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We compare the performance of Bennett-Brassard 1984 �BB84� and Scarani-Acin-Ribordy-Gisin 2004
�SARG04� protocols, the latter of which was proposed by V. Scarani et al. �Phys. Rev. Lett. 92, 057901
�2004��. Specifically, in this paper, we investigate the SARG04 protocol with two-way classical communica-
tions and the SARG04 protocol with decoy states. In the first part of the paper, we show that the SARG04
scheme with two-way communications can tolerate a higher bit error rate �19.4% for a one-photon source and
6.56% for a two-photon source� than the SARG04 one with one-way communications �10.95% for a one-
photon source and 2.71% for a two-photon source�. Also, the upper bounds on the bit error rate for the
SARG04 protocol with two-way communications are computed in a closed form by considering an individual
attack based on a general measurement. In the second part of the paper, we propose employing the idea of
decoy states in the SARG04 scheme to obtain unconditional security even when realistic devices are used. We
compare the performance of the SARG04 protocol with decoy states and the BB84 one with decoy states. We
find that the optimal mean-photon number for the SARG04 scheme is higher than that of the BB84 one when
the bit error rate is small. Also, we observe that the SARG04 protocol does not achieve a longer secure distance
and a higher key generation rate than the BB84 one, assuming a typical experimental parameter set.
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I. INTRODUCTION

Quantum key distribution �QKD� �1,2� provides a way for
two parties to expand a secure key that they initially share.
The best known QKD is the protocol published by Bennett
and Brassard in 1984 �BB84� �1�. The BB84 protocol con-
sists of two phases, the quantum transmission phase and the
classical communication phase. In the quantum phase, one of
the two legitimate parties, Alice, sends quantum states to the
other legitimate party, Bob. The quantum states received by
Bob are converted to classical bits by measurements. In the
classical communication phase, both parties discuss which
bits to keep or discard. They sacrifice some bits to test the
error rate on the bit string. If the error rate is too high, they
abort the protocol. For the states that are retained, they per-
form bit error correction with the help of classical commu-
nications. After that, Alice and Bob’s bit strings are the same,
but some information on them might have leaked to a poten-
tial eavesdropper, Eve. To remove Eve’s information, they
apply privacy amplification to distill the final secret key.
A comprehensive review of both the theoretical and experi-
mental aspects of quantum key distribution is provided in
Ref. �3�.

The security of BB84 was not proved until many years
after its introduction. Among the proofs �4–7�, the one by
Shor and Preskill �7� is relevant to this paper. Their simple
proof essentially converts an entanglement-distillation-
protocol- �EDP-� based QKD proposed by Lo and Chau �6�
to the BB84 protocol. The EDP-based QKD has already been

shown to be secure by �6� and the conversion successively
leads to the security of BB84.

Security proofs of QKD protocols were further extended
to explicitly accommodate the imperfection in practical de-
vices �8,9�. One important imperfection is that the laser
sources used in practice are coherent sources that occasion-
ally emit more than one photon in each signal. Thus, they are
not single-photon sources that the other security proofs
�4,5,7� of BB84 assumed. In particular, BB84 may become
insecure when coherent sources with strong intensity are
used. For instance, Eve can launch an photon-number-
splitting �PNS� attack, in which she blocks all single-photon
pulses and splits multi-photon pulses. She keeps one copy of
each of the split pulses to herself and forwards another copy
to Bob. Although �8,9� showed that secure QKD is still pos-
sible even with imperfect devices, the PNS attack puts severe
limits on the distance and the key generation rate of uncon-
ditionally secure QKD.

A novel solution to the problem of imperfect devices in
BB84 was proposed by Hwang �10�, which uses extra test
states—called the decoy states—to learn the properties of the
channel and/or the eavesdropping on the key-generating sig-
nal states. Our group presented an unconditional security
proof of decoy-state QKD �11,12�. By combining the
Gottesman-Lo-Lükenhaus-Preskill �GLLP� �8� result with
the decoy state idea �10�, we showed that decoy state QKD
can exhibit dramatic increase in distance and key generation
rate compared to nondecoy protocols. Moreover, our group
proposed the idea of using the vacua or very weak coherent
states as decoy states �12�. Subsequently, practical protocols
for QKD using a few decoy states were analyzed by Wang
�13,14�, by our group �15�, and by Harrington et al. �16�,
thereby making the decoy idea more practical. The first ex-
perimental implementation of a QKD protocol using one de-
coy state was demonstrated by our group �17�. Also, a decoy
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method using two-way classical communications is proposed
by our group �18�.

Another attempt to combat PNS attacks was by Scarani,
Acin, Ribordy, and Gisin in 2004 �SARG04� �19�, who in-
troduced a protocol which is very similar to the BB84 pro-
tocol. The quantum state transmission phase and the mea-
surement phase of the SARG04 protocol are the same as that
of the BB84 protocol, as both use the same four quantum
states and the same experimental measurement. The only dif-
ference between the two protocols is the classical post-
processing phase. Interestingly, with only a change in the
post-processing phase, the protocol becomes secure even
when Alice emits two photons, a situation under which the
BB84 scheme is insecure. This was proved by two of us �20�,
who also proved the security of the SARG04 protocol with a
single-photon source. Specifically, we provided lower
bounds of the bit error rate when one-way classical commu-
nications are used in the error correction and privacy ampli-
fication phases. We also proposed a modified SARG04 pro-
tocol that uses the same six states as the original six-state
protocol �21,22�. The security of the SARG04 scheme with a
single-photon source was also proved by Branciard et al.
�23�. They considered the SARG04 protocol implemented
with single-photon sources and with realistic sources. For the
single-photon-source case, they provided upper and lower
bounds of the bit error rate with one-way classical commu-
nications. For the realistic-source case, they considered only
incoherent attack by Eve and showed that the SARG04
scheme can achieve a higher secret key rate and a greater
secure distance than the BB84 one. The SARG04 protocol
was generalized by Koashi �24� to the case of N quantum
states. Another protocol that is similar to the SARG04 one is
the Bennett 1992 �B92� protocol �25�, which uses two non-
orthogonal quantum states. The security of the B92 scheme
with a single-photon source was proved by Tamaki et al.
�26,27�. On the other hand, Koashi �28� proposed an imple-
mentation of the B92 scheme with strong phase-reference
coherent light that was proved secure.

The fact that a modification to the classical communica-
tion part �from BB84 to SARG04 protocols� changes the
foundation of security, i.e., making two-photon signals se-
cure, is interesting. Note that since the difference between
BB84 and SARG04 protocols is only in the classical data
processing part, it is not difficult to perform the SARG04
scheme once the experiment of the BB84 protocol is avail-
able. Thus, it is important to investigate the performance of
the SARG04 scheme in order to determine which protocol
one should perform. This is our main motivation.

In this paper, we make an endeavor to study this interest-
ing SARG04 protocol, but in different situations than that
considered in Refs. �20,23,24�, and thus complementing their
results. Specifically, we provide upper and lower bounds of
the bit error rate with two-way classical communications for
single-photon sources and for two-photon sources. Also, we
consider implementations with realistic devices using decoy
states with one-way classical communications. Here, we al-
low the most general attack by Eve and study the key rate
and distance properties of the SARG04 scheme in compari-
son with the BB84 one. Interestingly, under our most general
attack assumption which was not considered in Ref. �23�, we

observe a different phenomenon than �23�, that the SARG04
scheme has a lower key rate and a shorter secure distance
than the BB84 one. However, our result shows that the
SARG04 scheme is interestingly different from the BB84
one in one aspect in the realistic setting. It is that the optimal
mean photon number for the SARG04 protocol is higher than
that for the BB84 protocol, when the detector error probabil-
ity is low. This is because when the bit error rate gets
smaller, the two-photon contribution to the key generation
rate gets higher.

This paper makes use of two important existing tech-
niques: QKD with two-way classical communications and
the decoy-state method. QKD with two-way communications
in the bit error correction phase was first proposed by Got-
tesman and Lo �29� as a method to achieve a higher tolerable
bit error rate; this method was later improved by Chau �30�
to further increase the tolerable bit error rate of a six-state
scheme. The essence of QKD with two-way communications
is that, by allowing Alice and Bob to communicate with each
other, the qubits transmitted by Alice to Bob can be separated
into two groups, one with a higher bit error rate than the
other. Thus, through two-way communications, they can dis-
card the group with the higher bit error rate and retain the
other group for further bit error correction and privacy am-
plification. Intuitively, a QKD utilizing two-way communi-
cations should be superior to the case when only one-way
communications are used. This was shown to be true for the
BB84 protocol in Ref. �29�. Here, we will show that this is
also true for the SARG04 protocol for both single- and two-
photon parts. Especially for the single-photon SARG04
scheme, we show that the lower bound with two-way com-
munications is higher than the upper bound with one-way
communications provided in Ref. �23�. When we analyze the
security of the SARG04 protocol with realistic devices, we
will use the decoy-state method of Ref. �11� in order to
achieve a long secure distance.

We have tabulated the results of this paper on bounds of
bit error rate and secure distance, along with known results,
in Table I. The six numbers on the right column are results of
this paper, while existing results are cited on the left column.
The bounds on the secure distance listed are specific for the
experimental parameters from the Gobby-Yuan-Shields
�GYS� experiment �31�.

The organization of the paper is as follows. We first
review some existing techniques for the security proof in
Sec. II, which provide a basis for the development of the
results of this paper. In Sec. III, we summarize the assump-
tions we make in this paper. In Sec. IV, we develop a
SARG04 protocol with two-way classical communications
with one- and two-photon sources. In Sec. V, we consider the
SARG04 scheme in a realistic setting, where imperfect laser
sources and detectors are used. Finally, concluding remarks
are provided in Sec. VI. We note that an independent work
on the SARG04 protocol with decoy states was also studied
in Ref. �32�.

II. PRELIMINARIES

In this section, we review some bases for the security
proof in this paper. First, we briefly review an entanglement
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distillation protocol �EDP� and its relation with the security
of QKD, where we especially review the security proof of
the BB84 protocol by Shor and Preskill �7�. Secondly, we
explain how the SARG04 scheme works, and we construct
an EDP protocol that is equivalent to the SARG04 protocol.
We furthermore mention the property of the density matrix in
the EDP protocol for the later convenience. Thirdly, we ex-
plain the key generation rate for BB84 and SARG04 proto-
cols, assuming realistic devices and one-way classical com-
munications. Next, we describe the decoy method in the
BB84 and SARG04 protocols. Finally, we review QKD with
two-way classical communications.

A. EDP and its relation with QKD

1. EDP

The goal of an entanglement distillation protocol �EDP� is
to distill nearly perfect EPR pairs from noisy EPR pairs ini-
tially shared between two distant parties, Alice and Bob. Any
bipartite density matrix describing Alice and Bob’s qubit sys-
tem � can be expressed in the Bell basis, which is composed
of the four orthogonal Bell states:

��±� = ��00� ± �11��/�2,

��±� = ��01� ± �10��/�2. �1�

Taking ��+� as the reference state, the diagonal of � in the
Bell basis

pI � ��+����+� ,

pX � ��−����−� ,

pZ � ��+����+� ,

pY � ��−����−� �2�

represent the probabilities of applying, respectively, the Pauli
I, X, Z, and Y operators to either one of the qubits of the
bipartite system. In the view of an EDP, a pool of ��+�AB
states is prepared by Alice. She keeps system A of every pair
and sends system B of every pair to Bob. Due to the presence
of noise in the quantum channel, system B may undergo bit
and/or phase flip errors and the probabilities of the various
types of errors are represented by pI �no error�, pX �bit flip
error�, pZ �phase flip error�, and pY �bit and phase flip error�.
In the paper by Bennett, DiVincenzo, Smolin, and Wootters
�BDSW� �33�, they assume that all of the pairs are described
by the same density matrix, and the job of an EDP is to
correct the errors using only local operations and classical
communications �LOCCs�, leaving Alice and Bob with a
pool of ��+�AB states. Several methods of EDP’s were pro-
posed in BDSW �33� including the hashing method and the
recurrence method. Many of these methods assume that the
initial density matrix � is Bell diagonal.

2. EDP-based QKD protocol

EDP’s are closely related to QKD protocols. The connec-
tion between them is that if Alice and Bob share almost
perfect EPR pairs that are pure, then the pairs are almost
unentangled with Eve’s system. Thus, the information leaked
to Eve is negligible, and they can obtain an unconditionally
secure key by measuring the EPR pairs. Thus, the purpose of
a QKD protocol can be viewed as a procedure for Alice and
Bob to share almost perfect EPR pairs, which is the purpose
of an EDP. In order to run an EDP, they need to know the
error rates on the noisy EPR pairs and the job of the error
rate estimation is the first part of a QKD protocol. After the
error rates are upper bounded, the second part of the QKD
protocol involves running an EDP to distill almost perfect
EPR pairs. In essence, the QKD scheme can be regarded as
consisting of an error rate estimation part and an EDP part.
Note that the eavesdropping attack by Eve who has read/
write access to the quantum channel appears to Alice and
Bob as noise of the channel.

An EDP-based QKD protocol using quantum computers
was proposed in Ref. �6� and a modified version of it �7�
�shown in Fig. 1� is as follows: Alice prepares N EPR pairs
���AiBi

= ��0z�Ai
�0z�Bi

+ �1z�Ai
�1z�B1

� /�2, for i� �1,N�. She ran-
domly chooses whether to apply a Hadamard gate H on sys-
tem B �i.e., ki=0,1� before sending it to Bob through Eve.
Eve may perform the most general attack on all Bob’s qubits.
Bob randomly chooses whether to apply the Hadamard. They
discard the EPR pairs to which Alice and Bob apply different
operations. Alice and Bob choose some of the EPR pairs as
test qubits. They measure the test qubits in the Z basis and
compare the measurement results publicly to estimate the bit
error rate of the test qubits. The random sampling theorem
then asserts that the rest of the untested qubits �code bits�
have asymptotically the same bit error rates as the test bits
with high probability. Since the bit errors and the phase er-
rors are symmetrized by the random Hadamard gate on
Bob’s qubits, the phase error rate on code bits is asymptoti-

TABLE I. Summary of results for the SARG04 scheme. The
bounds on the secure distance are specific for the experimental pa-
rameters from the Gobby-Yuan-Shields �GYS� experiment �31�.

Bit error rate of the SARG04 scheme with single-photon source

one-way two-way

Upper bound 14.9% �23� 1/3a

Lower bound 9.68% �20,23� and 10.95%
�with preprocessing� �23�

19.9%a

Bit error rate of the SARG04 scheme
with two-photon source

one-way two-way

Upper bound N/A 22.56%a

Lower bound 2.71% �20� 6.56%a

Secure distance using decoy states with realistic source

BB84 SARG04

Upper bound 207.7 �km� �11� 207.7 �km�a

Lower bound 141.8 �km� �11� 97.2 �km�a

aThe results of this paper.
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cally equal to the bit error rate on code bits, i.e., for the
BB84 protocol

ep = eb. �3�

Once Alice and Bob know the good estimates the error rates,
they can each obtain the bit and phase error syndromes using
quantum computers. Alice then sends her syndromes to Bob
who will then correct his qubits by applying Z and X opera-
tions so that his syndromes match Alice’s syndromes. After
the successful distillation, they now share EPR pairs that
have high fidelity with the pure state ��+�AB

�M �where M is the
number of the EPR pairs Alice and Bob share�. They each
measure their halves of the pair in the Z basis to produce a
common secure key on which Eve has negligible informa-
tion.

We can associate the four probabilities pI , pX , pZ , pY with
two �dependent� binary random variables X and Z which rep-
resent the bit and phase errors, respectively. With this nota-
tion, the uncertainty in the bit flip error is H�X�=H2�pX

+ pY� and in the phase flip error is H�Z�=H2�pZ+ pY�, where
H2�p�=−p log2�p�− �1− p�log2�1− p� is the binary entropy
function. The mutual information between the bit and phase
errors is I�X ;Z�=H�X�−H�X �Z�.

The key generation rate of the EDP-based QKD using
one-way classical communications is �33�

R = 1 − H�X,Z� �4�

=1 − H�X� − H�Z�X� . �5�

The second term in the last equation is concerned with the
number of rounds of random hashing for determining the bit
error patterns, and the third term is concerned with the num-
ber of rounds of random hashing for determining the phase
error patterns given that the bit error patterns are known. One
drawback with the EDP-based QKD protocol is that it re-
quires the preparation of EPR pairs and the use of quantum
memory and computers, which are challenging to implement
in practice in the near future. Thus, it is more desirable to use
prepare-and-measure QKD protocols, in which Alice only
needs to prepare qubits and send them to Bob, and Bob only
needs to measure them immediately after receiving them; no
quantum memory and quantum computers are needed.

3. BB84 protocol

In Shor and Preskill’s proof �7�, they showed that the
EDP-based QKD scheme can be reduced to the BB84 proto-
col, a prepare-and-measure protocol that does not require the

use of quantum computers. Their proof relies on the use of
CSS codes to decouple the bit error correction and the phase
error correction. They showed that phase error correction is
not necessary; as long as phase error correction could have
been performed, the protocol is secure. Thus, the phase error
correction step with quantum decoding is replaced by a pri-
vacy amplification step where classical bits of the raw key
are XOR’ed to form the final key. Since the phase error cor-
rection step is removed, Bob’s final Z measurement in the
EDP-based QKD can be moved to before the bit error cor-
rection step. Here, note that all of the hashing for the bit error
correction is in the Z basis, which commutes with Bob’s final
Z measurements. Only one-way communications are needed
in the bit error correction step in Shor-Preskill’s proof. This
is because Alice and Bob both compute the bit error syn-
dromes but only Alice sends her syndromes to Bob. Bob then
applies the appropriate bit-flip operations on his bit string so
as to match his syndromes with Alice’s syndromes. Using
Eq. �5�, the key generation rate of the BB84 protocol result-
ing from the use of CSS codes is

R = 1 − H�X� − �H�Z� − I�Z;X�� �6�

=1 − H2�eb� − H2�ep� + I�Z;X� , �7�

where eb= pX+ pY is the bit error rate and ep= pZ+ pY is the
phase error rate. The bit error rate eb is estimated in the
BB84 protocol through public communications between
Alice and Bob. It is important to note that the phase error
rate ep can be estimated from eb using Eq. �3�. The mutual
information term in Eq. �7� can be determined by pX, pY, pZ.
However, only eb= pX+ pY and ep= pZ+ pY are known and
pY is not known. Thus, we consider the worst-case value
of pY �which corresponds to having no mutual information
between bit and phase errors� to find the worst-case value
of the key generation rate. In the worst-case scenario,
the highest tolerable bit error rate can be found by solving
1=2H2�eb�. This gives eb=11.0%�7�, at which the key gen-
eration rate is zero.

B. The SARG04 protocol

In this paper, we consider the SARG04 protocol �19�,
which is a prepare-and-measure protocol. In fact, the quan-
tum phase of the SARG04 scheme is the same as that of the
BB84 one; so it can easily be seen that the SARG04 scheme
is a prepare-and-measure protocol as the BB84 one is.

Let us explain how the SARG04 protocol works. In the
SARG04 scheme there are four quantum states ��i� , i
=0, . . . ,3:

FIG. 1. An EDP version of the
BB84 protocol. Shor and Preskill
�7� showed that it can be reduced
to the BB84 scheme. Note that
only the EPR pairs to which Alice
and Bob apply the same rotations
are shown; EPR pairs with differ-
ent rotations are discarded.
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��0� = ��0x� + ��1x� ,

��m� = R−m��0�, m = 0, . . . ,3, �8�

where �	sin�� /8�, �	cos�� /8�, and R	cos�� /4�I
+sin�� /4���1x��0x �−�0x��1x � � is a � /2 rotation around the Y
basis. Note that ��0� and ��2� are orthonormal, and thus form
a basis. The same can be said for ��1� and ��3�. The four
states are divided into four sets 
RK ��0� ,RK ��1�� ,K� �0,3�,
in which one represents logic 0 and the other logic 1.
The steps for the SARG04 protocol with a �-photon source
��=1,2� and one-way communications are as follows.

�1� Alice sends a sequence of N signals to Bob. For each
signal, Alice randomly chooses one of the four sets and sends
one of the two states in the set to Bob.

�2� For each signal, Bob performs the polarization mea-
surement using one of the two bases randomly. If his detector
fails to click, then he broadcasts this fact, and Alice and Bob
discard all the corresponding data.

�3� For each signal, Alice publicly announces the choice
of the set from which the state was selected.

�4� For each signal, Bob compares his measurement out-
come to the two states in the set. If his measurement out-
come is orthogonal to one of the states in the set, then he
concludes that the other state has been sent, which is a con-
clusive result. On the other hand, if his measurement out-
come is not orthogonal to either of the states in the set, he
concludes that it is an inconclusive result. He broadcasts if
he got the conclusive result or not for each signal.

�5� Alice randomly chooses some bits as test bits and
announces their locations. Bob estimates the bit error rate e�

from the test bits by taking the ratio of the number of incor-
rect conclusive test bits to the total number of conclusive test
bits. If e� is too high, they abort the protocol.

�6� Alice and Bob retain only the conclusive untested bits.
�7� They perform bit error correction and privacy ampli-

fication on the remaining bit string.
We construct an EDP version of the SARG04 protocol,

which is shown in Fig. 2. The EDP version lends itself to an
easy extension with two-way classical communications and
also a simplified analysis on the bounds on the bit error rates,
both of which will be studied in detail later in this paper. We
consider Alice having a �-photon source �=1,2. For each
signal, she first prepares an entangled state ��0z�A ��0

���B

+ �1z�A ��1
���B� /�2 and randomly applies a rotation �RK��� to

system B which is then sent to Bob through Eve. Eve applies

the most general attack on all the N signals jointly. We
assume that Eve always sends a qubit state or a vacuum state
to Bob, which is related to the assumption we describe
in Sec. III. Bob, upon receiving the qubit, performs the
inverse rotation R−K� and a filtering operation whose success-
ful operation is described by the Kraus operator as
F=sin�� /8� �0x�B�0x � +cos�� /8� �1x�B�1x�. Here, the success-
ful filtering corresponds to a conclusive result �26,27� in the
prepare-and-measure SARG04 protocol. Alice and Bob then
publicly exchange K and K� and keep the pairs with K=K�.
They randomly choose some states �test bits� and perform Z
measurements on the states. Then, they compare their mea-
surement outcome publicly in order to estimate the bit error
rate on the remaining pairs �code bits�. This gives us a good
estimation of the bit error rate on code bits thanks to the
random sampling theorem. On the other hand, the phase er-
ror rate on the code bitsis estimated from the bit error rate on
the code bits by the theorem below. After the estimation, they
choose a CSS code that is sufficient to correct all the bit and
phase errors. After the error correction, they share maximally
entangled states from which they perform Z measurements to
obtain a secure key. It is important to note that the phase
error rate of the code bits can be estimated from the bit error
rate. Thanks to this estimation, Alice and Bob do not need to
perform test bit in X measurement, thus we can equivalently
convert our EDP protocol to the prepare-and-measure proto-
col by the Shor-Preskill’s arguments.

Theorem 1 �density matrix of one-photon SARG04�. For
the one-photon case, the diagonal elements of the density
matrix of the EPR pair shared between Alice and Bob in the
Bell basis is

pX = eb − a ,

pZ =
3

2
eb − a ,

pY = a , �9�

where eb is the bit error rate and eb /2	a	eb.
Proof. See Appendix A. �
There are two differences between this density matrix and

that for the BB84 protocol: �i� There is a factor of 3 
 2 in pZ
�whereas the factor is 1 in the BB84 scheme� and �ii� a is no
smaller than eb /2 �whereas a can be as small as zero in the
BB84 scheme�. Such a restriction in a gives rise to mutual
information between bit and phase errors �see also Ref. �20��.

FIG. 2. An EDP version of the SARG04 protocol. Alice prepares an entangled states ���AB= ��0z�A ��0
���B+ �1z�A ��1

���B� /�2, where
�=1,2 corresponds to the number of photons emitted by Alice. She applies a random rotation on system B before sending it to Bob through
Eve. In the case of �=2, Eve retains one qubit of system B and sends the other to Bob. Although, only one entangled state is shown for
simplicify, one should be reminded that Eve may perform the most general attack on the N entangled states as in Fig. 1.
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This is because for bit and phase errors to be independent
�i.e., no mutual information�, pY =a has be to equal to 3eb

2
 2.
But, this is outside the range eb /2	a	eb for eb� 1 
 3
which is the case of interest. The lower bound on the bit
error rate for the one-photon case can be found by solving
0=1−H2�eb�−H2�3eb /2�+ I�X ;Z�, which gives eb=9.68%
�20,23�. Note that �23� provided a better bound of eb
=10.95% with data preprocessing.

Theorem 2 �density matrix of the two-photon SARG04
protocol�. For the two-photon case, the diagonal elements of
the worst case density matrix is

pX = eb − a ,

pZ 	 xeb + g�x� − a, ∀ x ,

pY = a , �10�

where g�x�= �3−2x+�6−6�2x+4x2�
 6 and 0	a	eb.
Proof. See Appendix A. �
In this case, a is allowed to be zero. Thus, the lower

bound on the bit error rate for the two-photon case can be
found by minimizing Eq. �7� over a, which leads to having
no mutual information between bit and phase errors �i.e.,
I�X ;Z�=0�. Solving 0=1−H2�eb�−H2(minxxeb+g�x�) gives
eb=2.71% �20�.

C. Privacy amplification for multiphoton signals

In real-life implementation, a weak laser pulse is often
used to simulate a single-photon source. However, since it
actually emits weak coherent states, the laser outputs contain
some multiphoton states in addition to the desired single-
photon states. The phases of the coherent pulses are assumed
to be randomized in a traditional laser source. Because of
this, the coherent states of the laser output reduce to classical
mixtures of photon-number states with a Poisson distribu-
tion. One important idea from GLLP �8� is that the amount of
privacy amplification needed when multiphoton signals are
present is the same as if only the key-generating signals are
present. To illustrate the idea, let us consider the key-
generation rate for the BB84 protocol. For the BB84 proto-
col, the final key can only be generated by using the single-
photon states. If Alice and Bob knew the locations of the
single-photon states, they could discard all other multiphoton
states and apply error correction and privacy amplification
only to the single-photon states. In this case, they could
achieve a rate of

RBB84 = − Q1f�e1�H2�e1� + Q1�1 − H2�e1�� , �11�

where en is the bit error rate of the n-photon signal states, Qn
is the gain1 of the n-photon signal state, and f�x� is the error
correction efficiency as a function of error rate. The first term
is concerned with number of rounds of random hashing for
determining the bit error patterns and the H2�e1� in the sec-

ond term is concerned with the privacy amplification. Note
that the bit error rate e1 is used for the privacy amplification
term because of Eq. �3�. For the BB84 scheme, Bob’s result
is conclusive when Bob obtains bit value by the same mea-
surement basis as the one that Alice has chosen.

Note that the above rate is achieved only when Alice and
Bob know the locations of the single-photon states, which is
not the case that Bob uses a threshold detector. One method
to achieve unconditional security without Alice and Bob
knowing the locations of the single-photon states was pro-
posed by Ref. �8�. The idea is that privacy amplification ap-
plied to all bit string is equivalent to that applied only to the
bit string stemmed from the single-photon states as if the
locations of them are known. To show this, we consider the
bit value produced by k1 ·V1 � kM ·VM, where k1 and kM are
the bit string stemmed from the single- and multiple-photon
states after bit error correction, and V1 and VM are random
strings in a hash function having the same lengths as k1 and
kM, respectively. The first term of k1 ·V1 � kM ·VM corre-
sponds to privacy amplification applied to single-photon
states only, while the second term is some bit �possibly
known to Eve�. Since the first term is private to Alice and
Bob, even if the second term is completely known to Eve,
the sum is still private to Alice and Bob. With this idea, the
key generation rate can be improved by considering privacy
amplification applied only to single-photon states

RBB84 = − Q�f�E��H2�E�� + Q1�1 − H2�e1�� . �12�

In this paper, we consider the SARG04 protocol which is
secure with single-photon and two-photon states. In this
case, the key generation rate is �20�

RSARG04 = − Q�f�E��H2�E�� + Q1�1 − H�Z1�X1��

+ Q2�1 − H�Z2�X2�� , �13�

where the Zn �Xn� is a random variable corresponding to the
phase �bit� error for the n-photon state. The first term is the
fraction of EPR pairs spent for error correction, the second
term is the contribution to the key rate from the single-
photon states, and the third term is the contribution from the
two-photon states. Note that the mutual information between
the bit and phase errors is included. According to theorem 2,
the mutual information between X2 and Z2 can be zero,
meaning H�Z2 �X2�=H�Z2�.

In Eqs. �12� and �13�, the overall gain Q� and the overall
bit error rate E� are parameters that Alice and Bob can esti-
mate through public communications. On the other hand, the
gain Q1 �and Q2 for the SARG04 protocol�, and the bit error
rate for the single-photon states e1 �and e2 for the SARG04
protocol� cannot be directly estimated. One way to estimate
e1 and Q1 �and e2 and Q2� is to consider the worst situation
for Alice and Bob. For instance, in the BB84 scheme, we can
pessimistically assume that all the errors happen only in the
single-photon detection events, leading to e1=E�Q� /Q1 and
Q1=Q�− pmulti /2, where pmulti is the probability of Alice
emitting multiple-photon states �see Ref. �11��. However, this
gives a low key generation rate and a short secure distance.
Another way to estimate en andQn is to use the decoy-state

1The gain of a particular type is the probability that the transmit-
ted signal of that type is sent by Alice and Bob gets conclusive
result.
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method in Ref. �11�, which we explain next. Using this
method, the key generation rate and the secure distance can
be greatly increased.

D. Decoy-state method

In the security analysis with decoy states, we assume us-
ing the infinite-decoy-state method of Ref. �11� for the sim-
plicity of analyses. Let us first define the yield Yn, the bit
error rate en, and the gain Qn. The yield, Yn, is defined as the
probability that Bob’s measurement outcome is conclusive
conditional on Alice’s n-photon emission

Yn � Pr
Bob’sresult is conclusive�Alice sent the

n-photon state� . �14�

The yield is basically a sum of the probabilities of the error
events and the error-free events. The fraction of the error-
event probability is the bit error rate en:

en � Pr
Bob’s result is incorrect�Bob’s result is

conclusive ∧ Alice sent the n-photon state� . �15�

The gain of the n-photon state is

Qn � Pr
Bob’s result is conclusive ∧ Alice

sent the n-photon state� �16�

=Yne−��n/n! . �17�

The key of the decoy method is to consider the two equations
for the overall gain Q� and the overall bit error rate E�. The
overall gain is the weighted average of the yields of all
n-photon states:

Q� = Y0e−� + Y1e−�� + ¯ + Yne−���n/n! � + ¯ .

�18�

The overall QBER is the weight average of the errors of all
n-photon states:

E� =
1

Q�
�
n=0



Yne−���n/n! �en. �19�

The main point of the method is to vary the laser intensity �
over all non-negative values randomly. Each value of � is
associated with one equation for Q� and one for E�. Thus, by
varying �, we have a set of linear equations of Yn and en,
which can then be solved. The states that are used for the
determination of Yn and en with the different �’s are the
decoy states, which will not be used to generate the final key.
Another set of states, the signal states, will be used for key
generation and are outputs from one laser intensity only. To
make sure that Yn and en estimated from the decoy states are
good estimates of Yn and en for the signal states, we random-
ize the locations of both states so that Eve can only act
equally on them. Once we have good estimates of Yn �thus,
Qn� and en, we can determine the achievable key-generation
rate by using Eq. �12� for the BB84 scheme and Eq. �13� for
the SARG04 scheme. For the SARG04 protocol, we use the
relations between the phase and bit error rates in Eqs. �9� and

�10� to determine the phase error rates from the bit error
rates.

For the BB84 scheme, the expected values for the yields
and the bit error rates without any eavesdropping are �11�

Yn,BB84 = ��n + �1 − �n�pdark�/2 �20�

en,BB84 = �n
edetector

2
+ �1 − �n�pdark

1

4
�/Yn,BB84, �21�

where �n, pdark, and edetector are the transmission efficiency
for an n-photon signal, the probability that the detector clicks
when the input is a vacuum state, and a parameter represent-
ing the misalignment in the detector, respectively. The pres-
ence of any eavesdropping would deviate the actual values of
them and thus would be caught by Alice and Bob. For the
SARG04 protocol, we will derive similar formulas for Yn
and en later in this paper, and also we will describe the
SARG04 protocol with decoy states.

E. QKD with two-way classical communications

In Shor-Preskill’s proof, they showed that applying the bit
and phase error corrections with CSS code followed by Z
measurements to a pool of noisy EPR pairs is equivalent to
applying the Z measurement followed by bit error correction
and privacy amplification. This order swapping is applicable
to any pool of noisy EPR pairs characterized by some
�pX , pY , pZ�. Imagine that, before the bit and phase error cor-
rections and the final Z measurements, we insert an extra
operation on the EPR pairs that changes the pairs to have
some other characteristics �pX� , pY� , pZ��. One reason that we
want to insert such an extra operation is to increase the high-
est tolerable bit error rate of a QKD protocol. Since, after
this extra operation, we are also left with a pool of noisy
EPR pairs, we can invoke the Shor-Preskill’s argument to
move the final Z measurements to before the bit and phase
error correction steps. However, this is not �yet� a prepare-
and-measure protocol since Shor-Preskill’s proof only brings
the Z measurements to after the extra operation. If this extra
operation commutes with the Z measurements, then we can
swap their order and turn it into a prepare-and-measure pro-
tocol.

A specific operation for this extra operation was consid-
ered by Gottesman and Lo �29�. Their operation commutes
with the Z measurements �so is compatible with prepare-and-
measure protocols� and is composed of a sequence of steps
applied to the EPR pairs. There are two types of steps, a B
step and a P step. As the names imply, a B step �P step� is
meant to improve the bit �phase� error rate of the EPR pairs.
A B step requires two-way classical communications for ex-
changing information between Alice and Bob. Hence,
prepare-and-measure protocols derived from using this tech-
nique requires two-way classical communications.

Definition 1 �B step �29��. A B step, shown in Fig. 3,
consists of Alice and Bob together performing a bilateral
XOR on two EPR pairs randomly chosen and comparing their
Z measurement results of the target pair. If their results are
the same, they keep the source EPR pair and discard the
target EPR pair. If they are different, they discard both pairs.
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When the two EPR pairs initially have no bit error or both
have a bit error, the measurement results will be the same.
When only one of the two pairs has a bit error, the measure-
ment results will be different. The bilateral XOR is equivalent
to two measurements of Z � Z, one by Alice and one by Bob.
Thus, a B step commutes with the final Z measurements in a
prepare-and-measure protocol. Suppose that initially the EPR
pairs are in the state �pX , pY , pZ�, applying a B step to every
pair of EPR pairs leads to a smaller set of surviving pairs
with a new state �pX� , pY� , pZ��

pX� = �pX
2 + pY

2�/pS, �22�

pY� = 2pXpY/pS, �23�

pZ� = 2�1 − pX − pY − pZ�pZ/pS, �24�

pS = 1 − 2�pX + pY��1 − pX − pY� , �25�

where pS is the probability that a source EPR pair survives
the step. Note that half of the EPR pairs are target pairs and
are always discarded after a B step.

Definition 2 �P step �29��. A P step, shown in Fig. 4,
operates on three EPR pairs randomly chosen, one target and
two source pairs. Alice and Bob perform a bilateral XOR on
the target and a source pairs and then perform a second bi-
lateral XOR on the target and the second source pairs. The
phase error syndrome is the X measurements of the two
source pairs, which is not needed in a prepare-and-measure
QKD. The target pair is kept for the next step. The P step
requires no communications between Alice and Bob and is
really a classical circuit. So, the P step commutes with the
final Z measurements of a QKD. If the Z measurements is
performed before the P step, the P step is equivalent to
XOR’ing three bits to generate one bit. Suppose that initially
the EPR pairs are in the state �pX , pY , pZ�, a P step leads to a
new state

pX� = 3pI
2�pX + pY� + 6pIpXpZ + 3pX

2 pY + pX
3 , �26�

pY� = 6pIpYpZ + 3pX�pY
2 + pZ

2� + 3pYpZ
2 + pY

3 , �27�

pZ� = 3pI�pY
2 + pZ

2� + 6pXpYpZ + 3pY
2pZ + pZ

3 , �28�

pI = 1 − pX − pY − pZ, �29�

where pI is the initial probability of no error. Note that only
one-third of the EPR pairs remain after a P step.

The reduction from a EDP with B and P steps to the BB84
protocol is possible because these steps satisfy the “no-
branching �in X operators� requirement” in Gottesman-Lo’s
paper �29�. Specifically, the decision of which EPR pairs to
discard and which to retain only depends on the outcomes of
Z measurements, but not on the outcomes of X measure-
ments. For the BB84 scheme, Gottesman and Lo �29�
showed that a sequence of five B steps, followed by six P
steps, can give rise to a tolerable bit error rate of 18.9%.
Since pY cannot be estimated in BB84, it is necessary to
consider the worst-case value of pY when determining the
tolerable bit error rate. They showed that pY =0 is the worst
case for any sequence starting with a B step. In this paper,
we consider finding the highest tolerable bit error rate for the
SARG04 protocol using Gottesman and Lo’s technique. We
also prove the worst-case value of pY for the SARG04
scheme.

III. ASSUMPTIONS ON THE DEVICES

In this section, we describe some assumptions we make in
this paper. First, note that Bob sometimes has a double click
where he cannot determine the measurement outcome. This
happens because of the dark counts or detecting multipho-
tons. In this case, we impose Bob to take one of the bit
values randomly �8,9�. Thus, we can regard his measurement
outcome as always stemming from the measurement on a
qubit state. This operation is so-called “squash operation” in
Ref. �8�, which is a operation mapping from a multiphoton
state to a qubit state. Furthermore, we assume the measure-
ment such that it can be represented by the squash operation
followed by a proper operations in a protocol. For instance,
Bob’s measurement can be described by the squash operation
followed by the rotations, the filtering operation and Z basis
measurement in the SARG04 protocol. We assume this
model based on the squash operation in the whole paper.

In Sec. V, we will consider five types of imperfections in
realistic QKD setups: �i� the source is a laser source that
generates a Poisson distribution of photon number state, �ii�
there is loss in the optical fiber, �iii� Bob’s detector is not
completely efficient in declaring a detection event, �iv� Bob’s
detector may generate a false detection when there is no
input, and �v� there is misalignment in Bob’s detector.

Assuming the phase randomization, the single-mode laser
source emits a pulse that is a classical mixtures of the photon
number states with a Poisson distribution

FIG. 4. P step: Alice adds �module 2� her halves of three EPR
pairs �the circuit of which is depicted� and Bob performs the same
on his halves of the EPR pairs. They keep the target EPR pair and
discard the other two. The X measurements of the two source pairs
do not need to be performed in a prepare-and-measure QKD.

FIG. 3. B step: Alice performs a bilateral XOR on her halves of
two EPR pairs �the circuit of which is depicted� and Bob performs
the same on his halves of the EPR pairs. They measure the target
qubits in the Z basis. If their measurement results are same, they
keep the source EPR pair and discard the target; otherwise, they
discard both EPR pairs.
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�
i=0


�

i!
e−��i��i� , �30�

where � is the mean photon number. We quantify the loss in
the optical fiber by the probability that an input photon is lost
at the end of the transmission. Let � in dB/km be the loss
coefficient of the optical fiber and l be the fiber length in km.
The probability that the input photon is not lost is equal to
10−�l/10.

It is the case that Bob’s detector fails to indicate the pres-
ence of an input photon. The effect is similar to the transmis-
sion loss. The probability that Bob’s detector detects the
presence of an input photon is defined as Bob’s detection
efficiency �Bob.

Combining the loss in the quantum channel and the inef-
ficiency of Bob’s detector, we have the overall transmission
efficiency, �. It is the probability that a photon is detected
given that one has been sent, which is given by

� = 10−�l/10�Bob. �31�

When the input signal contains more than one photons, the
signal is detected if at least one photon is detected. Thus, the
transmission efficiency for an n-photon signal is

�n = 1 − �1 − ��n. �32�

When there is no input to Bob’s detector, there is a pos-
sibility that it generates a detection event. This is due to the
intrinsic detector’s dark counts, the background spray, and
the leakage from timing signals. We denote the probability of
this false detection event as pdetector. Suppose that there are
two detectors in the system. We denote the probability of
false detection for the system as pdark=2pdetector�1− pdetector�,
since Alice and Bob disregard any signal generating double
detections from the two detectors.

We model the misalignment of the detectors by a rotation
in the bases of Bob’s projection measurements. We will cal-
culate the probabilities of inconclusive, correct, and incorrect
results specifically for the SARG04 protocol using this
model in Sec. V.

IV. SARG04 PROTOCOL WITH ONE-
AND TWO-PHOTON SOURCES

In this section, we derive the lower and upper bounds of
the tolerable bit error rates for the SARG04 scheme with
two-way classical communications, where we consider using
perfect one- and two-photon sources.

A. Lower bounds with two-way communications

To determine the highest tolerable bit error rate, we would
like to search for the sequence of B steps and P steps �intro-
duced in Sec. II E� that, when followed by the one-way EDP
with random CSS to correct bit and phase errors, gives a
positive key generate rate for the bit error rate in question.
The sequence of B and P steps renders the initial state
�pI , pX , pY , pZ� to another state �pI� , pX� , pY� , pZ��, which is then
passed to the one-way protocol for producing almost perfect

EPR pairs. The key generation rate, based on the CSS pro-
tocol, is

R = 1 − H�pX� + pY�� − H�pZ� + pY�� . �33�

Note that we have ignored the mutual information between
the bit and phase errors for simplicity of analyses. For the
single-photon case of the SARG04 scheme, the initial state is
pX=eb−a, pZ=3eb
 2−a, pY =a, where Alice and Bob can
estimate eb but not a. Thus, for the purpose of determining
the highest tolerable bit error rate, we consider the worst-
case value of a for a given eb and a given sequence such that
the initial state with this value will lead to the smallest key
generation rate. A proof of this for the BB84 protocol was
given in Ref. �29�. Here we adapt their proof to the SARG04
scheme and have the following theorem.

Theorem 3. For an initial state of pX=eb−a, pZ=�eb−a,
pY =a, where ��R�1 is some constant, the key generation
rate as given in Eq. �33� is an increasing function of a for a
fixed eb and a fixed sequence of B steps and P steps starting
with a B step, under the following conditions:

�i� eb� �1+4a� / (2�1+��) ∀ a in the valid range and
�ii� eb�1/ �2��.
Proof. See Appendix B. �
Note that theorem 3 is a simple generalization of the re-

sult in Appendix III of Ref. �29�. For the single-photon case,
we apply theorem 3 with �=3/2. Given the valid range of a
being �eb /2 ,eb�, we have the following.

Corollary 1. The worst-case for the single-photon
SARG04 scheme is a=eb /2.

We have written a simple computer program in
MATHEMATICA to calculate the evolution of the diagonal ele-
ments of the marginal density matrix of the EPR pairs shared
by Alice and Bob under sequences of B and P steps using
Eqs. �22�–�29�. With a=eb /2, we exhaustively searched for
the step sequence with 15 B/P steps or less that can tolerate
the highest bit error rate. For each sequence, we searched for
the highest initial value of eb that gives rise to a positive key
generation rate given by Eq. �33�. We conclude that eb
=19.9% is tolerable with nine B steps. We can easily check
that this value of eb satisfies the two conditions of theorem 3.
Since in each B step, Alice and Bob discard at least half of
the EPR pairs that have survived so far, a protocol with nine
B steps leaves only a small number of EPR pairs at the end
of the protocol. Thus, a sequence with nine B steps may not
be efficient in practice. Therefore, we consider the highest
tolerable bit error rates with various maximum numbers of
steps allowed, as shown in Fig. 5. As can be seen, even a
protocol with two B steps is able to tolerate a bit error rate of
16.1%, which is a great improvement from that of one-way
protocols �10.95% from Ref. �23��.

We now consider a two-photon SARG04 scheme, whose
density matrix satisfies Eq. �10�. Since pZ	xeb+g�x�−a,
∀ x, we can minimize the right-hand side over x to find the
worst-case pZ. Substituting in the minimizing x gives us the
initial state

pX = eb − a ,
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pZ =
1

2
−

1

2�2
�1 − 3eb� +�1 − �1 − 3eb�2

24
− a ,

pY = a , �34�

where 0	a	eb. Since pZ can be written as pZ=�eb−a for
some ��1 and for a fixed eb, we can invoke theorem 3 to
arrive at the following:

Corollary 2. The worst-case for the two-photon SARG04
protocol is a=0.

In the worst case, we found that eb=6.56% is tolerable
with six B steps for the two-photon SARG04 scheme. This is
greater than the tolerable bit error rate of 2.71% using one-
way communications �20�. The highest tolerable bit error
rates with various maximum numbers of steps allowed for
the two-photon scheme is also shown in Fig. 5. As can be
seen, even when a smaller number of B steps is used, the
tolerable bit error rate increase quite substantially compared
to the case where no B step is used.

The steps for the SARG04 protocol with a �-photon
source ��=1,2� involving B steps are similar to the one-way
SARG04 protocol in Sec. II B and are as follows.

�1–6� Same as that in the one-way SARG04 scheme.
�7� B step: Alice randomly divides the bits into pairs and

informs this to Bob. They separately compute the parity for
each pair and compare their results with each other. If they
have the same parity for a pair, they keep one bit and discard
the other bit of the pair; otherwise, both bits are discarded.
This step is repeated as many times as needed.

�8� They perform bit error correction and privacy ampli-
fication on the remaining bit string using the revised bit error
rate.

B. Upper bounds with two-way communications

An upper bound for the single-photon SARG04 scheme
with one-way communications was provided in Ref. �23�.
This upper bound of 14.9% is lower than our lower bound of
19.9% with two-way communications. In other words, as far
as the single-photon component is concerned, the SARG04
scheme with two-way classical communications can tolerate
a higher bit error rate than the SARG04 protocol with only
one-way classical communications. A similar behavior was
previously found in the BB84 scheme �29�. Here, we will
investigate the upper bound with two-way communications
for both single-photon and two-photon in the SARG04 pro-
tocol.

To arrive at an upper bound, we note that security cannot
be established between Alice and Bob if there is no entangle-
ment shared between them �34�. Specifically, when the den-
sity matrix of Alice and Bob is separable, i.e., �AB=�i�A,i
� �B,i, then there is no entanglement. One result from BDSW
�33� is that, for a bipartite state with a density matrix of the
form

� = p1��+���+� + p2��−���−� + p3��+���+� + p4��−���−� ,
�35�

if none of the probabilities p1 , . . . , p4 is greater than 1/2,
then � can be written as a mixture of separable states and
thus no entanglement exists. Using this idea, we may find the
bit error rate with which the Bell diagonal elements of our
density matrices of the SARG04 scheme in Eq. �9� and Eq.
�10� are all no greater than 1/2. We may imagine eb to be
small initially, in which case pI is close to unity and pX, pY,
and pZ are close to zero. Then, we gradually increase eb until
pI goes down to 1/2. Although the BDSW idea applies only
to Bell-diagonal density matrix and our density matrices may
not be Bell diagonal, we can still apply the BDSW idea to
our case since whether the off-diagonal terms are zero or not
has no bearing on the B steps, the P steps, the CSS error
correction, and the CSS privacy amplification in our proto-
col. In other words, our entanglement distillation method
does not extract entanglement from the off-diagonal terms.
Thus, we may safely regard our density matrices as Bell
diagonal.

For the single-photon SARG04 protocol, setting pI=1/2
gives eb=1/5+2a /5. Given the valid range of a, this sug-
gests that eb is between 1/4 and 1/3. Eve would like to
cause the error rate as low as possible. But she may not be
able to choose a freely to induce an error rate of 1 /4, since a
is an parameter influenced by her and is not in her complete
control in any attack strategy by her. Thus, without any ref-
erence to a specific attack strategy, the value of a �and the
upper bound on eb� cannot be specified. Therefore, we focus
on specific intercept-and-resend strategies to determine spe-
cific values of a and an upper bound on eb.

In an intercept-and-resend attack, Eve captures and mea-
sures the photon sent by Alice to Bob. She then sends an-
other photon with the polarization depending on the mea-
surement result to Bob. Certainly, no entanglement exists
between Alice and Bob, since Bob’s photon was created by
Eve. In a simple intercept-and-resend attack, Eve performs a

FIG. 5. The highest tolerable bit error rates with various maxi-
mum number of B or P steps allowed. It turns out only B steps are
used in all cases to achieve the highest bit error rates. Even when a
small number of B steps is used, the tolerable bit error rate increase
quite substantially compared to the case where no B step is used.
Note that only up to nine �six� steps are plotted for the single-
photon �two-photon� case since sequences with more steps are less
optimal.
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photon polarization measurement with a basis randomly cho-
sen from two bases. The first basis consists of ��0� and ��2�,
while the second consists of ��1� and ��3�. After the measure-
ment, Eve sends the resultant state to Bob. This particular
attack causes an error rate of 1 /3. The fact that this is at the
high end of the range � 1

4 , 1
3
� prompts us to search for a more

sophisticated intercept-and-resend attack.
Definition 3 (General POVM attack). A general POVM

attack is an individual intercept-and-resend attack by Eve
who captures every transmission from Alice �each which
may consist of one or more photons�, performs an arbitrary
POVM measurement on each transmission independently,
and sends an arbitrary state to Bob depending on the mea-
surement outcome. The POVM is arbitrary and can be rep-
resented by J+1 elements 
Mvac ,Mi : i=0, . . . ,J−1�, with
Mvac+�iMi= I. For the outcome corresponding to Mvac, Eve
sends vacuum to Bob, whereas, for outcome i, she sends an
arbitrary state ��i� to Bob.

We consider Eve launching such a general POVM attack
for the SARG04 one-photon case and two-photon case. We
want to optimize over Mvac, Mi, and ��i� so that Eve induces
the lowest possible bit error rate, hoping to achieve a rate
smaller than 1

3 caused by the simple attack described above
for the one-photon case. Unfortunately, for the one-photon
case, even with such a great freedom to choose the POVM
and the states sent, this attack cannot do better than the
simple attack.

Theorem 4. For single-photon SARG04, the smallest bit
error rate eb caused by Eve using a general POVM attack is
1
3 .

Proof. See Appendix C. �
On the other hand, for the two-photon SARG04 scheme,

it is not trivial to consider intercept-and-resend attack and
thus we only consider a general POVM attack.

Theorem 5. For the two-photon SARG04 protocol, the
smallest bit error rate eb caused by Eve using a general
POVM attack is �3−�2� /7�22.65%. Moreover, a POVM
that gives rise to this minimum bit error rate is

Mm = P��+��m���m� + �−��m+2���m+2��, m = 0, . . . ,3,

�36�

Mvac = P���0���2� − ��2���0��/2 �37�

=P���3���1� − ��1���3��/2, �38�

where �±= �±2+�2� /4, P�����= ������ is a projection opera-
tor associated with a pure state ���, and the subscript in �m+2
is taken in modulo 4. Eve sends ��m� to Bob when the mea-
surement outcome is m� �0,3�. Note that Mvac never occurs,
since the four states sent by Alice, ��m� ��m� ,m� �0,3�, are
orthogonal to the state Mvac projects onto.

Proof. See Appendix C. �

C. Comparison with the BB84 protocol
in depolarizing channels

We compare the lower and upper bounds with two-way
communications of the SARG04 and BB84 protocols by as-

suming that the eavesdropping is realized by a depolarizing
channel. A depolarizing channel evolves an �-photon input
��� to �1−4p /3����+ �4p /3��I /2��� with a depolarizing rate
p. For the SARG04 scheme, the depolarizing rate p is related
to the bit error rate eb by eb=4p / �3+4p�, whereas, for the
BB84 protocol, eb=2p /3. Using these formulas, we see that
the SARG04 protocol is secure up to p�18.6% for the one-
photon scheme and p�5.27% for the two-photon one, and
the BB84 protocol is secure up to p�28.35% �29� with two-
way communications. For the upper bounds, the SARG04
scheme is insecure beyond p=3/8 for the one-photon mode
and p=3�2−�2� /8�22.0% for the two-photon scheme, and
the BB84 protocol is insecure beyond p=3/8 �29�.

V. SARG04 SCHEME WITH REALISTIC SOURCES
USING DECOY STATES

With a realistic phase-randomized laser source, the output
pulses are classical mixtures of the photon number states
with a Poisson distribution. In this section, we consider using
the decoy method of Ref. �11� to operate the SARG04 se-
curely with a realistic source. With this particular decoy
method, the mean photon number of the laser source when
emitting the decoy states varies over infinitely many values,
in order to estimate the statistics for the decoy states. Refer-
ences �12–16� analyzed practical decoy schemes with only a
few decoy states. Here, we consider applying the infinite-
decoy idea to SARG04 for the simplicity of analyses.

The steps for the SARG04 protocol with decoy states are
as follows.

�1� Alice randomly chooses the locations of the decoy
states and the signal states.

�2� For the decoy states, Alice adjusts the power of the
laser to have a random mean-photon number � and she
records this value of �. For signal states, Alice operates the
laser at a fixed mean-photon number.

�3� Alice randomly chooses one of the four sets and sends
one of the two states in the set to Bob.

�4� Bob performs the polarization measurement using one
of the two bases randomly. If his detector fails to click, then
he broadcasts this fact, and Alice and Bob discard all the
corresponding data.

�5� Alice announces the sets of states for both decoy and
signal states to Bob. She also announces the locations of the
decoy states, their values of �, and their states.

�6� Bob, based on the information on the sets of states,
broadcasts which bits are conclusive or not.

�7� For all the decoy states having the same �, Bob esti-
mates Q� by taking the ratio of the number of conclusive
events to the total number of conclusive, inconclusive, and
no-detection events. He estimates E� by taking the ratio of
the number of incorrect conclusive events to the total number
of conclusive events.

�8� Bob then estimates e1 and e2 based on Q�’s and E�’s
over all values of �’s.

�9� If both of e1 and e2 are too high, they abort the pro-
tocol.

�10� Alice and Bob discard all events concerned with in-
conclusive and all decoy states.
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�11� They perform bit error correction on the remaining
bit string and apply privacy amplification.

In this section, we analyze the key generation rate of this
protocol under the same situation as was considered in Ref.
�11�, in which �i� the source is a phase randomized coherent
source, �ii� there is loss in the optical fiber, �iii� Bob’s detec-
tion is not completely efficient in declaring a detection event,
�iv� there are dark counts, and �v� there is misalignment in
Bob’s detector. We first develop a specific detector error
model for the SARG04 scheme, which can then be used to
formulate the yield and the error rate equations for the
SARG04 protocol. With the yields and the error rates, we can
compute the achievable key-generation rates.

A. Model for detector errors in the SARG04 protocol

We consider a specific error model for detections in the
SARG04 protocol. We have chosen this model because it is
also a simple model for explaining errors in the BB84
scheme and thus would provide a reasonable performance
comparison with the BB84 scheme. In the decoy paper for
the BB84 protocol �11�, they used the Gobby-Yuan-Shields
�GYS� �31� experimental results to characterize the probabil-
ity of detector error in the BB84 scheme, denoted by edetector.
The value of this probability is specific to the setup in the
GYS experiment which is for the BB84 protocol. Although
an experimental setup for the SARG04 scheme might be the
same as that for the BB84 one �since their quantum phases
are the same�, their interpretations of errors are different and
thus there is no reason to believe that the error probabilities
describing both setups are exactly the same. Nevertheless, in
order to facilitate a reasonable comparison between the
SARG04 and BB84 protocols, we attribute the probability of
detector error to a rotation of the detector by a small angle.
Specifically, we model the misalignment of the detectors by a
rotation of angle � in the two projection measurements at
Bob’s side. Using the same model for both the SARG04 and
BB84 protocols, we can compare their results on a common
ground. For the SARG04 scheme, we can calculate the prob-
abilities of getting the inconclusive, incorrect, and correct
outcomes for each of the four bases. For example, Fig. 6
shows the calculation for the basis 
↔ , ↗ �. In the end, we
conclude that given a successful detection event at Bob’s
detector, Pr
conclusive�=sin2��� /2+ 1 
 4, Pr
incorrect�
=sin2��� /2, and Pr
correct�= 1 
 4. For the BB84 scheme,
the probability of detection error can easily be seen to be
sin2���. Similarly, we perform the same calculations when
Bob detects a vacuum state and a dark count occurs. We
arrive at Pr
inconclusive�=1/2, Pr
correct�=1/4, and
Pr
incorrect�=1/4. These probabilities are used later in the
calculations of the yields and the bit error rates for the
SARG04 protocol.

B. Key generation rate using decoy

Recall that the key generation rate for the SARG04
scheme with decoy is

RSARG04 � − Q�f�E��H2�E�� + Q1�1 − H2�Z1�X1��

+ Q2�1 − H2�ep,2�� , �39�

where the subscript � denotes the mean photon number for

the signal states, Q� is the gain of the signal states, E� is the
QBER of the signal states, Qj and ep,j , �j=1,2� are the gains
and the phase error rates of the single-photon states �j=1�
and the two-photon states �j=2�, Z1 and X1 are random vari-
ables characterizing the phase and bit errors for the single-
photon states �see Sec. II for definition�, f�x� is the error
correction efficiency as a function of error rate, and H2�x� is
the binary entropy function.

We note that both single-photon and two-photon states
have positive contributions to the key generation rate, in con-
trast to the BB84 protocol, the key generation rate of which
has only the single-photon-state contribution. Also, since
there is mutual information between the bit and phase errors
for the single-photon case, we have included this contribu-
tion to the key generation in Eq. �39�. The parameters Q�

and E� in Eq. �39� can be estimated through public commu-
nications. The phase error rates ep,1 and ep,2 can be esti-
mated, respectively, from the bit error rates e1 and e2 �using
the relations in Eqs. �9� and �10� with the worst-case values
of a=e1 /2 and a=0, respectively�. The bit error rates e1 and
e2, along with Q1 and Q2, can in turn be estimated using the
decoy state idea. In what follows, we derive the formulas for
these parameters for the SARG04 scheme, and thus, using
these parameters, we can determine the key generation rate
using Eq. �39�.

C. Yields and bit error rates

We now determine the yields and the bit error rates of the
transmitted qubits for the SARG04 protocol. Using the defi-
nition of the yield in Eq. �14�, the yield for the SARG04
scheme is

Yn,SARG04 = �n edetector

2
+

1

4
� + �1 − �n�pdark

1

2
, �40�

where edetector=sin2���. The fraction of 1 
 4 corresponds to
the probability of getting a conclusive result. Compared to
the yield for the BB84 protocol in Eq. �20�, we see that the
yield stemmed from the signal for the SARG04 scheme is

FIG. 6. Calculation of measurement probabilities with misalign-
ment of the detectors for the basis 
↔ , ↗ �. The misalignment is
modeled by a rotation of the two measurement bases �. For this
basis, the conclusive results are � and ↖.
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approximately half of that for the BB84 protocol. On the
other hand, the yields stemmed from the dark count are the
same for SARG04 and BB84. Similarly, for the bit error rate,

en,SARG04 = ��n
edetector

2
+ �1 − �n�pdark

1

4
�/Yn,SARG04.

�41�

Thus, the overall gain and the overall QBER for the coherent
state ���� are, respectively,

Q�,SARG04 =
1

2
pdarke

−�� +  edetector

2
+

1

4
��1 − e−��� and

�42�

E�,SARG04 = �1

4
pdarke

−�� +
edetector

2
�1 − e−����/Q�,SARG04.

�43�

Using these formulas for the error rates and the gains, we can
compute the key generation rate for the SARG04 scheme
with one-way decoy using Eq. �39�.

D. Simulations

Figure 7 compares the key generation rates of SARG04
and BB84 protocols, both using the one-way infinite-decoy
method. For this simulation, we take f�E��=1.22 for simplic-
ity and use the parameters from the experiments by Gobby et
al. �31� as shown in Table II. We assumed that the detectors
in both cases are rotated by the same angle in our model. The

optimal mean photon numbers � for the SARG04 and BB84
protocols are used at all distances. Two curves of the
SARG04 scheme using decoy are plotted, one with both
single- and two-photon contributions and the other with only
single-photon contributions. Comparing these two curves, it
can be seen that the two-photon part has a small contribution
to the key generation rates at all distances. Also, curves of
the single-photon SARG04 and the BB84 schemes using
GLLP without decoy are plotted. We see that, by using de-
coy, higher key generation rates and longer secure distance
can be achieved. A similar behavior for the BB84 protocol
was shown in Ref. �11�. We note that the key generation rate
for the BB84 scheme with GLLP in Fig. 1 of Ref. �11� is
smaller than ours. This is because we used the optimal � for
all distances in Fig. 7 while � proportional to � was used in
Ref. �11�. The maximal secure distance for the SARG04 pro-
tocol using decoy is 97.2 km, compared to 141.8 km for the
BB84 scheme. The upper bound of the distance in the
SARG04 scheme can be determined by finding the distances
corresponding to e1= 1 
 3 and to e2=0.2265; they are, re-
spectively, 207.68 and 201.43 km. Thus, the upper bound of
the distance is 207.68 km, at which the two-photon part is
not secure but the single-photon part is. Interestingly, this
bound of 207.68 km is exactly the same as the upper bound
for the BB84 protocol �11�. It can be shown analytically that
setting e1= 1 
 3 for the SARG04 case and setting e1= 1 
 4
for the BB84 case both give the same formula for �1, spe-
cifically, �1= pdark / �1−4edetector+ pdark�. �The formulas for en

and Yn of the BB84 scheme are of course different from that
of the SARG04 scheme.� The optimal �’s for achieving the
highest key generation rate at each distance for the SARG04
and BB84 protocols using decoy are plotted in Fig. 8. We can
see that, when the misalignment of the detector is large �i.e.,
large edetector�, the optimal mean photon number for the BB84
scheme is higher than that of the SARG04 one. On the other
hand, when the misalignment is small, the optimal � of the
SARG04 scheme is higher at short and medium distances. In
addition, the optimal � of the SARG04 protocol can be
higher than one in this case. This is reasonable since at short
or medium distances, the bit error rate is not high and thus
the key contribution from the two-photon part in the
SARG04 scheme is relatively high; on the other hand, at
long distances, the two-photon contribution is relatively
small. Since the optimal � for SARG04 and BB84 protocols
is approximately constant for a large range of distances, the
key generation rates for both SARG04 and BB84 schemes
are in the order of O���.

Figure 9 shows the simulation using the parameters from
Fig. 4 of Ref. �23�. Our result shows that, under our assump-
tion that Eve may perform the most general attack, the BB84
scheme is able to achieve both a higher secret key rate and a
greater secure distance than the SARG04 one, whereas, un-

TABLE II. Simulation parameters from Gobby-Yuan-Shields
�GYS� experiments �31�.

Wavelength �nm� � �dB/km� �Bob edetector pdark

1550 0.21 4.5% 3.3% 1.7�10−6

FIG. 7. �Color online� Simulation using the GYS parameters
listed in Table II and f�E��=1.22, for both SARG04 and BB84
protocols. We compare the key generation rates of SARG04 and
BB84 protocols with decoy states �solid curves� and without decoy
states �dashed curves�. The optimal mean photon numbers � for all
curves are used at all distances. Two curves of the SARG04 scheme
using decoy are plotted, one with both single- and two-photon con-
tributions and the other with only single-photon contributions. Also,
curves of single-photon SARG04 and of BB84 protocols using
GLLP without decoy are plotted. The maximal secure distance is
97.2 km for the SARG04 scheme and 141.8 km for BB84. How-
ever, the upper bounds for SARG04 and for BB84 protocols are
exactly the same, namely, 207.68 km.
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der the assumption considered by Ref. �23� that Eve may
only perform incoherent attacks, they observed the reverse
phenomenon in Fig. 4 of their paper �i.e., the SARG04 pro-
tocol has a higher key rate and greater distance than the
BB84 one�. Another difference between our result and that of
Ref. �23� is that we also consider contributions from the
two-photon part.

In both Figs. 7 and 9, there are gaps between the one-
photon SARG04 curves and the BB84 curves whether or not
decoy is used. These gaps are mainly due to the decrease in
the gain Qn and the increase in the bit error rate en in the
SARG04 scheme relative to the BB84 one. We can see this
as follows. By comparing the yields of the SARG04 scheme
in Eq. �40� and of the BB84 protocol in Eq. �20�, in both the
case of a large edetector �i.e., �nedetector� �1−�n�pdark, corre-
sponding to Fig. 7� and the case of edetector=0 �corresponding
to Fig. 9�, we can see that the yields in the SARG04 scheme
is about half of that in the BB84 protocol; this means that Qn
in the SARG04 scheme is also about half of that in the BB84
protocol. Similarly, by comparing the bit error rates of the
SARG04 protocol in Eq. �41� and of the BB84 scheme in Eq.
�21�, we can see that en in the SARG04 protocol is about
twice of that in the BB84 scheme for both figures; this means
that the amount of privacy amplification needed for the one-
photon part of the SARG04 scheme is higher than that for
the BB84 one �even when the mutual information between
the bit and phase errors in the one-photon SARG04 scheme
is taken into account�. From the key generation rate equa-
tions in Eqs. �12� and �13�, the decrease in Qn and the in-
crease in en both reduce the key generation rate of one-
photon SARG04 scheme relative to the BB84 one, whether

or not the decoy method is used. Furthermore, based on our
simulations, we observe that the gap between SARG04 and
BB84 protocols decreases as edetector decreases.

VI. SUMMARY AND CONCLUDING REMARKS

We have provided lower and upper bounds on the bit error
rates for the SARG04 scheme with two-way classical com-
munications. Both the single-photon part and the two-photon
part were considered. For the single-photon part, we have
shown that the SARG04 protocol with two-way communica-
tions can tolerate a higher bit error rate than the SARG04
one with one-way communications. However, it does not
mean that for some smaller bit error rate, the two-way
SARG04 protocol has a higher key generation rate than the
one-way version.

The upper bounds were found by considering a general
intercept-and-resend attack by Eve. In this attack, she per-
forms an arbitrary POVM and sends arbitrary states to Bob
according to the measurement outcome. For the one-photon
case, we have shown that such generality in her attack does
not offer any advantage over a simple intercept-and-resend
attack where she only performs measurement and sends the
measurement results to Bob.

We have also studied the SARG04 scheme with a coher-
ent source using the decoy-state method to achieve uncondi-
tional security. The key generation rate is significantly im-
proved by combining the GLLP and the decoy-state ideas
compared to the nondecoy protocols. This improved key rate
for SARG04 is given by �20�

RSARG04 = − Q�f�E��H2�E�� + Q1�1 − H�Z1�X1��

+ Q2�1 − H�Z2�X2�� . �44�

The first term is the fraction of EPR pairs spent for bit error

FIG. 8. The optimal �’s for achieving the highest key genera-
tion rate at each distance for the SARG04 scheme using Eq. �13�
and for BB84 using Eq. �12�. Three sets of parameters are plotted.
The bottom two, middle two, and top two curves for BB84 and
SARG04 protocols used the same parameters except for edetector

�which are 0.033, 0.01, and 0.0001, respectively�. The other com-
mon parameters are listed in Table II and f�E��=1.22. When the
misalignment of the detector is large �i.e., large edetector� as in the
bottom two curves, the BB84 protocol uses a laser with a higher
optimal mean photon number than the SARG04 one. When the
misalignment becomes smaller as in the top two curves, the situa-
tion is reversed; the SARG04 protocol operates optimally with a
higher � than the BB84 one does. Also, note that the optimal � for
the SARG04 scheme can be higher than one.

FIG. 9. �Color online� Simulation using �=0.25, �Bob=0.1,
edetector=0, pdark=10−5 �from Ref. �23��, and f�E��=1, for both
SARG04 and BB84. We compare the key generation rates of
SARG04 and BB84 with decoy states �solid curves� and without
decoy states �dashed curves�. The optimal mean photon numbers �
for all curves are used at all distance. Two curves of the SARG04
protocol using decoy are plotted, one with both single- and two-
photon contributions and the other with only single-photon contri-
butions. Also, curves of single-photon SARG04 and of BB84
schemes using GLLP without decoy are plotted.
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correction, the second term is the contribution to the key rate
from the single-photon states, and the third term is the con-
tribution from the two-photon states. In all our simulations,
we found that the SARG04 protocol has a smaller key gen-
eration rate and a shorter secure distance than the BB84
scheme, using the combined GLLP and decoy formulation.
Our results apply to the case where Eve performs the most
general attack. This situation is different from that in Ref.
�23�, where they assumed that Eve performs an individual
attack. We have shown that optimal mean photon number for
the SARG04 scheme can be higher than that of the BB84
protocol for small misalignment errors in the detectors. Also,
we observed that the optimal � for the SARG04 and BB84
protocols is approximately constant for a large of distances.
This means that the key generation rates for both the
SARG04 and BB84 protocols increase linearly with the
transmission efficiency �.

It is interesting to generalize our formulation of the
SARG04 scheme with infinite decoys to the case of finite
decoys, and to the case of using two-way classical commu-
nications with decoy. Also, our work can be extended to
generalizations of the SARG04 scheme, the six-state
SARG04 protocol �20� and the N-state protocol �24�. We
leave them for future studies.

APPENDIX A: DENSITY MATRICES OF ONE- AND TWO-
PHOTON SARG04 PROTOCOLS

1. One-photon case

We consider the most general attack by Eve on all qubits
sent by Alice. We focus on the density matrix of one qubit,
denoted as �qubit, which is obtained by tracing out all other
qubits. Alice initially prepares ���AB= ��0z�A ��0�B

+ �1z�A ��1�B� /�2 and applies a random rotation Rk on system
B. After Eve’s attack and Bob’s inverse rotation and success-
ful filtering, the final qubit pair state for a particular pair is

�qubit = �
k=0

3

�
f

P„�FR−kE�f�Rk�B���AB… , �A1�

where P�����= ������ is a projection operator associated
with a pure state ���, and E�f� is an arbitrary matrix indexed
by f that includes Eve’s action on this qubit. Note that E�f�

can be dependent on Eve’s action on all the other pairs. For
the moment, we consider the case that there is only one
action by Eve �i.e., f takes on one value�. The �unnormal-
ized� probability of X, Y, and Z errors on �qubit due to E can
be explicitly computed using Eq. �2� as follows:

pI =
1

2
�a11 + a22�2, �A2�

pX =
1

4
��a12 + a21�2 + �a11 − a22�2� , �A3�

pY =
1

4
��5a12 − 3a21�a12

* + �− 3a12 + 5a21�a21
* + �a11 − a22�2� ,

�A4�

pZ = ��a12�2 + �a21�2� +
1

2
��a11 − a22�2� , �A5�

where E= � a11 a12

a21 a22
�. The bit error probability is pbit= pX+ pY

and the phase error probability is pphase= pZ+ pY. It can easily
be shown that

pphase =
3

2
pbit, �A6�

pY = pbit/2 + �a12 − a21�2/2. �A7�

Note that the above equations involve the error probabilities
of the particular pair conditioned on any configurations of
the events including X, Y, and Z errors for all the other pairs,
but not the actual error rate of a realization of the protocol. In
an actual protocol, the actual bit error rate eb is estimated and
we want to relate it to the actual phase error rate ep and also
to the actual Y error rate a �which is the counterpart of pY�.
However, we may not immediately conclude that ep
=3eb
 2 and a�eb /2 since pI/X/Y/Z are only the probabilities
of errors conditional on the events for other pairs; the errors
of all the EPR pairs could be arbitrarily correlated. Never-
theless, both ep=3eb
 2 and a�eb /2 can be justified by us-
ing Azuma’s inequality �35�. Let N be the number of EPR
pairs, L= 
I ,X ,Y ,Z� be a label for a Pauli operator nL

�l� , l
� �1,N� be the actual number of L errors on the first l−1
pairs, and pL

�l� be the probability of having an L error on the
lth pair conditional on any configuration of the events includ-
ing the actual X, Y or Z error patterns on the first l−1 pairs.
Note that we can identify pL

�l� to pL. Applying Azuma’s in-
equality to the random variable nL

N−�l=1
N pL

�l�, one can show
that �l=1

N pL
�l�→nL

N with exponentially increasing probability
as N increases. Thus, after the bit error rate estimation, Alice
and Bob perceive that fractions eb−a, 3eb /2−a, and a of
EPR pairs suffer from X, Z, and Y errors, respectively. They
can associate this information with a density matrix to arrive
at Eq. �9�. A similar security analysis can be found in Ref.
�36�.

2. Two-photon case

In the two-photon case, Alice prepares a three-photon sys-
tem ���ABE1= ��0z�A ��0�B ��0�E1+ �1z�A ��1�B ��1�E1� /�2 and
applies a random rotation Rk � Rk on systems B and E1. Sys-
tem B is sent to Bob through Eve while system E1 is kept
by Eve. We analyze this case in the same as in the one-
photon case. We obtain �qubit by tracing out all other EPR
pairs and system E1 of the pair under consideration and
we arrive at ep	xeb+g�x�, ∀ x, where g�x�= �3−2x

+�6−6�2x+4x2�
 6. In this case, we could not find any
constraint on the actual fraction of Y errors a. This means
eb�a�0.

APPENDIX B: PROOF OF THEOREM 3

Given two initial states �pX�
, pY�

, pZ�
�= �eb−a� ,a� ,�eb

−a�� and �pX�
, pY�

, pZ�
�= �eb−a� ,a� ,�eb−a��, where a�
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�a�, we apply the same sequence of B and P steps starting
with a B step to the two initial states, thus giving rise to two
sequences of states �the � sequence and the � sequence�. We
want to show that the final state of the � sequence leads to a
smaller key generation rate in Eq. �33� than that of the �
sequence. This implies that the key generation rate is an
increasing function of a.

Starting with a pool of EPR pairs with state �pX , pY , pZ�,
applying a B step leads to a smaller set of surviving pairs
with a new state �pX� , pY� , pZ�� described by Eqs. �22�–�25�.
Similarly, beginning with �pX , pY , pZ�, a P step leads to a new
state described by Eqs. �26�–�29�.

We apply a change of variables:

tZ = pX + pY , �B1�

tX = pY + pZ, �B2�

� = pZ − pY . �B3�

We start with the hypothesis that in any stage of the � and �
sequences, tZ�

= tZ�
, tX�

	 tX�
, and ��	��. If this is true and

if tX�
	 1 
 2, the key generation rate, 1−H2�tZ�−H2�tX�, at

any stage of the � sequence is smaller and theorem 3 fol-
lows.

First, we can verify that the hypothesis is true initially by
noticing that tZ�

= tZ�
=eb, tX�

= tX�
=�eb and ��=�eb−2a�

���=�eb−2a�. Next, we show that given the hypothesis is
true for the current stage, it is also true for the next stage
when a B step is applied. In the new variables, the new state
after a B step becomes

tZ� = tZ
2/pS, �B4�

tX� = �tX − tX
2 + ��1 − 2tZ − ���/pS, �B5�

�� = �tX�1 − 2tZ� + ��1 − 2tX��/pS, �B6�

pS = 1 − 2tZ + 2tZ
2 . �B7�

Given that tX�
	 tX�

and ��	��, we express the state of
sequence � in terms of that of sequence �:

tZ�
� = tZ�

� , �B8�

tX�
� = tX�

� − �tX�−�
�1 − 2tX�

+ tX�−�
�

+ ��−��1 − 2tZ�
− �� − ����/pS, �B9�

��� = ��� − �tX�−�
�1 − 2tZ�

− 2��� + ��−��1 − 2tX�
��/pS, �B10�

pS = 1 − 2tZ + 2tZ
2 , �B11�

where tX�−�
= tX�

− tX�
�0 and ��−�=��−���0. Obviously,

the hypothesis for the primed variables is true if �1−2tZ

−2���0, tX	 1 
 2, and tZ	 1 
 2 at any stage of the � and
� sequence. We will show the first inequality later and im-
pose the last two inequalities as condition �ii� of the theorem.

We consider the new state after a P step is applied and
show that the hypothesis is also true for this new state. The
new state after a P step is

tZ� = 3tZ�1 − tZ�2 + tZ
3 , �B12�

tX� = 3tX
2�1 − tX� + tX

3 , �B13�

�� = 3�2�1 − 2tZ − �� + �3. �B14�

It is obvious that tX� increases with tX, which implies that
tX�
� 	 tX�

� . Also, �� increases with � provided that �1−2tZ

−���0 and ��0, which implies that ��� 	��� . The first
inequality is satisfied if �1−2tZ−2���0, which will be
shown later. We first show that ��0.

Claim 1. After the initial B step, or after any B/P step that
follows, ��0 holds.

Proof. Before the initial B step is applied, we have

� = �eb − 2a , �B15�

��eb − 2eb, �B16�

�− eb, �B17�

where the last inequality is due to ��1. After the initial B
step, from Eq. �B6�, we have ���0 if the following condi-
tion is satisfied:

� � −
�eb�1 − 2eb�

1 − 2�eb
. �B18�

Since the right-hand side is smaller than −eb, this condition is
satisfied after the first B step, which means that ���0 after
the first B step. Furthermore, from Eq. �B6� and Eq. �B14�,
we conclude that ���0 after any B step or P step following
the initial B step. �

Claim 2. 1−2tZ−2��0 always holds if eb	 �1+4a�

(2�1+��) �which is condition �i� of the theorem�.

Proof. Before the initial B step, we can easily see

1 − 2tZ − 2� = 1 − 2�1 + ��eb + 4a � 0 �B19�

because eb	 �1+4a� / (2�1+��). After a B step

1 − 2tZ� − 2�� = 1 − �2tZ
2 + 2tX�1 − 2tZ� + 2��1 − 2tX��/pS

�B20�

=�1 − 2tZ − 2���1 − 2tX�/pS, �B21�

which is non-negative when 1−2tZ−2��0.
After a P step,

1 − 2tZ� = �1 − 2tZ�3 �B22�

so

1 − 2tZ� − 2�� = �1 − 2tZ�3 − 6�2�1 − 2tZ� + 4�3 �B23�

=�1 − 2tZ − 2����1 − 2tZ�2 + 2��1 − 2tZ − ��� ,

�B24�

which is non-negative when 1−2tZ−2��0 and ��0. �
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APPENDIX C: PROOF OF THEOREMS 4 AND 5

In this appendix, we will prove that a general POVM
attack by Eve induces a bit error rate of at least 1

3 for the
single-photon case. To do this, we will first consider a special
case of this attack where Eve always sends only SARG04
states to Bob. Then building on the proof of this special case,
we will show that the minimum bit error rate is 1

3 for the
general POVM attack where Eve sends arbitrary states to
Bob. At last, we will generalize the proof to the case of two
photons, showing that it is possible to derive the minimum
bit error rate even for this case.

Before we begin, we note that R4= I. This allows us to
adopt the following notation:

��m+k� = R−m��k�, ∀ m, k � Z , �C1�

where the subscripts of the SARG04 states are taken in mod-
ule 4.

1. Eve sending SARG04 states

A block diagram showing an attack by Eve is depicted in
Fig. 10. First, Alice prepares a bipartite entangled state
���AE1

= �0z�A ��0�E1
+ �1z�A ��1�E1

. After randomly applying a
rotation Rk, she sends the E1 qubit to Eve, who will then
perform a POVM 
Wm

† Wm :m=0, . . . ,3� on E1, which is real-
ized by an unitary operator UBE1E2

. When the measurement
result is m, Eve sends the state ��m�B to Bob. We will obtain
the density matrix of Alice and Bob �AB and minimize the bit
error rate �Tr��AB��−1���+ ��AB ��+�+ ��− ��AB ��−�� over
Wm’s.

The input state transforms as follows:

�
k

�IA � RE1

k ����AE1
�k�K �C2�

→
U

�
k

�
m=0

3

�IA � �WmRk�E1
����AE1

�m�E2
��m�B�k�K �C3�

→
R−kF

�
k

�
m=0

3

��0z�A�WmRk��0�E1
� + �1z�A�WmRk��1�E1

��

� �m�E2
�FR−k��m�B��k�K. �C4�

We then trace out systems E1, E2, and K to get the final
density matrix between Alice and Bob:

�AB = �
k=0

3

�
m=0

3

�amk
00 �0z�A�0z� + amk

01 �0z�A�1z�

+ amk
10 �1z�A�0z� + amk

11 �1z�A�1z�� �C5�

� F��m+k�B��m+k�F†, �C6�

where

amk
00 = ��0z�Wm��−k��2 + ��1z�Wm��−k��2, �C7�

amk
01 = �0z�Wm��−k��0z�Wm��1−k�* + �1z�Wm��−k��1z�Wm��1−k�*,

�C8�

amk
10 = �amk

01 �*, �C9�

amk
11 = ��0z�Wm��1−k��2 + ��1z�Wm��1−k��2. �C10�

Here, we have used the notation in Eq. �C1�. Note that �AB is
a separable density matrix as we have explicitly constructed
it to be, and because of that, no entanglement exists and thus
no secure key can be distilled. We can compute the unnor-
malized bit error rate pX+ pY as

pX + pY=AB�0z1z��AB�0z1z�AB+AB�1z0z��AB�1z0z�AB �C11�

= �
k+m=0

amk
11 1

4
+ �

k+m=1
amk

00 1

4
+ �

k+m=2
amk

00 1

2
+ amk

11 1

4
�

+ �
k+m=3

amk
11 1

2
+ amk

00 1

4
� �C12�

= �
m=0

3

�
j=0

1

�jz�WmLmWm
† �jz� , �C13�

where

Lm =
1

2
��1+m���1+m� + ��2+m���2+m� +

1

2
��3+m���3+m� .

�C14�

Since Wm is some 2�2 matrix �not necessary Hermitian�,
the problem of finding Wm is broken into finding two inde-
pendent 1�2 vectors �0z �Wm and �1z �Wm.

In order to normalize the bit error rate, we find

Tr��AB� = �
i,j�
0,1�

AB�izjz��AB�izjz�AB �C15�

FIG. 10. A POVM attack by
Eve realized by UBE1E2

.
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= �
m=0

3

�
j=0

1

�jz�WmBmWm
† �jz� , �C16�

where

Bm =
1

2
��0+m���0+m� + ��1+m���1+m�

+
3

2
��2+m���2+m� + ��3+m���3+m� . �C17�

Therefore, the normalized bit error rate is

eb =
�m=0

3 � j=0

1
�jz�WmLmWm

† �jz�

�m=0

3 � j=0

1
�jz�WmBmWm

† �jz�
. �C18�

We want to minimize eb over the eight independent 1�2
vectors �jz �Wm. At least one of the eight must be nonzero,
otherwise all Wm would be zero and there would be no qubits
sent to Bob. Since eb is not a sum of eight independent ratios,
i.e.,

eb � �
m=0

3

�
j=0

1 �jz�WmLmWm
† �jz�

�jz�WmBmWm
† �jz�

, �C19�

it may appear at first sight that the minimization of eb is not
trivial. However, it turns out that we can minimize each ratio
independently and set eb to be the smallest ratio by assigning
zeros to the other seven vectors. We show this by the follow-
ing claim.

Claim 3. Given two ratios a1 /a2 and b1 /b2, if a1 /a2
	b1 /b2, then a1 /a2	 �a1+b1� / �a2+b2�.

Therefore, we consider separately minimizing each ratio,
which can be written as

�cjm�Bm
−1/2LmBm

−1/2�cjm�
�cjm�cjm�

, �C20�

where �cjm � = �jz �WmBm
1/2 is a 1�2 vector. The minimizing

cjm is the eigenvector of Bm
−1/2LmBm

−1/2 corresponding to the
minimum eigenvalue. The two eigenvalues are 0.6 and 1

3 for
all m. Thus, the minimum eb is 1

3 . A POVM 
Wm
† Wm� that is

compatible with these eigenvectors is Wm
† Wm

= ��m���m � /2 ,m=0, . . . ,3, which is the trivial intercept-and-
resend attack.

2. Eve sending arbitrary states

Now, instead of sending the four SARG04 states ��i� , i
=0, . . . ,3, we assume Eve sends any number G of arbitrary
states. We label these states as ��0

g�, g=0, . . . ,G−1. For the
sake of making the analysis of this case parallel to that of the
previous case of sending SARG04 states, we associate three
extra states �with certain symmetry� to each arbitrary state
and we label all states as follows:

��i
g�, i = 0, . . . ,3,g = 0, . . . ,G − 1. �C21�

We can view the states as divided into sets of four with a
total of G sets. The i=0 states are the original arbitrary states

and are called the representative states of its set; the
i=1,2 ,3 states are the extra states introduced. The POVM
elements 
Wi

g†Wi
g� corresponding to the states are also in-

dexed in the same way. Along the same lines as the SARG04
states, we define the extra states to have a rotational symme-
try that satisfies ��m+k

g �=R−k ��m
g � , ∀ g. This symmetry re-

quirement makes the analysis much easier since it resembles
the analysis for the case of sending SARG04 states. Note that
the introduction of the three extra states in each set does not
lose any generality, since if the extra states are not needed in
the minimization of the bit error rate, their corresponding
POVM elements will eventually be found to be zeros.

The analysis of this case basically goes as before by re-
placing ��i� with ��i

g�. The final normalized bit error rate is

eb =

�
g=0

G−1

�
m=0

3

� j=0

1
�jz�Wm

g Lm
g Wm

g †�jz�

�
g=0

G−1

�
m=0

3

�
j=0

1

�jz�Wm
g Bm

g Wm
g †�jz�

, �C22�

which has the same form as before but with different Lm
g ’s

and Bm
g ’s. As before, both of them are weighted sums of the

outer products of the SARG04 states �i=1
4 �im ��i+m���i+m�.

��im’s for Bm
g and Lm

g are different.� The difference is that now
�im’s are no longer constant, but dependent on the represen-
tative state of each set sent by Eve ��0

g�. Thus, Wm
g is also a

function of this state. Since claim 3 says that we can mini-
mize each term of eb separately and since ��0

g� is arbitrary
anyway, we only need to focus on L0

0 and B0
0 and minimize

the eigenvalues of �B0
0�−1/2L0

0�B0
0�−1/2 �which correspond to

the bit error rate�. The two eigenvalues are

2 − c

4 − c
and

2 + c

4 + c
, �C23�

where ��0
0���00 �0z�+�01 �1z�, c= ��00

2 +�01
2 � / ���00�2+ ��01�2�

	1. The minimum of the first eigenvalue is 1
3 at c=1 and the

second eigenvalue is in �0.5,0.6�. Therefore, we conclude
that, for the one-photon SARG04 case, the minimum bit er-
ror rate caused by Eve using a general POVM intercept-and-
resend attack with arbitrary states sent is 1

3 . Note that c=1
corresponds to the phase difference between �00 and �01 be-
ing 0 or �, under our specific choice of the SARG04 states.
Also, the bit error rate of 1 
 3 can be achieved with any
assignment of �00 and �01 �of course, different assignments
of them give rise to different POVM elements�, as long as
they are in phase or completely out of phase.

3. Two-photon case

We can extend this proof to the two-photon SARG04 case
easily. The initial state becomes ���AE1

= �0z�A ��0�0�E1
+ �1z�A ��1�1�E1

, as Alice emits two photons to Eve. Alice
applies rotation Rk � Rk to the two-qubit system E1 before it
is sent to Eve. Eve then performs a POVM on E1 and, based
on the measurement outcome, sends system B to Bob as
before. The analysis for this case is the same as the one-
photon case, with the change of E1 being a two-qubit system.
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Because of this change, the matrices Wm
g , Lm

g , and Bm
g in the

analysis are subsequently changed to have dimension 4�4.
Both Lm

g and Bm
g are enlarged by replacing every tensor prod-

uct of the form ��m���m� by ��m�m���m�m�, with no change
to the corresponding coefficients. We can carry the same
analysis as the single-photon case and arrive at the eigen-
values of �B0

0�−1/2L0�B0
0�−1/2 to determine the bit error rate.2

Because of the increased dimension in this case, we could
not directly solve for the eigenvalues in terms of ��0

g�. In-
stead, we parameterize the eigenvalues with two parameters
�z and �y and plot the eigenvalues against these two param-
eters. These two parameters come from the fact that any state
can be written as a rotation about the z axis on ��0� �which is
not equal to �0z� or �1z�� followed a rotation about the y axis,
i.e., ��0

0�=Ry��y�Rz��z� ��0�. Using this definition for ��0
0�, we

found, from plots of the eigenvalues as functions of �y and
�z, that the eigenvalues are not dependent on �y and reach
minimum when �z=0,�. The minimum eigenvalue �and thus
the minimum bit error rate� is �3−�2� /7�22.65%. A POVM
that gives rise to this minimum bit error rate is

Wm
† Wm = P��+��m���m� + �−��m+2���m+2��, m = 0, . . . ,3,

�C24�

Wvac
† Wvac = P���0���2� − ��2���0��/2 �C25�

=P���3���1� − ��1���3��/2, �C26�

where �±= �±2+�2� /4 and P�����= ������ is a projection
operator associated with a pure state ���. Eve sends ��m� to
Bob when the measurement outcome is m� �0,3�. Note that
Wvac

† Wvac never occurs, since the four states sent by Alice,
��m� ��m� ,m� �0,3�, are orthogonal to the state Wvac

† Wvac

projects onto.
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