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We show that the KLM scheme �Knill, Laflamme, and Milburn, Nature 409, 46 �2001�� can be implemented
using polarization encoding, thus reducing the number of path modes required by half. One of the main
advantages of this new implementation is that it naturally incorporates a loss detection mechanism that makes
the probability of a gate introducing a non-detected error, when non-ideal detectors are considered, dependent
only on the detector dark-count rate and independent of its efficiency. Since very low dark-count rate detectors
are currently available, a high-fidelity gate �probability of error of order 10−6 conditional on the gate being
successful� can be implemented using polarization encoding. The detector efficiency determines the overall
success probability of the gate but does not affect its fidelity. This can be applied to the efficient construction
of optical cluster states with very high fidelity for quantum computing.
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I. INTRODUCTION

The implementation of quantum computation using linear
optical elements and measurements with post-selection has
attracted a great deal of attention since the seminal work by
Knill, Laflamme, and Milburn �1�. In that paper the authors
showed how the ideas of linear optical manipulation of pho-
tons, together with photodetection and post-selection, can be
combined with the concept of state teleportation through a
quantum gate �2� to perform universal quantum computation.
The price paid is that the two-qubit gates become nondeter-
ministic. Whenever the gate fails, our qubit is measured in
the computational basis with known outcome. A very impor-
tant feature of this scheme is that gate failures are known,
and this can be used to implement error correcting codes
tailored to this particular situation.

In �1� the authors also showed that the success probability
of the controlled-sign gate �CSIGN� can be made arbitrarily
close to one by adding more ancilla modes. This result,
combined with the existence of a threshold for quantum
computation �3� implies that only a constant overhead is re-
quired to implement gates whose failure probability is below
the threshold. A naive calculation shows that of the order of
104 ancilla modes are required per two-qubit gate, which is
difficult to achieve in practice. The situation can be improved
by devising error-correcting codes that exploit characteristics
of the error model. This reduces the overhead
required, but it still does not render the scheme easy to
implement.

An approach that seems to be closer to being practical
was proposed by Nielsen �4�. Instead of using the ideas of
linear-optical quantum computing �LOQC� to perform a
quantum computation in the usual quantum circuit model,

Nielsen proposed using the LOQC CSIGN gate to build op-
tical cluster states that can then be used to do quantum com-
putations, as proposed by Raussendorf and Briegel �5�. The
key point is that higher probabilities of gate failure can be
tolerated while still being able to construct the required clus-
ter state. Furthermore, even a gate that succeeds with an
arbitrarily small probability can be used to efficiently build a
cluster state �6,7�. This allows an LOQC gate with only a
small number of ancilla modes to be sufficient for building
the cluster state.

In its most basic form, the KLM scheme is extremely
fragile against detectors errors. Failure to detect a photon
introduces errors into the quantum state that are not detected.
To minimize their effect on the quantum computation we
need to have detectors with efficiencies above 99%, which
are far beyond from what is currently available. A modified
scheme was also presented in Ref. �1�, that would detect this
photon loss at the price of requiring a more complicated
entangled ancilla, with double the number of path modes
required by the basic scheme. This would considerably com-
plicate the implementation of this loss-detecting gate since
the associated interferometer would be more difficult to con-
trol and stabilize. Nevertheless, such a loss-detection mecha-
nism is crucial, even for the application of the basic KLM
scheme to the construction of optical cluster states, since
imperfect detectors can significantly affect the performance
of the gate, introducing errors with a probability of 30% and
higher for currently available detectors, even when the gate is
assumed to be successful.

The implementation of the KLM scheme using polariza-
tion encoding has two useful features. First, it requires half
the number of path modes to implement the gates, which
makes the associated interferometers easier to set up and
control. And second, when using polarization encoding, the
basic form of the KLM scheme already has a photon loss
detection mechanism. The underlying reason for this feature
emerges in a more natural way than for the modified dual-rail*Electronic address: Federico.Spedalieri@jpl.nasa.gov
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KLM scheme, and it is due to the conservation of the number
of photons passing through a linear optical setup composed
of mirrors, beamsplitters, and phase shifters. Even with the
photon loss detection mechanism, the KLM scheme
requires high-efficiency single-photon sources and high-
efficiency detectors to apply the nonlinear phase gate in the
construction of an entangled ancilla with the required high
fidelity. By implementing the scheme in the polarization ba-
sis, we can completely discard the requirement for high-
efficiency detectors, if we replace the single-photon sources
by high-fidelity Bell-pair sources. The errors introduced by
the gate will then be due only to the dark-count rate of the
detectors, which can be as low as 10−8 dark counts per gate.
Thus, successful gates will also be high-fidelity gates, and
they can be used to construct high-fidelity optical cluster
states.

This paper is organized as follows. In Sec. II we present
a detailed calculation of the KLM scheme using polarization
encoding, including the application of the CSIGN gate
and the generation of the required entangled ancillas. In
Sec. III we discuss the effect of errors due to nonideal detec-
tors, both in the original KLM scheme and the one with
polarization encoding, and show that the loss detection
mechanism is crucial for the construction of a high-fidelity
nondeterministic gate. In Sec. IV we discuss applications to
the construction of optical cluster states and finally in Sec. V
we present our conclusions.

II. THE KLM SCHEME WITH POLARIZATION
ENCODING

One of the pillars on which the KLM scheme is based is
the near-deterministic teleportation of the state of an optical
mode using linear-optical elements, photodetectors, and an
ancilla prepared in a particular entangled state. The success
probability of this teleportation depends on the number of
ancilla modes. For an ancilla state of 2n modes, the probabil-
ity of success is n / �n+1�. The teleportation procedure goes
as follows. First, the mode to be teleported together with the
first n ancilla modes are sent through an optical device that
performs a Fourier transform among the modes. This device
can be constructed using beamsplitters, phase shifters, and
mirrors. After the Fourier transform, we measure the number
of photons present in each mode. For this step, number-
resolving photodetectors are required. If the total number of
photons measured is 0 or n+1, the gate failed and our qubit
is measured in the computational basis. If k photons are mea-
sured, with 0�k�n+1, then the state of our qubit can be
recovered by post-selecting mode n+k of the ancilla and
applying a phase shift that depends on the distribution of the
photons measured among the first n+1 modes. The same can
be accomplished with polarization encoding, as we show be-
low.

A. Near-deterministic teleportation

We will encode the state of our qubit �corresponding to an
optical mode� into the polarization of the photon, so we will
have �0�→ �H� and �1�→ �V�. The state of our qubit will then
be written as

��� = ��H� + ��V� . �1�

The ancilla state required to implement the teleportation has
the same form as the state used in the original KLM paper,
with 0 replaced by H and 1 by V. We will keep the same
notation used in Ref. �1� and note this state by �tn�. Then we
have

�tn� =
1

�n + 1
�
j=0

n

�V� j�H�n−j�H� j�V�n−j . �2�

The main difference between this teleporting state and the
one used in the original KLM is that �2� has exactly one
photon per spatial �or path� mode, for a total of 2n photons.
The analogous state in the original KLM scheme is

�tn�KLM =
1

�n + 1
�
j=0

n

�1� j�0�n−j�0� j�1�n−j , �3�

that has only n photons in 2n modes. This difference will
allow us to detect photodetector failure and hence minimize
the errors introduced by the gate.

We will now give a detailed calculation of how the tele-
portation works. It is useful to write the states in terms of
creation operators applied to the vacuum. We will call ak

† the
creation operator of a vertically polarized photon in mode k,
and bk

† the creation operator of a horizontally polarized pho-
ton in mode k. Then we have

ak
†�vac� = �V�k,

bk
†�vac� = �H�k, �4�

where �vac� represents the vacuum state. We will write
�vac�1. . .n to represent the vaccum state of modes 1 to n.

The Fourier transform applied to a set of n+1 modes, that
for convenience we will call modes 0 to n, is given in terms
of its action on the creation operators,

F̂n�ak
†� =

1
�n + 1

�
lk=0

n

�klkalk
† ,

F̂n�bk
†� =

1
�n + 1

�
lk=0

n

�klkblk
† , �5�

where �=ei�2�/�n+1��. This Fourier transform can be imple-
mented with linear optical elements �8�. One important point
is that this operation does not mix the polarizations of the
photon, which can be seen from Eqs. �5� in the fact that the
creation operators for each polarization transform among
themselves.

We can now rewrite the teleporting state �tn� using the
creation operators for horizontally and vertically polarized
photons. So, we get
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�tn� =
1

�n + 1
�
j=0

n

a1
† . . . aj

†bj+1
† . . . bn

†bn+1
† . . . bn+j

† an+j+1
† . . . a2n

†

��vac�1. . .2n. �6�

The teleportation trick starts by considering the joint state
formed by our qubit in state �1� together with the state �tn�.
Expanding this, we have

����tn� =
1

�n + 1
�
j=0

n 	�b0
†
�

k=1

j

ak
†�
�

k=1

n

bj+k
† �
�

k=1

n−j

an+j+k
† �

+ �a0
†
�

k=1

j

ak
†�
�

k=1

n

bj+k
† �
�

k=1

n−j

an+j+k
† �
�vac�0. . .2n.

�7�

This is a state of 2n+1 modes. Note that the difference be-
tween the two terms is, besides the values of � and �, that
the first term has a creation operator for a horizontally polar-
ized photon in mode 0, while the second has a creation op-
erator for a vertically polarized photon in that mode.

The next step is to apply the Fourier tansform to the
first n+1 modes �i.e., modes 0 to n�. Note that, since the
two terms have different numbers of creation operators
of each type �H or V�, and since the Fourier transform
does not mix polarizations, the same will hold after the trans-
formation is applied. The state obtained after the Fourier
transform is

�8�

Note that the � terms have j of the V photons and n− j+1 of
the H photons, while the � terms have j+1 of the V photons
and n− j of the H photons. This difference will be respon-
sible for transferring the superposition in the state of mode 0
to one of the last n modes of the ancilla.

Now the idea �following KLM� is to perform a measure-
ment that collapses the state vector �8� to a certain value
of j for the � terms, and to j−1 for the � terms. In the
KLM scheme this is accomplished by measuring the number
of photons in each of the n+1 output modes of the

Fourier transform. Here, however, that is not enough
since there are two kinds of photons, so just measuring
the number of photons present in each mode does not
collapse the state vector (8) into the state we want. To solve
this problem we just need to perform a stronger measurement
that tells us not just how many photons are in one mode
but how many of each polarization are present. This
measurement can be easily implemented by sending the out-
put of each mode through a polarizing beamsplitter �PBS�,
and then measuring the number of photons present in each of
the two output ports of the PBS. This requires the same
number-resolving photodetectors used for the original KLM
scheme, with the only difference that we now need twice as
many.

Let us assume that we have performed this measurement,
and we have obtained that in mode j, there are rj of
the V photons and hj of the H photons. Note that since there
was one photon per mode in the first n+1 modes of �7�,
the total number of photons measured at the output of
the Fourier transform must be n+1. This is the key feature
that allows us to know when a detector fails to detect a
photon. But now we want to know what is the state of the
whole system after this projective measurement. First, let us
consider the two simplest cases. If � j=0

n rj =n+1, then all
the photons detected are V photons �i.e., hj =0, ∀ j�. Looking
at �8�, we can see that the only term that has n+1 of the V
photons in the first n+1 modes corresponds to the �
term with j=n. Any other term in �8� has at least one H
photon. Then the state corresponding to that measurement
result is to be

�V�n+1�H�n. �9�

This correponds to a projective measurement of our qubit in
the computational basis. The superposition is destroyed and
the teleportation failed. The probability of obtaining this
measurement result is ���2 / �n+1�. Similarly, if we measure
that � j=0

n rj =0, which means � j=0
n hj =n+1, and we can repeat

the reasoning above replacing V photons by H photons. So
again, the result is a projective measurement in the compu-
tational basis, which destroys the superposition. The prob-
ability of this event occurring is ���2 / �n+1�, and so the total
probability of failure of the teleportation is 1 / �n+1� inde-
pendent of the input state.

So let us now assume that � j=0
n rj�n+1,0, and write

� j=0
n rj =k. Then we also have � j=0

n hj =n−k+1, since the total
number of photons detected is always n+1. The state corre-
sponding to that measurement result is


 1
�n + 1

�n+2	�
S

��p=0
n plp�bl0

† al1
† . . . alk

† blk+1

† . . . bln
† �vac�0. . .n�H�k�V�n−k

+ �
S�

��p=0
n plp�al0

† al1
† . . . alk−1

† blk
† . . . bln

† �vac�0. . .n�H�k−1�V�n−k+1
 , �10�

with
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S = ��l0, . . . ,ln�/�l1, . . . ,lk� contains the value j,rj times,

and �l0,lk+1, . . . ,ln� contains the value

j,hj times, j � �0, . . . ,n��;

S� = ��l0, . . . ,ln�/�l0, . . . ,lk−1� contains the value j,rj times,

and �lk, . . . ,ln� contains the value

j,hj times, j � �0, . . . ,n�� . �11�

By looking at the two sums in �10�, we can see that these
two terms have the same state for the first n+1 modes since
they have the same number of V photons and H photons in
each of the first n+1 modes �fixed by the result of the mea-
surement�. The only difference is given by the state of the
last n modes and by the factors introduced by the two sums

�
S

��p=0
n plp and �

S�

��p=0
n plp. �12�

Since the sums are over two different sets of �n+1�-tuples, it
is not clear if this will change the relative weights in the
superposition given by � and �. However, after a little alge-
bra it can be shown that these two factors differ only by an
overall phase. More precisely, we have

�
S�

��p=0
n plp� = �

S
��p=0

n plp�−�p=0
n lp, �13�

where �=e2�i/�n+1�, as defined earlier. By following the
above calculation carefully, it is not hard to show that

�
p=0

n

lp = �
j=0

n

j�rj + hj� . �14�

It is worth noting that since �rj +hj� is the total number of
photons measured in mode j, this exponent has exactly the
same form as the dephasing introduced by the teleportation
procedure in the original KLM scheme. In summary we have
that

�
S�

��p=0
n plp� = �−�j=0

n j�rj+hj��
S

��p=0
n plp. �15�

Taking all of this into account, we can rewrite the state �10�
as

���0. . .n�H�k−1���H� + ��−�j=0
n j�rj+hj��V���V�n−k+1, �16�

where ���0. . .n is a normalized state of the first n+1 modes
fixed by the result of the measurement. We can see that the
superposition was teleported to the mode n+k, up to a
known relative phase. But since we know exactly the value
of that phase, we can get rid of it by using phase shifters, and
then the final state becomes

���0. . .n�H�k−1���H� + ��V���V�n−k+1. �17�

The last n modes, with the exception of mode n+k, of
course, are left in a known state and can be reused later. It is
worth noting that the state �17� has exactly the same form as
the state that we obtain in the original KLM scheme, if we
replace all H’s by zeros and all V’s by ones.

B. Near-deterministic CSIGN

The near-deterministic teleportation procedure described
above can be combined with the idea of applying a quantum
gate through teleportation to perform a near-deterministic
CSIGN gate. To do this we will need a teleporting state of 4n
modes, which is nothing but two copies of the teleporting
state �tn� with CSIGN gates applied to the mode pairs
�n+k ,3n+ l�, 1	k , l	n. This �unnormalized� state can be
written as

�tn�� = �
i,j=0

n

�− 1��n−j��n−i��V� j�H�n−j�H� j�V�n−j

� �V�i�H�n−i�H�i�V�n−i. �18�

Note that this is a state of 4n modes that has 4n photons. To
apply a CSIGN gate to two modes A and B we can proceed
by teleporting the mode A using the first 2n modes of �tn�� and
then teleporting mode B using the last 2n modes �tn��. Each
teleporting step will proceed as before, requiring post-
selection and phase correction, and failing independently
with probability, 1 / �n+1�. The calculation is essentially the
one presented in the previous subsection applied twice, so
we will not present it explicitly here.

C. State preparation

As described in Ref. �1� the KLM scheme for LOQC
reduces to a state preparation problem: we need to be able to
construct the state �tn�� using only linear optics and photode-
tection. In the original scheme with dual-rail encoding, we
proceed as follows. From the state �01��01� of four optical
modes �generated using a single photon source�, we con-
struct the state

1

2
��01� + �10����01� + �10�� , �19�

by applying beamsplitters to the mode pairs �1,2� and �3,4�.
Then we send modes 1 and 3 through a Mach-Zender
interferometer with a �nondeterministic� nonlinear sign-shift
gate applied to each arm. This gate �which can be performed
using linear optics and photo-detection� applies the
transformation

�0�0� + �1�1� + �2�2� → �0�0� + �1�1� − �2�2� . �20�

After the interferometer, the state of the system is

�t1��KLM =
1

2
��1010� + �0110� + �1001� − �0101�� , �21�

which can be used to apply a CSIGN gate with probability 1
4 .

To apply this gate with higher success probability we need to
construct the states �tn�� with n
1. This is done by a recur-
sive procedure that uses �tp�� to build �tn��, where p�n. By
recycling these resources whenever a gate fails, it can be
shown that the number of trials required to build �tn�� scales
as 2O��n�.

Preparing the corresponding states with polarization en-
coding can be done much in the same way with some minor
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but essential modifications. First we should note that the ana-
log of the beamsplitter transformation with dual-rail encod-
ing, which takes the form

�01� → cos ��01� + sin � �10� , �22�

cannot be implemented with linear optics if we are using
polarization encoding, since in this case it takes the form

�HV� → cos ��HV� + sin � �VH� , �23�

which is an entangling operation between two photons and
cannot be implemented with linear optics alone. However,
this operation can be applied nondeterministically if we are
allowed to use the nondeterministic CSIGN. To see this, first
note that the required trasformation is represented by the
unitary matrix �in the basis ��HH� , �HV� , �VH� , �VV���

�
1 0 0 0

0 cos � sin � 0

0 − sin � cos � 0

0 0 0 1
� , �24�

and this matrix can be implemented by the quantum circuit
All the one qubit operations can be applied deterministically,
while the CSIGN �or C-Z� can be applied with some prob-
ability.

Let us assume for the moment that we can construct the
state �t1�� with polarization encoding. Then we can generate
the states �tn�� for n
1 following the same algorithm used in
the original KLM scheme if we replace all beamsplitters by
the circuit of Fig. 1. Following that procedure, it is not hard
to see that the only effect is that the number of nondetermin-
istic gates required �roughly� doubles, but it remains linear
on n. Thus, the resource required to build the teleporting
states �tn�� with polarization encoding are only polynomially
bigger than the resources required in the original KLM
scheme.

Finally, we need to show that we can construct the state

�t1�� =
1

2
��VHVH� + �HVVH� + �VHHV� − �HVHV�� ,

�25�

using only linear optics and photodetection. It is interesting
to note that this state is the same four-photon cluster state
used by Walther et al. in their experimental demonstration of
a one-way quantum computer �9�. First we note that we can
deterministically transform a state with dual-rail encoding
into a state with polarization encoding by using a polarizing
beamsplitter �PBS�, so we have

��10� + ��01� → ��H� + ��V� . �26�

Now we can apply the quantum encoder introduced by Pitt-
man et al. �10� plus polarization rotators to perform, with
probability 1

2 , the operation

��H� + ��V� → ��VH� + ��HV� . �27�

Composing these two transformations we can perform

��10� + ��01� → ��VH� + ��HV� , �28�

with probability 1
2 . Now consider the state

1

2
��1010� + �0110� + �1001� − �0101�� . �29�

This is nothing but the state �t1��KLM in the original KLM
scheme, and we know it can be constructed with probability
1

16 using linear optics and photodetection. By applying the
transformation �28� to the mode pairs �1,2� and �3,4� in �29�,
we obtain the state �25� with probability 1

64 . This probability
is not claimed to be optimal.

III. ERRORS INTRODUCED BY REAL DETECTORS

Both the original KLM scheme and its implementation
with polarized photons described above assume all the detec-
tors are perfect, i.e., they have unit quantum efficiency and
zero dark counts. If we allow for real detectors and still
require the scheme to apply the entangling gates with a prob-
ability of failure low enough such that error correction and
fault tolerant design allows for arbitrarily long quantum
computation, the required efficiencies turn out to be ex-
tremely high, compared to the presently available detectors.
A naive estimation requires a detector efficiency higher than
99.99%. A clever use of error correction, exploiting the prop-
erties of the error model, may reduce this requirement. How-
ever, no significant improvement that would render the
scheme viable with currently available detectors has been
proposed so far.

On top of the high-efficiency requirement for the detec-
tors, the scheme requires a rather large overhead in terms of
extra ancilla modes. Again, a naive calculation of this over-
head yields 104 ancilla modes required per CSIGN gate. Ex-
ploiting the properties of the failure modes can reduce this
requirement to about 50 ancilla modes per CSIGN gate. This
is still a rather large number to be practical for an actual
implementation.

A big step forward in reducing this required overhead was
the proposal by Nielsen �4� to combine the techniques of the
KLM scheme with the cluster-state model of quantum com-
putation �5�. Rather than using the CSIGN gate for the actual
computation, we can use it to construct a cluster state on
which we can later perform our quantum computation. The
advantage of this approach is that lower success probabilities
can be tolerated with only a modest overhead on the time
required to build the cluster state, thus reducing the extra
ancilla modes to four.

However, this proposal cannot escape the requirement of
very high efficiency detectors. The reason behind this is the

FIG. 1. Quantum circuit that applies the HV beamsplitter.
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fact that low-efficiency detectors will make the fidelity of the
CSIGN gate low even when the gate is assumed to be suc-
cessful. This will reduce the fidelity of the cluster state and
require a larger state to accommodate for fault tolerance and
error correction during the cluster state computation. At this
point, using polarization encoding instead of dual-rail encod-
ing shows a clear advantage. Polarization encoding allows
for very high fidelity CSIGN gates, conditioned on gate suc-
cess �at the price of a lower probability of success�, even
with currently available detectors. Since a cluster state can be
efficiently constructed using gates with an arbitrarily small
success probability �6,7�, using polarization encoding allows
for the efficient construction of high-fidelity cluster states. In
the remainder of this section, we will analyze in more detail
the errors introduced by real detectors for both the original
KLM scheme and the one with polarization encoding, and
discuss the advantages of the latter.

A. Errors in KLM

We will model a real detector with two parameters: a
quantum efficiency � and a dark count rate 
. We will as-
sume that the dark counts follow a Poisson distribution, so
the probability of having d dark counts during the measuring
interval � will be

D�d� = e−
� �
��d

d!
. �30�

We can then write the conditional probability of the detector
measuring k photons when l photons were present as �11�

PD�k�l� = �
d=0

k

D�k − d�
 l

d
��d�1 − ��l−d. �31�

We now analyze the effects of real detectors on the imple-
mentation of the near-deterministic teleportation step, which
is the basis of the whole scheme. Let us recall that, to per-
form that step, we need to measure the number of photons
present in each of the first n+1 modes after applying a Fou-
rier transform to them. The total number of photons mea-
sured, k, tells us whether the gate succeeded �if k�0,n+1�,
and in that case to which one of the last n modes of the
ancilla was the state of our qubit teleported. It is then clear
that accurately determining the value of k is essential for the
success of the scheme. Imperfect detectors will degrade our
ability to determine k.

The finite efficiency and dark-count rate of the detectors
will sometimes produce a result k� for the total number of
photons that is different from the actual number of photons
present k, since some detectors may fail to detect one or
more photons, while others will register dark counts. �For
actual detectors, the failure to detect a photon has a higher
probability than dark counts, but we will keep our analysis
general.� If k��0,n+1, we will assume that the teleportation
was successful and post-select the wrong output mode as the
one carrying the state of our qubit. This wrong mode will be
in either the �0� state or the �1� state, depending on whether
k��k or k�
k. This is similar to the measurement error
introduced by the teleportation failure associated with

k=0,n+1 in the original scheme. The difference is that this
new failure goes completely undetected. The gate is assumed
to have succeeded when in fact it has introduced a measure-
ment error that will propagate through the computation.

Another undetected error may occur when the number of
nondetected photons is equal to the number of dark counts.
In this case the total number of photons is correct, but their
distribution among the first n+1 modes may have been
changed. Since this distribution determines the phase correc-
tion that needs to be applied after a successful teleportation,
a phase error may be introduced in the computation.

As we can appreciate, considering real detectors can
modify the KLM scheme significantly. The main change is
that the probability of a detected failure pf is no longer 1
− ps, where ps is the probability of success, since we now
have nondetected errors ocurring with some probability pnde.
Also, the probability of a detected failure may no longer be
independent of the input state. Actually, it depends on the
input state whenever the probability of dark counts is differ-
ent from the probability of photon nondetection, as is the
case for currently available detectors. The root of this is our
encoding of information in photon number, while the failure
of the detectors is biased toward decreasing photons numbers
�dark counts are usually negligible with respect to detection
failure�.

Using the conditional probabilities given by �31� we can
compute the probabilities of detected failure pf, and the
probability of errors introduced by the teleportation condi-
tioned on no detected errors, defined by pe= pnde / �1− pf� for
different values of detector efficiency and dark-count rates as
a function of the number of ancilla modes n. In particular, we
considered the parameters corresponding to the number-
resolving photodetector demonstrated by Miller et al. �12�.
In that work a 20% quantum efficiency was reported, with
dark counts of the order of 10−7, when considering a
measuring time ��100 �s. It was also reported that this
scheme could be improved to achieve an efficiency of 80%.
Using this value, we plotted the different probabilities for
n=2,3 ,4. As we can see from Fig. 2, the probability of a
detected failure still decreases with n. However, the probabil-
ity of an error being introduced by the gate when no failure
is detected increases with n. Furthermore, this error is rather
high ��27% �, even for n as small as 2. For n=4 this error is
greater than 40%. This can be easily understood since in-
creasing n increases the number of nondetected failure
modes. From this point of view, increasing n is actually
counterproductive.

FIG. 2. Probability of detected failure pf and probability of error
pe introduced by a “successful” gate in the KLM scheme ��=0.8,

��10−7�.
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B. Errors with polarization encoding

The effect of errors introduced by real detectors when we
use polarization encoding is remarkably different. As dis-
cussed before, the role of the total number of photons is
played by the total number of vertically polarized photons.
Since both the teleporting state and the input qubit have ex-
actly one photon per mode, the total number of photons �both
vertically and horizontally polarized� measured after the
Fourier transform must be n+1. If this number is different
from n+1, then we know for sure that some of the detectors
failed, and we have lost the information about to which mode
the input qubit was teleported. This case should be consid-
ered as a detected failure of the gate. Note that the most
common error for real detectors �the failure to detect a pho-
ton� will be recognized, while it would have gone undetected
in the original KLM scheme.

Even if we use polarization encoding, there would be un-
detected errors occurring when we assume the gate has suc-
ceeded. These errors will require the same number of detec-
tor failures to measure a photon and registered dark counts.
Depending on which detectors register these failures, we
may choose the wrong output mode �i.e., we have the wrong
information about the total number of vertically polarized
photons present�, or we may introduce a phase error �the
total number of V photons is correct but their distribution
among modes is not�. The key point is that the probability of
these type of errors is dramatically reduced because of the
low probability of dark counts in currently available detec-
tors. Using the same detector parameters discussed above,
we computed the probability of detected failure pf for the
teleportation step �see Fig. 3�. We can see that the probability
of a detected failure is greater than for the KLM scheme
�66% compared to 33% for n=2�. Furthermore, this prob-
ability increases with n instead of decreasing. This can be
easily understood. First, the probability of a detected failure
depends essentially on the efficiency of the detectors. When
using polarization encoding, we require double the number
of detectors than for the KLM scheme, thus it is not surpris-
ing that our gate has a higher probability of failing. The
scaling with n may not have been foreseen but should not be
unexpected, since now the failure probability includes errors
derived from detector failures that are more abundant for
higher values of n, as the number of detectors required is
2�n+1�.

We have also computed the probability of error condi-
tioned on no detected failure, pe= pnde / �1− pf�, with pnde the
probability of a nondetected error. The results are shown in
Fig. 4. This error probability is several orders of magnitude
lower than the corresponding one for the KLM scheme using
the same detector parameters. Its order of magnitude is given
roughly by the order of magnitude of the dark-count prob-
ability, since the most likely error corresponds to one detec-
tor failing to register a photon and another detector register-
ing a dark count �events with a higher number of dark counts
are strongly suppressed�. Lowering this probability can be
achieved by reducing the dark count rate, independent of the
detector efficiency. We still have the same behavior with in-
creasing n that is related to the higher number of events
associated with errors as the number of detectors required
grows.

IV. APPLICATION TO CLUSTER STATE QUANTUM
COMPUTING

As we discussed before, coupling the KLM scheme with
the cluster state model of quantum computation greatly re-
duces the number of ancilla modes required. This, together
with the existence of protocols to efficiently build these clus-
ter states with nondeterministic gates, makes this approach
very appealing. For optical cluster states however, other is-
sues need to be addressed. For the cluster state approach to
be successful, we need to be able to deal with the inevitable
errors that will occur during its construction and during the
computation itself. Since the computation proceeds by per-
forming single qubit measurements while the quantum infor-
mation is propagated along the cluster by quantum correla-
tions, an efficient measurement procedure is required. This is
not that simple in an optical implementation since currently
available photodetectors do not have very high quantum ef-
ficiency. A good detector may have an efficiency of 80%,
which means that on average one in five photons of the clus-
ter will not be detected. This rate of loss of cluster qubits can
make quantum computing impossible. An incremental en-
coding was proposed by Gilchrist et al. �13� to make the
computation fault tolerant to photon loss. Another idea re-
cently proposed by Varnava et al. �14�, exploits the fact that
the cluster state is an eigenstate of a set of stabilizer opera-
tors to infer the results of measurements on photons that fail

FIG. 3. Probability of detected failure pf using polarization en-
coding ��=0.8, 
��10−7�.

FIG. 4. Probability of error pnde introduced by the gate when no
failure was detected and using polarization encoding ��=0.8, 
�
�10−7�.
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to be detected by the photodetectors. This scheme allows us
to perform the required measurements for a quantum com-
putation provided the efficiency of the detectors is above
50% �which are currently available�.

Errors can also be introduced during the construction of
the cluster, which in turn may introduce non-Markovian er-
rors during the computation. Fortunately, as in the case of the
quantum circuit model of quantum computing, there is an
error threshold below which a fault tolerant design allows us
to perform an arbitrarily long computation, although the
value of this threshold is not yet known for the cluster state
model �15,16�. However, it is not expected to be significantly
smaller than the threshold for the quantum circuit model
since we can recast the cluster state approach as a quantum
circuit. For example, we can consider the qubits in the clus-
ter to be a quantum registry initialized in a particular product
state, the CSIGN gates required to build the cluster can be
regarded as the gates in the circuit model, and the measure-
ments that implement the computation on the cluster can be
considered as part of the readout measurements in the circuit
model. Assuming perfect measurements, this shows that a
CSIGN gate with error probability below the quantum circuit
threshold should be enough to construct a cluster state with
fidelity high enough to allow quantum computing in the clus-
ter state model. The typical value quoted for the error thresh-
old in the quantum circuit model is around 10−4, which cor-
responds to a general error model. A higher threshold might
be possible if we take advantage of the properties of the error
model associated with a particular implementation.

Thus emerges the greatest advantage of using polarization
encoding instead of dual-rail encoding. Dual-rail encoding
has a very high probability of nondetected errors being in-
troduced when applying a CSIGN gate, and hence when con-
structing a cluster state using Nielsen’s approach, unless very
high efficiency detectors are used. On the other hand, polar-
ization encoding allows us to reduce these nondetected errors
independently of the efficiency of the detectors. The only
requirement is that the dark-count rate of the detectors be
sufficiently small, which is actually the case for currently
available detectors. For example, a number-resolving photo-
detector was reported in Ref. �12� with a 20% efficiency and
dark-count rate of the order of 10−9 for a measuring time of
1 �s. Another number-resolving detector with an efficiency
of 88% has been reported in Ref. �17�. Although this detector
was reported to be essentially noise-free, no measured value
of the dark-count rate was given.

There are several recipes to efficiently build a cluster state
using nondeterministic gates �6,7�, and any of these ap-
proaches can be used to build an optical cluster state using
the techniques described in this paper. The one specific ad-
vantage that we would like to exploit is the low probability
of nondetected errors when using polarization encoding. As
we saw in Fig. 4 this probability increases with the number
of ancilla modes used in the application of the CSIGN gate,
so the smallest entangled ancilla state required �four photons
in four modes� is actually the one that minimizes the error
probability.

Using the smallest entangled ancilla state given by

�t1�� =
1

2
��VHVH� + �HVVH� + �VHHV� − �HVHV�� ,

�32�

has some other advantages. In Fig. 5 we can see the setup
required to implement the CSIGN gate. One advantage is
that we only need to apply the optical Fourier transform to a
pair of modes and that can be accomplished with a single
balanced beamsplitter. We do not need to apply the more
complicated interferometer required when more than two
modes are input to the Fourier transform, which is experi-
mentally very challenging. Also, since after the measure-
ments only two modes are left, we do not have to physically
post-select the output modes and only a phase shift may need
to be applied to them. These two properties could be very
useful if we want to integrate this gate into an optical chip,
since no complex interferometers are involved and the output
modes are fixed.

Furthermore, the success or failure of the gate is heralded
by the number of vertically and horizontally polarized pho-
tons detected, while the total number of photons that must be
detected is fixed and equal to four. Each step of the telepor-
tation succeeds only when one vertically polarized photon
and one horizontally polarized photon are detected, which in
the setup presented in Fig. 5 means that two independent
detectors must fire. This feature allows us to implement the
same gate with detectors that are not number resolving.
Since a success corresponds to two independent detectors

FIG. 5. Optical setup required to implement a CSIGN between
two photons using a four-photon entangled ancilla state. The two
input modes A and B are combined through beamsplitters with
modes 1 and 4 of the entangled ancilla �t1��, respectively. After the
beamsplitters, the number of vertically and horizontally polarized
photons in each mode is measured. When the gate succeeds, modes
2 and 3 carry the state of the input modes with a CSIGN gate
applied to them, up to phase shifts.
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clicking, we do not need to know how many photons each
detector measured. Again, the only possible errors introduced
by the detectors malfunctioning are related to dark counts,
which have an extremely low probability.

Besides the errors introduced by the detectors, the fidelity
of this CSIGN gate can be affected by errors in the entangled
ancilla state. If the state we use is not exactly the state �32�,
the gate applied will not be exactly a CSIGN gate, even
when the measurements tell us it was successful. Thus, to
assure the high fidelity of the gate, we need to require the
fidelity of the entangled ancilla with respect to the ideal state
given by �32� to be high. Since we want the gate to work
with fidelity of at least 1−10−4 �to be below the error thresh-
old� we need the fidelity between the two states to be of the
same order. In Sec. II C. We showed that this state can be
constructed with linear optical elements and photodetectors,
but this construction is based on the nonlinear sign �NS� gate
that is the basis of the KLM scheme, and the fidelity of the
NS gate is very fragile against detector inefficiencies because
it operates in the photon number basis.

Nevertheless, we can nondeterministically construct a
high efficiency copy of �32� with linear optics and nonideal
detectors if we have access to high-fidelity polarization Bell
pairs. We first combine two Bell pairs to form a GHZ state
that might not have high efficiency. To do this, we mix one
mode from each Bell pair on a balanced beamsplitter and
measure the number of photons in one of the outgoing modes
irrespective to their polarization, as seen in Fig. 6. If only
one photon is measured by the detector, the state of the re-
maining three modes is a GHZ state in the polarization basis.
If that number is zero or two, the procedure is aborted. If
nonideal detectors are used, an error may be introduced when
two photons arrive at the detector but only one is registered
due to its non-unit efficiency. This operation is very similar
to the type-I fusion introduced by Browne and Rudolph �18�.
The important point is that even when this error occurs, the
only output mode affected is the one coming out of the
beamsplitter that will then have no photons. The other two
output modes will still have one photon each.

The second step is to take two copies of this GHZ state
and combine the two modes that may have an error �i.e., no
photon� using polarization rotators, polarization beamsplit-
ters, and phase shifters, and then measure the number of

photons in each mode irrespective to their polarization, as
seen in Fig. 7. If there were no errors in the construction of
the two GHZ states, we expect exactly two photons to be
detected. If we detect less than two photons, the GHZ states
had errors and the procedure is aborted. If we detect two
photons in one of the detectors �and zero in the other one�,
the output state is equivalent to two Bell pairs that can be
reused to generate more GHZ states. If we detect one photon
in each mode, the state of the remaining output modes is
given by

1

2
�ei��/4��HHHH� + e−i�/4�HHVV�

+ e−i��/4��VVHH� + ei�/4�VVVV�� . �33�

By applying polarization rotators and polarization-dependent
phase-shifters, we can transform this state into �32�. The key
feature of this construction is that even though an error may
be introduced in the first step by a nonideal detector, the
effect of this error will be restricted to a photon missing in
only a pair of modes, and it can be detected when these two
modes are mixed and the total number of photons is mea-
sured �19�. Then, an error in the final cluster state can only
be related to the occurrence of a dark count in one of the
detectors, and for currently available detectors the probabil-
ity of such an event is below 10−6. As long as the fidelity of
the initial bell pairs is high enough, this procedure generates
a four-photon high-fidelity cluster state that can be used to
apply a high-fidelity CSIGN gate.

V. CONCLUSIONS

It is well known that we can switch between polarization
and dual-rail encoding using linear optical elements. Thus, it

FIG. 6. Generation of a polarization GHZ state from two Bell
pairs using a polarization beamsplitter and photodetection. A detec-
tor failure will introduce an error only in mode 2, which in that case
will contain no photons.

FIG. 7. The two modes of two pairs of GHZ states constructed
according to the scheme in Fig. 6 that may have an error, are sent
through the setup shown above. The polarization beamsplitters re-
flect vertically polarized photons. The operation is successful when
exactly one photon is registered by each detector. Then, the state of
the remaining four modes of the two GHZ pairs can be transformed
into �t1�� using phase shifters and polarization rotators.
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is possible to implement the KLM scheme on polarization
encoded information by first transforming them into dual-rail
encoded states and then returning them to polarization after
the nondeterministic KLM gate is applied �20�. In this paper
we have shown that the KLM techniques can be extended to
the case of polarization encoding without switching to dual-
rail encoding at any point. This implementation has two main
advantages. First, it requires half the number of path modes
when compared to the usual dual-rail encoding. This can be
very helpful in an actual implementation, since a higher
number of path modes makes it more difficult to control and
stabilize the interferometric setup required to implement the
gates. And second, when polarization encoding is used, the
analogous to the basic KLM scheme already has a photon
loss detection mechanism. This is due to the fact that with
this encoding we have one photon per path mode, instead of
the one photon per two path modes of dual-rail encoding.
Thus, when applying the nondeterministic gates using pho-
todetection, we know the total number of photons that are
expected, and the information about the operation of the gate
is carried by the distribution of horizontally and vertically
polarized photons.

The original KLM scheme can be modified to also include
a photon loss detection mechanism. This requires a more
complicated entangled ancilla that has double the number of
path modes. Polarization encoding not only reduces this
number by half, but also incorporates the loss mechanism in
a natural way that makes it easier to understand how it
works. It is just a consequence of the fact that the total pho-
ton number is conserved by any linear-optical device. The
construction of the entangled ancilla can proceed much in the
same fashion as in the KLM case, although the number of
nondeterministic steps required roughly doubles. This is due
to the fact that the polarization entangled ancilla has double
the number of photons.

We have also studied numerically the effects of detector
efficiency on the basic KLM scheme and showed how im-
portant having a loss detection mechanism is. Without it,
even when the gate is assumed to be successful the probabil-
ity of errors can be as high as 30%, and, furthermore, it
increases with the number of ancilla modes. Even though for
perfect detectors the probability of success of the gate in-
creases with the number of ancillas, with imperfect detectors
the probability of the gate introducing no errors actually in-

creases with the number of ancilla modes. This shows that
even for applications in which the success probability of the
gate is not required to be high �as in the construction of
cluster states following Nielsen’s proposal�, either loss detec-
tion or the use of high-efficiency detectors are crucial for the
success of the scheme.

Another interesting feature is that if the smallest en-
tangled ancilla is used, which is a four-mode entangled state,
the implementation of the CSIGN gate becomes simpler. On
one hand, it does not require number-resolving photodetec-
tors, and on the other hand only a beamsplitter is required to
mix the input modes with the entangled ancila, instead of the
very complex interferometer required by the general Fourier
transformation in the KLM implementation. Incidentally, it is
worth noting that this mixing with a beamsplitter is very
similar to the type-II fusion operation introduced by Browne
and Rudolph �18�, which can also be used to grow cluster
states. This operation also has the nice feature of its fidelity
being independent of the detector efficiency �although this
point was not mentioned by the authors.� This simplified
implementation of the gate, together with the fact that the
output modes need not be physically post-selected when the
gate is successful, makes it very appealing for integration
into an optical chip.

It is important to note that, even with the loss detection
mechanism, the KLM scheme requires high-efficiency detec-
tors and high-fidelity single-photon sources in order to apply
the nonlinear sign gate that is the basis of the scheme. Here
we have presented and alternative approach that allows us to
do away with high-efficiency detector and single-photon
source requirements, provided we have access to a high-
fidelity polarization-entangled Bell pair source. This gives us
another possible path to the implementation of LOQC with
low errors using currently available detectors.
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