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sequential attacks and show that individual attacks are more powerful.
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I. INTRODUCTION

The goal of quantum cryptography is to exchange an un-
conditionally secure secret key over a potentially hostile en-
vironment. To date, a variety of protocols have been pro-
posed to accomplish this goal. The first of these protocols
was originally proposed by Bennett and Brassard in 1984
�BB84� �1�. Since that ground-breaking result, a variety of
additional protocols have been proposed �2–6�, with varying
advantages and disadvantages.

One of the more recent protocols is known as the
differential-phase-shift quantum key distribution �DPSQKD
for short� �7�. This protocol appears to have several impor-
tant advantages which make it extremely promising for prac-
tical systems. First, DPSQKD can be easily implemented in
optical fibers using readily available optical telecommunica-
tion tools. Second, there is good indication that DPSQKD is
largely insensitive to multiphoton states generated by the
source, as opposed to other protocols such as BB84. This
allows the communicating parties to transmit much brighter
coherent states, leading to higher communication rates and
longer communication distances.

To date, all security statements about DPSQKD have been
based on considering only very restricted types of eavesdrop-
ping attacks, such as intercept and resend or inserting a
beamsplitter. This leads to the possibility that more sophisti-
cated attacks based on generalized quantum measurements
may exist which could potentially nullify many of the advan-
tages of DPSQKD. Thus, it is important to have a security
proof for this protocol which works for a more general class
of attacks. Furthermore, because robustness to photon split-
ting attacks is one of the main features of this protocol, it is
important that the proof of security includes these types of
attacks.

The most general attacks that one may consider in quan-
tum cryptography are known as coherent or joint attacks. In

these types of attacks Eve treats the entire key as a single
quantum system, which is entangled with a probe state. The
probe is only measured after all classical information is ex-
changed. Coherent attacks allow Eve to take advantage of
correlations induced by classical information exchanged dur-
ing error correction and privacy amplification. The proof of
security against coherent attacks is extremely difficult. To
date, there are several proofs of security for the BB84 pro-
tocol against these most general types of attacks �8,9�. A
general security proof for the B92 �4� protocol has also been
derived �10�. In order to make the problem more tractable,
one often restricts eavesdropping to individual attacks. In
these types of attacks, it is assumed that Eve attaches an
independent probe to each photon, and then measures the
probes independently. The security of the BB84 protocol
against individual attacks has been investigated in several
works �11–13�. The security of the B92 protocol against in-
dividual attacks has also been proven �14�. The restriction to
individual attacks is often considered a realistic assumption
because the capability to perform joint attacks is well beyond
the domain of modern technology. Such attacks would re-
quire that an eavesdropper possess a probe of extremely
large dimensionality �on the order of the length of the string�
with indefinite coherence time, and processes the probe
states with a quantum computer. Even individual attacks re-
quire a degree of quantum computational power which
seems out of reach for the foreseeable future.

In this paper, we derive a proof of security for DPSQKD
against individual attacks. The proof applies to realistic
sources based on attenuated lasers, and accounts for the Pois-
son nature of the photon statistics injected into the channel.
Security is proved by deriving a bound on Eve’s average
collision probability, which directly leads to a bound on her
mutual information for the final key �15�. We use this result
to calculate the communication rate of DPSQKD in the limit
of large strings. We then compare this rate to that of the
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BB84 protocol using both single photon sources and Poisson
light sources. We show that DPSQKD achieves rates very
close to the BB84 protocol with an ideal single photon
source, and significantly outperforms the BB84 protocol with
Poisson light. This is an important result because DPSQKD
requires only attenuated laser light and linear optics, in con-
trast to single photon sources which are difficult to imple-
ment. In the final section of this paper, we consider another
type of eavesdropping attack known as a sequential attack.
These types of attacks are not individual attacks, so they are
not accounted for by our proof of security. However, they are
conceptually simple and have raised a level of concern re-
garding the security of DPSQKD. We calculate the commu-
nication rate against these types of attacks and compare it to
the rate for individual attacks. It turns out that in our param-
eter range of interest, the communication rate for individual
attacks is always lower than the sequential attacks. Thus se-
curity against individual attacks automatically implies secu-
rity against sequential attacks.

II. DIFFERENTIAL PHASE SHIFT QKD

Figure 1 shows the basic idea behind DPSQKD. Alice
prepares a periodic train of attenuated laser pulses whose
phase is randomly modulated to be 0 or �. The coherent
pulses are sent down the quantum channel and received by
Bob, who measures them using an unbalanced interferometer
which combines the partial wave at time slot n with time slot
n+1 on a beamsplitter. If the phase difference between these
two pulses is 0, a detection event will only occur in detector
D0. Similarly, if the phase difference is ±�, detection events
will only occur in detector D1. Bob records the detection
events and the times they that occurred at. Once the quantum
communication is done, Bob announces at which times he
detected a photon. This information allows Eve to determine
Bob’s string based on her knowledge of the phase differ-
ences. Error correction and privacy amplification can then be
performed on the sifted key to create the final secure key.

To get an idea as to why this protocol is secure, let us
consider some simple attacks Eve might try to perform. Two
basic attacks are shown in Fig. 2. The first attack is an inter-
cept and resend strategy, in which Eve uses the same type of
interferometer as Bob. When Eve gets a detection event time
tm, she learns the phase difference between the pulses at time
tm and tm+1. She then prepares a pair of pulses with the mea-
sured phase difference and sends them to Bob. If Bob detects
a photon at time tm, then Eve has successfully stolen a bit
without inducing errors. However, if a detection instead oc-

curs at times tm+1 or tm−1, then Bob will observe a 50% error
rate, and Eve will have no knowledge about that bit of the
key. This strategy, therefore, induces a 25% overall error rate
which can be detected by Alice and Bob, revealing Eve’s
presence.

In the second strategy, Eve inserts a beamsplitter into the
channel to pull of a fraction of the light. This split off frac-
tion is then measured by an unbalanced interferometer, while
the remainder is sent to Bob. We assume Eve posseses a
lossless channel with which she can transmit the unsplit pho-
tons to Bob. This allows her to split off a fraction of the
photons equal to the channel loss without modifying the
communication rate. Because coherent states are being used,
Eve’s detection events are independent of Bob’s. Thus, the
probability that Eve knows the value of a bit at time m given
Bob detected a photon at that time, denoted pe�m�, is simply
given by

psplit�m� = n̄�1 − �� � n̄ , �1�

where n̄ is the average number of photons per pulse. For
small values of n̄, this attack provides little information
about the sifted key. If Eve delays her measurement and uses
an optical switch, she can improve the attack by a factor of 2.

III. PHOTON SPLITTING IN DPSQKD

In this section we lay the groundwork for the proof of
security. We start by giving a mathematical description of
individual attacks. We then investigate photon splitting at-
tacks in DPSQKD. The state prepared by Alice, denoted ���,
is a set of consecutive coherent state pulses. The phase shift
�n is the phase induced by the phase modulator on pulse n.
This phase can take on the values 0 and �. If Alice transmits
N coherent pulses, we have

FIG. 1. A basic DPSQKD system.

FIG. 2. �Color online� Schematic of intercept-resend and beam-
splitter eavesdropping strategies.
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��� = �
n=0

N−1

��ei��+�n�� �2�

where � is the initial phase of the coherent state. We define

the bosonic operator �̂† as

�̂† =
1

�N
	
n=0

N−1

ei�nân
†, �3�

where ân
† is the creation operator for a photon in time slot n.

Assuming that the time slots do not overlap, these different
operators commute with each other. Thus, the state in Eq. �2�
can be rewritten as

��� = 	
j=0

�

�P�j�eij� ��̂†� j

�j!
�0� , �4�

where P�j� is a Poisson distribution with an average photon
number Nn̄, and n̄= ���2. A fundamental assumption of the
DPSQKD protocol is that Eve does not possess a phase ref-
erence. Because of this, the above state should be averaged
out over the different values of the phase �, resulting in the
mixed state

�e = 	
j=0

�

P�j��� j�
� j� , �5�

where �� j�= ��̂†� j /�j! �0�. With no loss of generality, Eve can
measure the photon number using a state preserving quantum
nondemolition measurement. She can then split off Nn̄T of
the photons, where T is the transmission efficiency of the
channel, and send them to Bob, while storing Nn̄�1−T� pho-
tons coherently to be measured after Alice and Bob have
revealed all classical information.

There are now two components of the eavesdropping
strategy which must be addressed. The first is how much
information can be extracted from the split photons. This
component is analogous to the information obtained from
photon splitting attacks in BB84. Second, in the presence of
channel noise Eve can potentially attack the fraction of the
key that she transmits to Bob by entangling it with a probe
state. This part of the eavesdropping attack is analogous to
the general POVM attacks on single photon states. We will
investigate the split photon component first, and then the
POVM on the transmitted photons.

Our analysis makes an auxiliary assumption that Eve at-
tacks each photon individually. For the photons that are
transmitted to Bob, each one is individually split and at-
tached to an independent probe. The probes are then inde-
pendently measured after all classical communication is re-
ceived. The split photons are also individually stored and
measured. The individual attacks assumption implies that
Eve cannot use the measurement results of one photon to
refine her measurement on the rest of the photons. Thus, if
Eve has split off k photons, she has k copies of the state

�̂† �0�. Eve stores these k copies coherently until all public
information is revealed. After the quantum transmission is
done, Bob will publicly announce the time slots in which he
had a detection event. Let B be the set of all time slots in

which a detection event was observed, and B̄ be the set of all

other time slots. The operator �̂† can be rewritten as

�̂† =
1

�N� 	
m�B

ei�m�âm
† + ei��mâm+1

† � + 	
n�B̄

ei�nân
†��0� . �6�

For each time slot in B, Eve can perform the following uni-
tary transformation

âm
† →

1
�2

�0̂m
† + 1̂m

† � , �7�

âm+1
† →

1
�2

�0̂m
† − 1̂m

† � , �8�

where 0̂m
† and 1̂m

† are orthogonal modes. There is no loss of
generality in assuming that this transformation is performed,
because it is unitary and simply represents a transformation
of the measurement basis. If measurement basis �E� is opti-
mal for the state in Eq. �6�, then the basis U† �E� is now
optimal after the unitary transformation U is applied. The
state of each split photon is now given by

�̂† =
1

�N� 	
m�B

ei�m�2x̂i
† + 	

n�B̄

ei�nân
†� , �9�

where x̂i
† is 0̂i

† if Alice sent a binary 0, and 1̂i
† if Alice sent 1.

Thus, Eve’s split photons are in a linear superposition of all
the bits of the secret key, plus the irrelevant time slots where
no photon was detected. However, because Eve does not
know the phases �m, her state is in fact a mixture of the
different values of �m. Specifically,

�e = 	
�1. . .�k

p��1, . . . ,�k��̂†�0�
0��̂

=
1

N�2 	
m�B

�xm�
xm� + 	
n�B̄

�n�
n�� . �10�

In the above equation �xm�= x̂m
† �0� and �n�=an

† �0�. The phases
�i are summed over the possible values of 0 and �, which
have equal probability so that p��1 , . . . ,�k�=1/2k. From Eq.
�10� we see that Eve’s state is, in fact, a random mixture of
orthogonal states. This turns the problem into one of classical
probability theories instead of quantum measurement. That
is, if Bob recorded y detection events, each split photon will
reveal a bit of Eve’s key with probability 2y /N, and will
reveal no information at all with probability 1−2y /N.

Let us define T as the channel transmission and n̄ as the
average number of photons per pulse. After N pulses, Bob
will observe on average Nn̄T detection events. Assuming Eve
has possession of a lossless channel, she must transmit Nn̄T
photons to Bob, and can split off the remainder Nn̄�1−T�
photons to be stored coherently. After Bob reveals the time
slots of his detection events, Eve can measure her split pho-
tons, in which case she learns 2Nn̄2T�1−T�. Thus, from the
split photons Eve learns a fraction 2n̄�1−T��2n̄ of the
shifted key. If n̄=0.1, Eve learns only 20% of the final key.
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The most important aspect of the above conclusion is that,
in contrast to BB84, the amount of information Eve obtains
from photon splitting attacks is independent of channel loss.
In BB84, as the channel losses get larger Eve can preferen-
tially transmit multiphoton states and block off an appropri-
ate fraction of the single photon states to conserve the overall
communication rate. As the channel loss becomes larger, this
type of attack gives her complete information over an in-
creasingly larger fraction of the key. This results in a final
communication rate which is roughly a quadratic function of
channel loss, and hence decreases very quickly. In contrast,
in DPSQKD the fraction of the final key that is revealed is
only a function of n̄. This leads to a communication rate
which decreases only linearly with a channel loss, indicating
robustness against photon splitting attacks.

IV. PROOF OF SECURITY

In the previous section we showed that due to photon
splitting, Eve obtains complete information over a fraction
2n̄ of the key. When n̄ is small, photon splitting attacks are
largely ineffective. However, in the presence of channel
noise Eve can also attack the photons that she transmits to
Bob by entangling them with a probe state, and then measur-
ing the probe after all classical information has been re-
vealed.

Because we restrict our attention to individual attacks, it
is assumed that Eve attaches an independent probe to each
photon, and these probes are all measured independently.
The goal of a proof of security is to come up with a bound
for the average collision probability �11�, defined as

Pc = 	
x,z,m

p2�X = x�Z = z,M = m�p�z,m� , �11�

where X is the key Alice transmitted to Bob, Z is the infor-
mation Eve obtained from measuring the photon, and M is
the set of time slots in which Bob detected a photon, which is
also known to Eve. For the case of individual attacks, bit i
originated from one photon which is correlated to an inde-
pendent probe state Zi, as well as Mi which is the time of the
detection. In this case, the collision probability simplifies to a
product of the collision probabilities of each individual bit
�16�. Thus,

Pc = 
i

Pc0, �12�

where

Pc0 = 	
x,z,m

p2�Xi = x�Zi = z,Mi = m�p�Zi = z,Mi = m� .

�13�

If bit i occurred in a time slot where Eve has obtained its

value due to photon splitting, then Pci=1. Let S̄ be the set of
all bits that occurred in time slots which do not coincide with
a photon splitting measurement. We now have

Pc = 
i�S̄

Pc0. �14�

We adopt a simplified notation such that P�Xi=x �Zi=z ,Mi

=m�= p�x �z ,m�, and use similar notation for all other prob-
ability distributions. Appendix A shows that the expression
in Eq. �13� can be rewritten as

Pc0 = 	
m

p�m��1 −
1

2p�m�	z

p�z,m�0�p�z,m�1�
p�z,m� � , �15�

where 0 and 1 are the possible values of the bit that Alice
transmitted.

We now develop a mathematical formalism for all pos-
sible measurements Eve can perform. We define �Ei� as the
initial state of Eve’s Hilbert space. We do not assume any-
thing about the dimensionality of this space. The initial state
of a photon-probe system is given by

�	� =
1

�N
	

n

ei�n�n��Ei� , �16�

where �n� is once again defined as ân
† �0� and represents a

photon in time slot n. The most general unitary transforma-
tion Eve can apply to the system is described by

�n��Ei� → 	
m

�m��En,m� , �17�

where �En,m� are states in Eve’s Hilbert space and are not
assumed to be normalized or orthogonal. Plugging the above
relation back into Eq. �16� and rearranging the summation
we obtain

�	� =
1

�N
	
m

�m�	
n

ei�n�En,m� =
1

�N
	
m

�m��Jm� . �18�

After Bob’s interferometer, the state is once again trans-
formed into

�	� =
1

2�N
	
m

���Jm� + �Jm+1���0m� + ��Jm� − �Jm+1���1m�� ,

�19�

where �0m� and �1m� represent a photon in the output ports of
Bob’s interferometer which corresponds to a binary 0 or 1 at
time m.

In Appendix B, it is shown that the probability of an error
given that Bob detected, a photon at time m is given by the
expression

pe�m =
1

2
�1 −

1

Np�m�
�
Em,m�Em+1,m+1� + 
Em,m+1�Em+1,m��� .

�20�

Eve will measure her probe in the basis �z�, which cannot
depend on �m since this information is unavailable. We de-
fine the number En,m�z�= 
z �En,m�. Without the loss of gener-
ality we can assume this to be a real number. We do not need
to introduce complex numbers in this case because a probe
state with a complex probability amplitude can always be
replaced by a probe of higher dimensionality with real prob-
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ability amplitudes which perform at least as well �11�. We
also define the following expressions:

Qm�z� = Em,m�z� + Em+1,m�z� , �21�

Pm�z� = Em,m�z� − Em+1,m�z� , �22�

Qm+1�z� = Em,m+1�z� + Em+1,m+1�z� , �23�

Pm+1�z� = Em,m+1�z� − Em+1,m+1�z� . �24�

In Appendix C we show that the collision probability is
given by the expression

Pc0 = 1 −
1

4N
	
m,z

�Qm
2 �z� + Qm+1

2 �z� + 	n�m,m+1
En,m

2 + En,m+1
2 ��Pm

2 �z� + Pm+1
2 �z� + 	n�m,m+1

En,m
2 + En,m+1

2 �

	n
En,m

2 + En,m+1
2

. �25�

From the above expressions, it is clear that En,m�z�, where
n�m−1,m ,m+1 can only decrease Eve’s collision prob-
ability while simultaneously increasing the error rate. Thus,
we only need to consider the states �Em−1,m�, �Em,m�, and
�Em+1,m�. We relabel these states as �Am�, �Bm�, and �Cm�, re-
spectively. We similarly define Am�z�= 
z �Am�, Bm�z�
= 
z �Bm�, Cm�z�= 
z �Cm�. The probability of an error is now
given by

pe�m =
1

2
−

1

2Np�m�	m �
Bm�Bm+1� + 
Cm�Am+1�� . �26�

We also have the expressions

Qm�z� = Bm�z� + Cm�z� , �27�

Pm�z� = Bm�z� − Cm�z� , �28�

Qm+1�z� = Am+1�z� + Bm+1�z� , �29�

Pm+1�z� = Am+1�z� − Bm+1�z� . �30�

In Appendix D it is shown that the collision probability is
upper bounded by

Pc0 
 1 −
1

8N
	
m,z

�
Am�Am� + 
Cm+1�Cm+1� + 
Qm�Pm�

+ 
Qm+1�Pm+1� + 
Qm�Pm+1� + 
Qm+1�Pm�� . �31�

In Appendix E we show that there is always an optimal at-
tack that satisfies the property that the inner product of the
vectors �Am�, �Bm�, and �Cm� with any other vector from this
set is independent of m. This directly implies that p�m�
=1/N and that the collision probability is independent of m.
Thus,

Pc0 
 1 −
1

8	
z

�
A0�A0� + 
C1�C1� + 
Q0�P0� + 
Q1�P1�

+ 
Q0�P1� + 
Q1�P0�� , �32�

e =
1 − 
B0�B1� − 
C0�A1�

2
, �33�

where e is the bit error rate of the transmission. We must
now maximize Eq. �32� subject to the constraint in Eq. �33�.
This is done in Appendix F, where it is shown that

Pc0 
 1 − e2 −
�1 − 6e�2

2
. �34�

The above equation applies when the error rate is in the
range �0, 6

38
�. The point e= 6

38 is the point at which the above
equation is maximized. When the error rate exceeds this
value the collision probability saturates. There is no attack
that allows Eve to have complete information on the key.
This is in contrast to BB84 where Eve can steal Alice’s pho-
tons and send an uncorrelated photon to Bob. After the mea-
surement basis is revealed, Eve learns the bit but simulta-
neously induces a 50% error rate.

Plugging the expression in Eq. �34� back into Eq. �14�, we
obtain the following expression for Eve’s total collision
probability on the k bit string:

Pc = Pc0
k�1−2n̄�. �35�

Using the methods of generalized privacy amplification, the
length of the final key should be set to

r = − log2 Pc − � − s , �36�

where � is the number of bits exchanged during the error
correction and s is a security parameter �15�. The final com-
munication rate, defined as R=limk→�r /k, is given by

RDPS = − pclick�− �1 − 2n̄�log2 Pc0�e� + f�e�h�e�� . �37�

In the above equation pclick is the probability where Bob
detects a photon, h�e�=−e log2 e− �1−e�log2�1−e�, and f�e�
is a function which characterizes how far above the Shannon
limit the error correction algorithm is performing �see �17��.
For error correction algorithms working in the Shannon
limit, which is the ultimate performance limit of all error
correction algorithms, we have f�e�=1.
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V. COMPARISON OF DPSQKD TO BB84

Having derived a bound on the average collision probabil-
ity in the previous section, we can now compare DPSQKD to
the BB84 protocol. A bound on the collision probability for
the BB84 protocol for realistic sources against individual
attacks has been previously derived in �17�. In this work, the
communication rate was shown to be

RBB84 = pclick�− � log2�1

2
+ 2� e

�
� − 2� e

�
�2� − f�e�h�e�� ,

�38�

where

� =
pclick − pm

pclick
. �39�

In the above expression, pm is the probability that the source
emits a multiphoton state into the channel.

Bob’s detection events originate from two sources, the
photons injected into the channel by Alice and dark counts in
Bob’s detector. We assume that both the signal and dark
count detection probabilities are small, so that multiple de-
tection events can be ignored. Thus,

pclick = n̄T + d , �40�

where n̄ is the average number of photons injected into the
channel, T is the channel transmission, and d is the detector
dark count rate. The error rate e is given by the expression

e =
pclick + d/2

pclick
, �41�

where  is the baseline error rate of the system due to im-
perfections in state preparation, channel induced noise, and
imperfect detection apparatus.

We compare DPSQKD to the BB84 protocol using both a
Poisson photon source and ideal single photon source. For
Poisson light sources, n̄ is freely adjustable and pm
 n̄2 /2. In
contrast, an ideal single photon source is characterized by
n̄=1 and pm=0. The detector dark count rate is an important
parameter in the simulation. For telecom wavelengths, one of
the most promising photon detectors is based on an up-
conversion of 1.5  photons to visible wavelengths, where
they can be detected using conventional silicon avalanche
photodiodes �18�. Such detectors have already been used to
experimentally demonstrate DPSQKD in the telecom wave-
lengths, allowing communication distances over 100 km of
fiber �19�. The experimentally measured dark count rate for
these detectors is 10 kHz per detector. The APDs have a
temporal resolution of 0.5 ns. If the signal is windowed to
this resolution level, the dark count rate per pulse is 5
�10−6 dark counts per detector. Since DPSQKD uses two
detectors, the overall dark count rate is 10−5. In contrast,
BB84 with passive modulation �11� use four detectors giving
a dark count rate of 2�10−5. The baseline error rate is set to
=0.01. The parameter n̄ is freely adjustable for BB84 with
Poisson light, as well as for DPSQKD. In the simulations,
the value of n̄ is numerically optimized for each value of the
channel loss.

The results of the simulation are shown in Fig. 3. The
communication rate is plotted vs the channel loss in units of
dB. One can see that all three curves feature an exponential
decay for a period of time, after which the communication
rate quickly drops to 0. This sharp cutoff is caused by the
dark counts in Bob’s detectors. The curve for BB84 with
Poisson light decays as a faster exponential than both the
DPSQKD and BB84 protocol with an ideal single photon
source. This is due to photon splitting attacks, which require
us to lower n̄ with increasing channel loss. DPSQKD does
not suffer from these types of attacks, therefore it follows
more closely the curve for the BB84 protocol with an ideal
single photon source. This is a very important conclusion,
because DPSQKD can be implemented with conventional
lasers, detectors, and linear optics, in contrast to the engi-
neering of ideal single photon sources for BB84.

VI. SEQUENTIAL ATTACKS

In the previous two sections we investigated the security
of DPSQKD against individual attacks. The fundamental as-
sumption in this analysis was that Eve measures each photon
independently, and does not use the measurement results of
some of the photons to refine the measurement of the re-
maining photons. However, in DPSQKD there are certain
attacks which do not satisfy this assumption, but which are
conceptually very simple. One such attack is the sequential
attack.

In a sequential attack, Eve uses a detection apparatus
equivalent to Bob’s setup, which she places in the quantum
channel very close to Alice. Eve then waits for k consecutive
clicks on her detection apparatus. Whenever such an event
occurs, Eve can reconstruct a k+1 time slot state. This states
induces an error rate of

�seq =
1

2�k + 1�
. �42�

Of course, the probability of observing k consecutive clicks
decreases exponentially with k. If n̄ is the average number of

FIG. 3. Communication rate vs channel loss for DPSQKD and
BB84.
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photons per pulse, then the probability of k consecutive
clicks is n̄k. This probability must be at least as large as
Bob’s detection probability in order for Eve to conserve the
overall detection rate. Thus, we must have n̄k� n̄T, which
imposes an upper bound on k.

The collision probability for sequential attacks is very
easy to calculate. When Bob detects a photon in any time slot
other than slots 1 or k+2, Eve knows the value of Alice’s
key. This happens with the probability k / �k+1�. If Bob de-
tects a photon in slots 1 or k+2, then Eve knows nothing
about Alice’s key, so her collision probability is 1

2 . If Eve
performs M sequential attacks, her collision probability is
given by

Pc0 =
1

2M/k+1 . �43�

From the condition n̄k= n̄T we obtain that

k = logn̄ T + 1. �44�

This condition ensures that there are enough sequential
clicks to conserve the communication rate. However, even if
the number of sequential clicks is sufficient, Eve may not be
able to perform an attack on every bit of the key, because she
cannot exceed the natural system error rate which we define
as �s. She can only perform a sequential attack on a fraction
�s /�seq of the bits, and must leave the remainder of the string
undisturbed to conserve the error rate. Thus, if N is the num-
ber of bits in Alice’s string, then

M =
N�s

�seq
= N�k + 1��s. �45�

Plugging the above equation into Eq. �43�, and using Eq.
�36�, we obtain the communication rate

Rseq = pclick�1 − 2�s�logn̄ T + 1� − f�e�h�e�� . �46�

We compare this communication rate to that of DPSQKD
calculated in the previous section. Using the same values for
the dark count and error rate, we plot the communication rate
for sequential attacks and individual attacks in Fig. 4. For
individual attacks, the average photon number n̄ is once
again optimized for each value of the channel loss. We then
use the same optimal n̄ to evaluate the rate for sequential
attacks, so that we may compare the effectiveness of indi-
vidual and sequential attacks under the same operating con-
dition. One can see that the communication rate for indi-
vidual attacks is always lower than sequential attacks,
indicating that in the operating regime we are considering it
is more advantageous for Eve to perform individual instead
of sequential attacks. This means that security against indi-
vidual attacks already implies security against sequential at-
tacks as well.

Of course, we do not know if the sequential attacks are
optimal, or if a more clever scheme could produce better
results for Eve. To answer this question, a more general
proof of security is needed.

VII. CONCLUSION

In conclusion, we have derived a proof of security for
DPSQKD with realistic sources against individual attacks.
This proof allows us to directly calculate the communication
rate after privacy amplification. We showed that, in contrast
to the BB84 protocol, the DPSQKD does not suffer from
photon splitting attacks even when implemented with attenu-
ated lasers. We compared the communication rate as a func-
tion of channel loss for DPSQKD to the BB84 protocol using
both an attenuated laser and an ideal single photon source.
DPSQKD allows us to achieve communication rates close to
the BB84 protocol with an ideal single photon source, mak-
ing it an outstanding candidate for practical long distance
quantum cryptography. We then compared individual attacks
to sequential attacks in DPSQKD and showed that individual
attacks are more powerful in our operating regime. Thus,
security against individual attacks already ensures security
against sequential attacks as well.
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APPENDIX A: EXPRESSION FOR COLLISION
PROBABILITY

Here we derive the expression for the collision probability
given in Eq. �15�. We start with Eq. �13�, and use the Bayes
rule to rewrite it as

Pc0 = 	
m

p�m�	
z

p2�z�0,m�p2�0�m� + p2�z�1,m�p2�1�m�
p�z�m�

.

�A1�

By completing the square, we can rewrite the above expres-
sion as

FIG. 4. Comparison of individual attacks to sequential attacks in
DPSQKD.
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Pc0 = 	
m

p�m��1 − 2	
z

p�0�p�1�p�z,m�0�p�z,m�1�
p�z,m�p�m� � .

�A2�

Using the fact that p�0�= p���= 1
2 directly leads to the result

stated in Eq. �15�.

APPENDIX B: DERIVATION OF THE ERROR RATE

In this section we show that Eve’s attack strategy leads to
an error rate given by Eq. �20�. We start with the obvious
relation pe,m= �pe,m�0+ pe,m�1� /2. We define the states �M+�
= �Jm�+ �Jm+1� and �M−�= �Jm�− �Jm+1�. We define E�1,. . .,�k

�A�
as the average of expression A over the possible values of
�1 , . . . ,�k. It is straightforward to show that

p�m� =
1

4N
E�1,. . .,�k

�
M−�M−� + 
M+�M+��

=
1

2N
	

n


En,m�En,m� + 
En,m+1�En,m+1� .

Now,

pe,m�0 = 	
�1,. . .,�k

pe,m�0,�1,. . .,�k 
j�m+1

p�� j�

= 	
�1,. . .,�k

pe,m�0,�1,. . .,�k
2−�k−1�

= 	
�1,. . .,�k


M−�M−�2−�k−1�

=
1

4N
	

n�m,m+1
��En,m� − �En,m+1��2

+ ���Em,m� − �Em+1,m+1�� + ��Em+1,m� − �Em,m+1���2.

The exact same argument leads to

pe,m�1 =
1

4N
	

n�m,m+1
��En,m� − �En,m+1��2

+ ���Em,m� − �Em+1,m+1�� − ��Em+1,m� − �Em,m+1���2.

Using the above two expressions we have

pe,m =
1

2
�p�m� −

1

N
�
Em,m�Em+1,m+1� + 
Em+1,m�Em,m+1��� .

Dividing the above expression by p�m� directly leads to the
expression in Eq. �20�.

APPENDIX C: EXPRESSION FOR COLLISION
PROBABILITY

Here we derive the expression in Eq. �25�. We start with
the expression in Eq. �15�. Using the same definition for
E�1. . .�k

�A� that we did in Appendix B, we have

p�z,m�0� =
1

4N
E�1,. . .,�k

���
z�Jm� + 
z�Jm+1���0m�

+ �
z�Jm� − 
z�Jm+1���1m��2�

=
1

4N��Em,m�z� + Em+1,m�z��2 + �Em,m+1�z�

+ Em+1,m+1�z��2 + 	
n�m,m+1

En,m
2 + En,m+1

2 �2
.

Similarly we can derive

p�z,m�1� =
1

4N��Em,m�z� − Em+1,m�2 + �Em,m+1�z� − Em+1,m+1�2

+ 	
n�m,m+1

En,m
2 + En,m+1

2 � .

Using the fact that p�z ,m�= �p�z ,m �0�+ p�z ,m �1�� /2, and
plugging the above two expressions into Eq. �15� directly
leads to the expression given in Eq. �25�.

APPENDIX D: UPPER BOUND ON COLLISION
PROBABILITY

We start with Eq. �25�, and use the form of the Cauchy
inequality which was first proposed by Lutkenhaus for the
bound on the collision probability in BB84 �see Appendix A
of �11��. Specifically if ��z�= 
z ��� and ��z�= 
z ���, then the
Cauchy inequality tells us that

	
z

�2�z��2�z�
Am

2 �z� + Am+1
2 �z� + Bm

2 �z� + Bm+1
2 �z� + Cm

2 �z� + Cm+1
2 �z�

�

����
2p�m�

. �D1�

We expand the product terms in Eq. �25�, and apply the
above bound. Also, we can assume that �Am� and �Cm+1� are
orthogonal to all other vectors, because this maximizes the
collision probability without affecting the error rate. This
leads directly to the expression given in Eq. �31�.

APPENDIX E: SYMMETRIZATION OF COLLISION
PROBABILITY

We have so far shown that the collision probability and
error rate depend on the interference between state vectors at
times m and m+1. This means that our optimization problem
has a symmetry of circular permutation. Specifically, if we
apply the following transformation:

�Am� → �Am+1 mod k� ,

�Bm� → �Bm+1 mod k� ,

�Cm� → �Cm+1 mod k� ,

we do not affect the error rate or Eve’s collision probability.
Now, let us suppose that an optimal attack exists which is
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given by the state vectors �Am�, �Bm�, and �Cm�. We can form
a new set of state vectors �Am� �, �Bm� �, and �Cm� � as follows:

�Am� � =
1
�k

	
j=0

k−1

�Am+j mod k�j ,

�Bm� � =
1
�k

	
j=0

k−1

�Bm+j mod k�j ,

�Cm� � =
1
�k

	
j=0

k−1

�Cm+j mod k�j .

In the above equations, �j� represent an orthogonal basis
which keeps track of which circular permutation has been
chosen. The collision probability can now be written as

Pc0 = 	
x,z,m,j

p2�x�z,m, j�p�z,m, j�

=	
j

p�j� 	
x,z,m

p2�x�z,m, j�p�z,m�j�

=	
j

p�j�Pc0�j .

The expression Pc0�j is simply the average collision probabil-
ity given the value of the measurement on the states �j�.
However, because the different values of j represent different
circular permutations and the collision probability is invari-
ant under circular permutation, we have Pc0�j = Pc0. Thus, the
symmetrized probes �Am� �, �Bm� �, and �Cm� � have the same col-
lision probability as the unsymmetrized ones. It is easy to
verify that these symmetrized probes satisfy the property that
their inner products with each other is independent of m.

APPENDIX F: OPTIMIZATION OF THE COLLISION
PROBABILITY

We define a= 
A0 �A0�= 
A1 �A1�, b= 
B0 �B0�= 
B1 �B1�, and
c= 
C0 �C0�= 
C1 �C1�. Normalization imposes the constraint
a+b+c=1. We define the angles �1 and �2 as


B1�B0� = b cos �1,


A1�C0� = �ac cos �2.

Straightforward manipulation of the bound on Pc0 leads to
the expression

Pc0 
 1 − 1
8 �a2 + c2 + �b − c�2

+ �b − a�2 + 2�b cos �1 − ��ac� cos �2�� .

We also use the fact that

�b cos �1 − �ac cos �2� = �1 − 2e�2 − 4b�ac cos �1 cos �2.

Using the above expression, it is easy to show that the col-
lision probability is maximized and the error rate is mini-
mized when cos �1=cos �2=1.

Now we set

a = �1 − b�cos � ,

c = �1 − b�sin � .

Plugging into the expression for the collision probability, it is
straightforward to show that the collision probability
achieves a maximum when �=� /4, and that this condition
also minimizes the error rate. Thus, the optimal attack strat-
egy occurs when a=c. This condition implies that

e =
x

2
,

Pc0 
 1 − 1
4 �x2 + 2�1 − 3x�2� .

Substituting the expression for e into Pc0 directly leads to the
expression in Eq. �34�.
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