pmnab = Pnmab » 5mnva= Pmnva = Pnmva> and
for the Coulomb matrix elements g;x=g;ju—8iji-

From the general Eq. (9) we obtain symbolically

(Sa te,te,—g,—¢g,—¢&.+ 5Ev)ﬁmnrvab
=T, D.]+T,D,]+T,T,]+T,[T.](+ nonlinear terms).
(18)

Here contribution T,[D.] denotes effect of core doubles on
valence triples, the remaining terms defined in a similar fash-
ion. In this work we include only contributions T,[D.] and
T,[D,] (see Fig. 2) and omit the effect of valence and core
triples on valence triples (7,[T,] and T,[T,]) and nonlinear
CC contributions. Compared to the 7,[D,] and T,[D,] con-
tributions, these are higher-order (and computationally ex-
pensive) effects. Explicitly,

TU[DC] == E (gmcvaﬁnrcb - gmcvbﬁnrca + gncvaﬁrmch

c

= &ncvbPrmca t 8revaPmncb — grcvbpmnca)

+ 2 (gnrsvﬁmsab + grmsvﬁnsab + gmnsvﬁrsab) >

S

(19)
Tv[Dv] = 2 (gmcabﬁnrvc + gncabﬁrmvc + grc‘abﬁmnvc‘)
C

+ E (gnrsbpmsva = 8nrsaPmsvb t &rmsbPnsva

s

- grmmﬁnsvh + gmnshﬁmva - gmnmﬁrsvb) . (20)

Notice that the matching of diagrams in Eq. (9) is generally
not unique; we require that the rhs of the above equation is
fully antisymmetrized as the amplitude p,,,,., On the left-
hand side (Ihs) such a procedure is unique and corresponds
to a projecton of the CC equations onto the many-body state
ajnaZaiabalJOc). Also from these equations we immediately
observe that the triples enter the many-body wave function in
the effective second order of MBPT, as the doubles enter in
the first order in G, Eq. (13).

B. Modifications to SD equations and valence energies

Here we present CC equations for correlation energy OF,,
valence singles p,,,, and for valence double p,,,,, cluster
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amplitudes. In formulas below we write SD to denote con-
tributions in the singles-doubles approximations tabulated in
Refs. [8,12]. As to the core amplitudes, they will be deter-
mined in the SD approximation (i.e., we do not include non-
linear CC terms and core triples).
The topological structure of the valence singles equation
is
(SU - 8171 + 5Ev)pl‘ﬂl) = (SD) + SU[SC ® SU] + SU[SC ® SC]
+ SU[SC ® DU] + SU[SU ® DC] + SU[TU]?
21
where the notation (K),[(K),® (K),,] stands for a contribu-
tion from a disconnected (p+m)-fold excitation [resulting
from a product of clusters (K), and (K),,] to the cluster (K),.

We do not include the cubic nonlinear term S,[S.® S, ® S, ].
Explicitly,

Sv[Sc ® Sv] = E gamnrpnaprw (22)
SU[SC ® Sc] = E gabnvpmupnlw (23)
abn

SU[SC ® Dv] = 2 gahnr(pmhpnrva - pnhﬁmrva) p (24)

abnr
SU[SU ® Dc] == E gabannUPmrab? (25)
abnr
1 _
Sv[Tv] = 5 E 8abnrPmnrvab - (26)
abnr

Representative diagrams are shown in Fig. 3.
Valence doubles equation for p,,,,, can be symbolically
represented as (see Fig. 4)

(e, + 84— &y = &, + OE,) Prunva
=SD+D,[S.® S,]+D,[S. ® S.]
+D,[S.® D,]+D,[S, ® D]+ D,[S.® D]
+D,[D.® D,]+D,[S.® T,]+ D[S, ® T.]+ D,[T,].
(27)
Contribution D,[D.® D,] is topologically impossible and we
omit cubic and higher-degree nonlinear terms like D,[S.

®S.®S8,], DJ[S.®S.®D,], and D,[S,®S5.®S.®S.]. Ex-
plicitly,

1_
Dv[Dc ® Dv] = 2 gbcrs{prsvapmnbc + Epmsvapnrbc

bers

+ Eﬁsnuapmrbc + ﬁrsvbpnmac + ﬁrsabpmnuc}

- E 8bersPmsvbPrracs

bers
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Sy[Se ® Dy]

FIG. 3. Sample contributions of triples and disconnected exci-
tations to the valence singles equation.

DU[SU ® Dz] == 2 gbmrsprvﬁnsab + 2 8bcarProPnmbes

brs ber

lw _ _ lw _ _
DU[SC ® Dv] = _E 8bnrsPrbPmsva ~ _E 8EbmrsPrbPnsva
2 brs 2 brs

1 _ 1 -
+ EE 8EbmrsPnbPrsva — EE 8bnrsPmbPrsva
brs brs

- E 8bnrsPraPmsvb ~ 2 8bcarPrcPmnvb
brs ber

- 2 8bcarPncPrmvb»
ber

DU[SC ® Dc] == 2 gbcvrprcpnmub - 2 gbcurpmcﬁrnab
ber ber

+ E gbcvrpmpmnbc’

ber

DU[S(' ® Sv] = E gbnarpmbprv + E EmnrsProPsa>
br

rs

DU[SC ® Sc] = E gbmvrpnhpra + E 8bcavPmcPnb-
br be
The effect of valence triples on valence doubles reads

1 _ _
DU[TU] == EE (gbcarpmnrvbc + gbcvrpnmrahc)
rbc

1
+ 52 (gbnrspmsrvab + gbmrspmrvab) .
rsb

Finally, the valence correlation energy may be represent as
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AVAEORY i

D,[D. ® D)

D,[To]

FIG. 4. Effects of disconnected and valence triple excitations on
valence doubles.

5EU = 5ESD + 6ECC + 5EVT’ (28)

with

5ECC = E gavnrpnaprv + 2 gabnupvapnb

anr abn

+ E gabnr[pubpnrva - pnbﬁurva - pnvpvrab] > (29)

abnr

1 _
5EVT = 5 E 8abmnPvmnvab - (30)
abmn

Topological structure of contributions to energy is similar to
the terms on the rhs of the valence singles equation (21).
Here correction 0Eqc comes from nonlinear CC contribu-
tions and OF,r is due to valence triples.

C. Normalization

The CC wave function is derived using the intermediate
normalization, (‘I’f}o) |¥,)=1 and in calculating the atomic
properties based on the CC wave function, one needs to
renormalize it. In calculations of matrix elements one re-
quires the valence part of the normalization, N,
:<\va | \Pv>val,connected' We obtain

- 1 -
N,=SD+ E PmnabPyomnvab + E 2 (pmnrvab)z' (31)
mnab mnrab

The last term in the equation above is quadratic in valence
triples (i.e., it is of the fourth effective order) and we will
neglect it in the following.

D. Matrix elements of one-body operator

Finally, we consider matrix elements of a one-body op-
erator Z=3,;z;,ala; between two CC states [W,) and |¥,).
Taking into account renormalization, this matrix element can
be defined as
MW’U = w * (32)

vNVVNU

As it was shown in Ref. [8] all disconnected diagrams in the
numerator and denominator of this expression cancel, lead-
ing to

(Z:];LI)COHH
{01+ (V) connIl 1+ (V) connl}

We discarded valence-independent contribution, as it van-
ishes for nonscalar operators. To unclutter the notation below
we simply write

M, = (33)
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— 1
Zwv = (Z:ﬁ)

conn?

N, = (N com- (34)

Blundell ez al. [8] tabulated 21 contributions to the matrix
elements in the SD approximation. These SD corrections are
mainly due to (i) the random-phase-approximation (RPA)
diagram proportional to a product of Z and D,, and (ii) the
Brueckner-type (core-polarization) diagram proportional to
the product of Z and S,,. In Ref. [17] we additionally included
modifications to M, caused by nonlinear terms in the CC
wave function. We have devised a re-summation scheme that
is equivalent to “dressing” of lines and vertices of the SD
diagrams (see also Ref. [26]).

Including valence triples leads to additional direct contri-
butions, ZWU=SD+ZfVTU”) . We obtain

Zy = EZT o, (35)
Z T 1) 2 pmapwmnvabzbn +H.c. S., (36)
abmn
1 e
ZEZ)U’Z) - — 5 2 pmnbapwnmvcbzca + H.C.S., (37)
abemn
3
Zgl") )= Z E pmnabprmnvabzwr"' H.c. S., (38)
abmnr
4)
Z(T = E 2 pmnabpwrmvbazm +H.cs., (39)
abmnr
1 .
\5 ~* ~
ZSVYIEI : == 5 2 PimnwbPrmnvabZar + H-C-S~’ (40)
abmnr
6 __ 1 -
Zwv - g E PmnrwebPmnrvabZacs (41)
abemnr
7
Z(T )= Z E pmnrwabpsnrvabzms (42)
abmnrs

In these expressions, abbreviation H.c.s. stands for a Hermit-
ian conjugation of the preceding term with a simultaneous
swap of the valence indices w«v. As discussed in Ref. [24],
valence triples start contributing in the fourth order of MBPT
for matrix elements; these contributions correspond to terms
ZSVTUU’k), k=2-5. We presently discard the sixth and seventh
terms that are quadratic in triple excitations.

E. Symmetries and reduced triples

Relativistic one-particle orbitals i are characterized by the
principle quantum number #;, the total angular momentum j;,
its projection m;, and the orbital angular momentum /;. The
summations over magnetic quantum numbers are carried out

PHYSICAL REVIEW A 73, 012501 (2006)

analytically, substantially reducing the number of coeffi-
cients. A dependence of valence triples on magnetic quantum
numbers may be parametrized as (we use angular diagrams,
see, e.g., Ref. [23])

L -
Frpn (mnrvab) ,

Promrwat = 9 -

LL'h
Jome e (43)

where & is a half integer coupling angular momentum and L
and L’ are integer coupling momenta. The “reduced triples”

Fy;u(mnrvab) do not depend on magnetic quantum num-
bers.

Selection rules for various angular momenta characteriz-
ing reduced triples follow from properties of the 3j symbols
in the angular diagram (43). In addition, the atomic Hamil-
tonian is invariant under parity transformation, leading to an
additional  parity selection rule [,+[,+[.+[,+1,+1],
=even integer for a triple amplitude p,,,,ap-

Owing to the antisymmetric properties of the triples, Eq.
(16), it is sufficient to store reduced triples with (n,,,,)
= (nn%n) = (nr%r) and (na%a) = (nb%b)’ where %= (l_.]) (2.]
+1). The reduced triples with other combinations of argu-
ments can be related to the ordered set via symmetry prop-
erties. For example,

Jj» h L
Fypomnrovba)=Qh+ D)L + 1) 2 3j, L' j,
WE\K j, h

X (= 1)KL B (mar vab). (44)

There are 11 such index-swapping relations for reduced va-
lence triples.

IV. NUMERICAL RESULTS AND DISCUSSION

To reiterate discussion so far, we derived algebraic ex-
pressions in the CCSDvT formalism, which includes valence
triples and a subset of disconnected excitations. We also car-
ried out angular reduction of these expressions and devel-
oped a numerical code. In this section we present our ab
initio results for properties of 3s, 3p,,, and 3ps,, states of
atomic sodium. Results for removal energies are presented in
Sec. IV A and for dipole matrix elements and HFS constants
A in Sec. IV B.

Before presenting the results, let us briefly describe our
numerical code. It is an extension of the relativistic SD code
[12] which employs the B-spline basis set. This basis nu-
merically approximates complete set of single-particle
atomic states. Here we use 35 out of 40 positive-energy (g;
>—m,c?) basis functions. Basis functions with [, <6 are
used for singles and doubles. For triples we employ a more
limited set of basis functions with [,,,,(7T,) <4. Excitations
from all core subshells are included in the calculations. Nu-
merically we found that this choice is a reasonable tradeoff
between storage and overall numerical accuracy (after all,
triples affect computed properties at ~1% level). The results
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TABLE I. Contributions to removal energies of 3s, 3p;/, and
3ps, states for Na in cm™ in various approximations. A compari-
son with previous CC-type calculations and experimental values is
presented in the lower panel.

3s 3pin 3p3n
Epur 39951.6 24030.4 24014.1
SD
SEsp 1488.8 463.9 460.6
E, 41440.3 24494.3 244747
SDvT
SEgST 79.7 28.9 28.4
SE 1 25.4 4.8 4.7
ESor 415455 24528.0 24507.8
CCSD
SEGST -57.0 -20.0 -18.4
SEcc -17.5 -7.4 -74
E&sp 41365.9 24466.9 24448.9
CCSDvT
SEgaT 16.8 6.8 7.9
SE p 23.7 45 4.4
SEcc -18.4 -8.0 -8.0
EStspyr 41462.5 24497.6 24479.1

Other works

SD(pvT) [13] 414473 24493.9 24476.7
CCSD [10] 41352 24465
Ecxperim’ 41449.6 24493 .4 24476.2

*These values are from spectroscopic data compiled by NIST [27].

presented in this section will include basis set extrapolation
correction, which is obtained by computing SD properties
with increasingly larger basis sets and interpolating them to
[=%. The CC equations were solved iteratively. We notice
that the reported calculations can be carried out in the
memory of a modern high-end personal workstation: storing
reduced valence triples in a single precision required about
900 Mb for s/, states and 1.5 Gb for ps, states (the latter
involve more angular channels).

A. Energies

Computed removal energies of 3s, 3p,,,, and 3p3), states
of atomic sodium are presented in Table I. The dominant
contribution to the energies comes from the DHF values. The
remaining (correlation) contribution is given by Eq. (28). We
computed this correlation correction in several approxima-
tions: SD, SDvT, CCSD, and, finally, CCSDvT.

First we list correlation energies OEgp obtained in the SD
approximation. The results contain basis set extrapolation
corrections from Ref. [28]. The extrapolation corrections in-
crease the removal energies by 5.1 cm™' for the 3s state,
1.9 cm™! for the 3p,, state, and 0.8 cm™! for the 3ps),. Total
removal energy is E5),=Epyp+ 6Esp. At the next step (SDvT)
we include valence triple excitations, i.e., in the CC equa-
tions in addition to the SD terms we incorporate terms with
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amplitudes p,,,q,qp- It is instructive to distinguish direct and
indirect SELS" effects of these excitations. The direct effect
of triples is SE,r, Eq. (30), while indirect effect is a modifi-
cation of SEgp due to effect of triples through coupling to
singles and doubles. In this case, the indirect contribution is
defined as SEgy"= SEgp[SDVT]- SEgp[SD]. We list the two
types of contributions in the table and it is clear that for all
the states both contributions add constructively, and for all
the considered approximations the indirect contribution
dominates over the direct one. The total removal energy in
the SDVT approximation is ESb +=Epyp+ 0Egp+ SEmSr
+ OE, 1. The totals for other approximations are defined in a
similar way.

As we move to the CCSD approximation in Table I, we
notice that here the corrective terms SESS" and SEcc de-
crease the removal energies, while for the SDvT case the
corrections increased E™'. In both cases the resulting total
energies E' were moved away from the experimental val-
ues. Since the effects of disconnected and triple excitations
are comparable and opposite in sign, simultaneous treatment
of the two effects is required. The results of such treatment
are listed under CCSDvT heading in the table. Compared to
the CCSD and SDvT approximations, the CCSDvT results
move into a closer, 0.01-0.03 %, agreement with the experi-
mental values.

Comparison with the previous CC-type calculations of Na
removal energies is presented in the lower panel of Table I.
SD(pvT) approximation denotes results obtained with a
scheme proposed in Ref. [9]. In this scheme: (i) starting from
the SDvT approximation, one keeps vT contributions in the
equation for valence singles and valence energies (i.e.,
D,[T,] effect is neglected); (ii) triples are approximated by

T,[D]+T,[D,]

g, tep+8,—8,—8,— €.+ OE,

Pmnrvab =~

(iii) to avoid expensive storing of valence triples, in the p,,,
equation the triples denominators (e,+&,+&,—&,—&,—¢,
+ OE,) are replaced by an approximate combination (g,+¢g,
—g,—¢,). In this approximation S,[T,] effect is effectively
overemphasized (for the ground state £,<¢,,). In the expres-
sion for the energy, SE,r, Eq. (30), triples enter as py,..wap
and the above replacement of denominators is more algebra-
ically justified. Nevertheless, we found a substantial (a factor
of 3) disagreement between SE,r corrections obtained in our
(more complete) SDvT and SD(pvT) approximations.

To understand the origin of this large disagreement, we
have compared individual contributions to JE,t coming from
the ths of the triples equations with the corresponding con-
tributions in the SD(pvT) approximation. We found that the
individual terms agree at a reasonable 10% level. The dis-
crepancy in the total value arises because there are certain
very large individual terms canceling each other. These terms
are several hundred times larger then the final combined re-
sult. In other words there is a subtle cancellation taking place
and our more sophisticated all-order treatment profoundly
affects this delicate cancellation.

In addition, in Ref. [12], the explicit contributions of
triples to the energies, JOE,r, were computed using direct
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TABLE 1I. Comparison of complementary third-order MBPT

o 3) . . .
contributions E . to removal energies with the corres;])ondlng

all-order correction 6E, 1. The corrections are given in cm™".

3s 3pin 3pan
OE, 1 -25.4 -4.8 -4.7
E®  Ref. [12] 9.2 -15 -1.6

v,extra’

third-order MBPT approach. Such terms are denoted in Ref.
[12] as ES;M .,» to emphasize that these are diagrams missed
in the SD approximation in the third order. A comparison of
our computed SF, 1 with El(jixlm is presented in Table II. We
again observe a large discrepancy, due to substantial cancel-
lations among contributions to Ev?ixm and resulting enhanced
sensitivity to a correct all-order treatment.

The CCSD results obtained by Eliav et al. [10] agree with
our CCSD energies for the 3p,,, state. However, for the 3s,/,
the two calculations disagree by 14 cm™'. This discrepancy is
likely due to our omission of all nonlinear terms in the core

CCSD equations.
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Comparing the final CCSDvT results for the removal en-
ergies with the experimental values (last row of Table II) we
find an agreement at the level of 0.01-0.03 %. We do not
include Breit-, reduced-mass, and mass-polarization correc-
tions to the energies, as they contribute at a much smaller
level [12]. A perfect theory-experiment agreement for the
previous SD(pvT) calculations of energies [13] is fortuitous
because contributions of the disconnected excitations omit-
ted in Ref. [29] would move the theoretical energies by about
70 cm™! for the 3s,,, state (see Table I).

B. Hyperfine constants and electric-dipole amplitudes

With the computed wave functions of the 3s, 3p,,,, and
3ps, states we proceed to determining magnetic-dipole
hyperfine-structure constants A and electric-dipole transition
amplitudes. The formalism was outlined in Sec. Il D and
here we discuss our ab initio results and compare them with
the experimental values.

Numerical results are presented in Table III. This table is
organized as follows. First we list the DHF and SD values.
The results for the HFS constants include finite-nuclear size

TABLE III. Hyperfine structure constants A (in MHz) and matrix elements of electric dipole moment (in
a.u.) for 2Na. Results of calculations and comparison with experimental values. See text for the explanation

of entries.
A(3s) AQBpip) AQp3p) BpinlDl3s)  (3psnlDII3s)
DHF 623.8 63.39 12.59 3.6906 5.2188
SD 889.0 95.05 18.85 3.5308 4.9932
All-order corrections beyond SD
A(CCSD) =7.7 -1.76 -0.34 0.0072 0.0098
A(SDvT) 8.6 2.06 0.36 -0.0115 -0.0166
A(CCSDvVT) 0.4 0.07 -0.02 -0.0035 -0.0053
Complementary corrections
Line dressing 2.4 -0.43 -0.09 0.0004 0.0005
Vertex dressing 1.5 0.17 0.04 -0.0001 -0.0002
MBPT-1V (core triples,...) -2.8 -0.41 -0.06 0.0001 0.0001
Breit+QED [5,30] 0.2 0.0001 0.0002
Final CCSDvT +corrections 885.9 94.45 18.72 3.5278 4.9885
Experiment 885.81% 94.44(13)°  18.534(15)° 3.5267(17)° 4.9875(24)
94.42(19)° 18.572(24)" 3.5246(23)8 4.9839(34)%
18.64(6)"
18.69(9)
Agreement with experiment 0.01% <0.1% 1% <0.05% <0.05%

#Reference [31].
PReference [32].
“Reference [18].
dReference [33].
“Reference [34].
Reference [19].
fReference [35].
ﬁReference [20].
'Reference [21].
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effects (see the Appendix ???). In the part denoted “All-order
corrections beyond SD” we tabulate differences between the
values obtained at a certain approximation (CCSD, SDvT,
CCSDVT) and the corresponding SD value [symbolically,
e.g., A(CCSD)=CCSD-SD]. The most sophisticated ap-
proximation is CCSDvT [it includes both implicit and ex-
plicit, Eq. (35), contributions of valence triples and implicit
contribution of disconnected excitations]; we will base our
final ab initio result on the CCSDvT values. A cursory look
at this part of the table reveals that the contributions of dis-
connected excitations tend to compensate contributions of
valence triples for all the computed properties. This situation
is similar to the one observed by us while presenting results
for removal energies in Sec. [V A.

While discussing the CCSDvT results, it is instructive to
compare the explicit valence triple corrections to matrix el-
ements, Eq. (35), with a corresponding contribution from the
direct fourth-order calculations [)25]. In particular, for the
(3s||D||3py,2) amplitude, the ZEVTUU CCSDVT contribution of
—0.00075 is in close agreement with the fourth-order
Z,%»(T,) contribution of —0.000 73. The close agrement is
due to the fact that there are no strongly canceling terms in
the Z; «,(T,) class of the fourth-order diagrams. This should
be contrasted with our similar comparison of energy correc-
tions (see Table II), where large, a factor of 100, cancelations
lead to a poor accuracy of the direct third-order computation.

Corrections beyond the CCSDvT approximation are listed
in the Table III under the heading “Complementary correc-
tions.” The dressing corrections arise due to a direct contri-
bution of disconnected excitations to the matrix elements.
The details of our all-order dressing scheme can be found in
Ref. [17]. Following that work we distinguish between
vertex- and line-dressing corrections. Futher, the “MBPT-IV”
entries in the table include all IVth diagrams missed by the
CCSDvT method and dressing. For example, our CCSDvT
approximation discards core triples and disconnected core
excitations and these contributions arise starting from the
fourth order of MBPT for matrix elements. In the notation of
Ref. [24] the complementary fourth-order terms are
Zyx3(D[T.]), Zyx3(S[T.]), and Z,4»(T,). In addition, the
dressing method of Ref. [17] misses so-called stretched and
ladder Z, ,(D,,) diagrams. These diagrams are also incorpo-
rated into the value of the “MBPT-IV” contribution in Table
III. We used the fourth-order code of Ref. [25] to evaluate
the complementary MBPT-IV contributions.

Finally, we tabulate Breit and QED corrections available
from the literature (see the Appendix ???for discussion). By
combining them with the CCSDvVT values and the comple-
mentary corrections we arrive at the final ab initio values in
the bottom part of Table III. Here we also present a compari-
son with the experimental data. In particular, the last row
tabulates percentage deviations from the experimental val-
ues. If the ab initio value lays inside the experimental error
bar, we tabulate experimental uncertainty instead. The
theory-experiment agreement is better than 0.1% except for
the HFS constant of the 3p;, state, where our value dis-
agrees with most accurate experimental results at the 1%
level. For this constant our result is, however, in a reasonable
agreement with the less accurate (0.3% uncertainty) result of
Ref. [20].
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V. CONCLUSION

To reiterate here we presented a practical high-accuracy
ab initio relativistic technique for calculating properties of
univalent atomic systems. The distinct formal improvements
over the previous singles-doubles approach [8,9,12,13] are

(i) nonperturbative treatment of valence triple excita-
tions;

(ii) incorporation of disconnected excitations (nonlinear
terms) in the coupled-cluster approach;

(iii) inclusion of complementary MBPT diagrams so that
the calculations of matrix elements are complete through the
fourth order of MBPT; these diagrams include contributions
of core triples.

(iv) all-order “dressing” of lines and vertices in calcula-

tions of matrix elements.
Including all the enumerated effects is important in reaching
the present uniform “better than 0.1%” theoretical accuracy
for the Na atom. In particular, a simultaneous treatment of
triple and disconnected quadruple excitations is required, as
these two relatively large effects tend to partially cancel each
other.

In the framework of the developed formalism, we com-
puted removal energies, magnetic-dipole HFS constants A,
and electric-dipole amplitudes for the principal 3s,,-3p;
transitions. The presented approach demonstrates a uniform
sub-0.1%-accurate agreement with experimental data. In par-
ticular, we find that the removal energies are reproduced
within 0.01-0.03 % and the HFS constants of the 3s and
3p,,» states with a better than 0.1% accuracy. The calculated
dipole amplitudes are in a perfect agreement with the 0.05%-
accurate experimental data. In the case of the 3p;,, state HFS
constant our ab initio result deviates from ~0.1%-accurate
experimental values [18,19] by 1%, while agreeing with the
less accurate measurements [20,21]. We anticipate that the
relativistic many-body technique presented here can serve as
a basis of highly accurate evaluation of parity-violating ef-
fects in Cs atom and Ba* ion [4].
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APPENDIX: SMALLER (NONCORRELATION)
CORRECTIONS TO THE HYPERFINE STRUCTURE
CONSTANTS

Calculations of magnetic hyperfine constants A presented
in Table IIT were carried out with the nuclear gyromagnetic
ratio g;=1.4784. In calculations we model the nucleus as a
uniformly magnetized sphere of radius 3.83 fm. For the 3s;),
state, the corresponding nuclear size (Breit-Weisskopf) effect
reduces point-nucleus results by 0.5 MHz. In an extreme
case, when magnetization is assumed to be completely local-
ized on the nuclear surface, the A,x(3s,),) is further reduced
by 0.15 MHz; this difference between the uniform and sur-
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face magnetization is below our theoretical accuracy.

Breit and QED contributions to the HFS constant of the
35y, state were calculated recently by Sapirstein and Cheng
[5]. In their notation, the value marked “Breit/QED” includes
effects of the Breit interaction, retardation in the transverse
photon exchange and negative-energy states, while “QED”
correction encapsulates vacuum polarization and self-energy
corrections. (The Breit correction of 0.35 MHz, evaluated
using analytical expression [36] is in a reasonable agreement
with the value of 0.2 MHz from Ref. [5].) As to the QED
corrections, the leading Schwinger term (anomalous mag-
netic moment) SA/A=a/ sets a scale for radiative correc-
tions at 0.1% and this is comparable with the accuracy of our
calculations. Nevertheless, explicit model-potential calcula-
tion [5] of vacuum polarization and self-energy corrections

PHYSICAL REVIEW A 73, 012501 (2006)

displays a large degree of cancellation between different con-
tributions, leading to the total QED correction 70 times
smaller than the Schwinger term.

Following discussion of Ref. [37] for Li, we also analyzed
the following smaller corrections to the HFS constant: (i)
Mass scaling. This effect contributes at the relative level of
1/(1+m,/M,,)*=~7X1073%; here M, is the nuclear mass.
(ii) Mass polarization. It occurs due to an additional intro-
duction of the term —u/M,,2;~;V;-V; into the atomic
Hamiltonian, u being the reduced mass of the electron. We
expect that this term would contribute at the relative level of
1/M,,(aZ)?~107%. (iii) Second order in magnetic-dipole
HFS interaction. It contributes at the 107% level. All the
enumerated corrections are below the level of theoretical ac-
curacy of the calculation presented here.
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