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In Phys. Rev. A 64, 012310 �2001�, Gottesman, Kitaev, and Preskill described a method to encode a qubit
in the continuous Hilbert space of an oscillator’s position and momentum variables. This encoding provides a
natural error-correction scheme that can correct errors due to small shifts of the position or momentum wave
functions �i.e., use of the displacement operator�. We present bounds on the size of correctable shift errors
when both qubit and ancilla states may contain errors. We then use these bounds to constrain the quality of
input qubit and ancilla states.
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Most quantum computation schemes propose encoding
qubits using natural two-level systems such as spin-1

2 par-
ticles. Others exploit only two states of a larger discrete Hil-
bert space such as the energy excitation levels of an ion. In
Ref. �1�, Gottesman, Kitaev, and Preskill �GKP� described an
alternative method for encoding a qubit in the continuous
position and momentum degrees of freedom of an oscillator.
Because the qubit is encoded in an infinite-dimensional Hil-
bert space, a natural error-correcting scheme arises. It can
correct errors due to shifts in the oscillator’s position or mo-
mentum �i.e., small application of the displacement opera-
tor�. When the oscillator is chosen to be a single mode of the
electromagnetic field, fault tolerant computation can be per-
formed by use of only phase shifters, beam splitters, squeez-
ing, photon counting, and homodyne measurements �1,2�.
However, state preparation requires nonlinear interactions.

The GKP scheme constitutes a type of linear optical quan-
tum computer. Other schemes for such computers are based
on the proposals of Knill, Laflamme, and Milburn �KLM�
�3–5� and of Ralph et al. �6�. The KLM scheme has been
extensively improved by incorporating techniques from
“cluster state” quantum computation �7–10�. The KLM
scheme and improvements of it have received significant
analysis of their robustness against errors �4,11–16�. How-
ever, which �if any� of these three schemes is most suitable
for large-scale quantum computation is still unknown. Thus,
further analysis of all three schemes is required. This paper is
devoted to an analysis of the GKP quantum computer. We
consider errors only in the input qubit and ancilla states, and
we obtain a threshold for the maximum size of position and
momentum shifts that the error-correcting scheme can al-
ways correct. We then use this threshold to constrain the
quality of the input states and estimate the number of pho-
tons the input states must contain.

We first give a brief review of qubits in the GKP scheme.
One may use any type of oscillator to represent a qubit, but
for the purposes of this paper we choose the oscillators to be
single modes of the electromagnetic field. Let âi be the pho-

ton annihilation operator of mode i, âi
† the creation operator,

x̂i= �1/�2��âi
†+ âi� the x quadrature, and p̂i= �i /�2��âi

†− âi�
the p quadrature. Let �x� denote eigenstates of x̂, and �p�
eigenstates of p̂. We represent the logical 0 qubit as

�0L� = �
s=−�

�

��x − 2s����x� �1�

=
1
�2

�
s=−�

�

��p − s����p� , �2�

and the logical 1 qubit is

�1L� = �
s=−�

�

��x − �2s + 1�����x� �3�

=
1
�2

�
s=−�

�

�− 1�s��p − s����p� . �4�

In the x quadrature, these states are infinitely long combs of
� functions, with the �1L� displaced a distance �� from the
�0L� state. Such states are clearly unphysical, having an infi-
nite energy expectation value, and they are not normalizable.

This encoding can protect the qubits from errors due to
displacements in the x and p quadratures, described by the
operators e−iup̂ �shifting the x quadrature a distance of u� and
e−ivx̂ �shifting the p quadrature a distance of v�. These shift
operators form a complete basis, so any error superoperator E
acting on the density operator � of a single oscillator may be
expanded as �1�

E��� =	 dudvdu�dv�F�u,v,u�,v��e−iup̂e−ivx̂�eiu�p̂eiv�x̂.

�5�

If the distribution F�u ,v ,u� ,v�� is sufficiently concentrated
near the origin, then this encoding allows us to correct E and
recover �.

Measurement of the qubits can be accomplished by use of
homodyne detection of the x quadrature. Results in which the
x quadrature is measured to be closer to an even multiple of
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�� are registered as the detection of �0L�, and measurements
closer to an odd multiple are registered as �1L�. Therefore, a
shift error that is larger than �� /2 may cause an error in the
qubit measurement.

Because the qubit states are unphysical, we must find
some states that can approximate the ideal qubit states and
are physically realizable. GKP propose using states whose x
quadrature wave function is composed of a series of Gauss-
ian peaks of width � contained in a larger Gaussian envelope
of width 1/k. The approximations of the 0 and 1 logical
states are


x�0̃� = N0 �
s=−�

�

e−�1/2��2sk���2
e−�1/2���x − 2s���/��2

�6�

and


x�1̃� = N1 �
s=−�

�

e−�1/2���2s + 1�k���2
e−�1/2���x − �2s + 1����/��2

,

�7�

where N0 and N1 are normalization factors. In the limit that k
and � are both small, N0
N1=�2k. We show examples of
these approximate qubit states in Fig. 1. First, note that these
states are not orthogonal, and there will be some probability
of mistaking a 0 state for a 1 state �and a 1 for a 0�. This
probability is equal to the probability that the x quadrature of
the 0 state is measured to be closer to an odd multiple of ��.

P0→1 = �
n=−�

� 	
2��n+��/2

2���n+1�−��/2

dx�
x�0̃��2. �8�

In the limit of small � and k, this expression can be approxi-
mated as

P0→1 

2

��
�
n=0

� 	
�2��n+��/2�/�

�2���n+1�+��/2�/�
e−y2

dy �9�



2

��
	

��/�2��

�

e−y2
dy . �10�

For �=k=0.5, P0→1�0.01, and for �=k=0.25,
P0→1�10−6. For small � and k, P1→0
 P0→1. However, we
desire not only that measurements can distinguish between
the 0 and 1 states, but also that an error-correcting procedure
can reliably correct errors. This will place stricter require-
ments on the approximate qubit states.

We now examine the error-correcting circuits �17�. We
imagine that the qubit �QL� initially exists in a superposition
of the �0L� and �1L� states in mode 1. The qubit then receives
errors resulting in shifts of u1 in x1 and v1 in p1. We begin the
correction procedure by repairing the shifts in x1. This re-
quires an ancilla qubit prepared in the state �+L�= �0L�+ �1L�
in mode 2. Of course, the ancilla may also be subject to
errors, resulting in shifts u2 and v2. After the errors, the state
of the system is

e−iu1p̂1e−iv1x̂1e−iu2p̂2e−iv2x̂2�QL�1�+L�2. �11�

To correct the qubit’s errors, modes 1 and 2 are sent through
the network pictured in Fig. 2. The two damaged modes meet
in a beam splitter, which performs the transformation

x1 →
1
�2

�x1 − x2� , �12�

x2 →
1
�2

�x1 + x2� �13�

in the x quadrature wave function of the two modes. After
mode 1 exits the beam splitter, we apply the squeezing op-

erator Ŝ��2�, where Ŝ is defined by Ŝ�q��x�=�q�x /q�. We
now measure the x quadrature of mode 2 and obtain the
result x2=1/�2�n��−u1−u2�, where n may be any integer.
This measurement provides some information about the er-
rors shifting the x quadrature of the qubit, but it gives no
knowledge of the state of the logical qubit. The errors can be

FIG. 1. Example of approximate qubit states. �a� shows the x

quadrature wave function of �0̃�, and �b� shows �1̃�. For each of
these, we have chosen �=k= 1

4 .

FIG. 2. Procedure to correct x shifts acting on the qubit. The
circuit shows errors acting on the qubit and ancilla. Then the qubit
and ancilla modes meet in a beam splitter, mode 1 is squeezed, the
x quadrature of mode 2 is measured, and a correcting shift of s�x2�
is applied to the qubit.
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�partially� corrected by applying the displacement operator
e−is�x2�p̂1, where

s�q� = −
q
�2

+
1

2
mod2���2�2q� . �14�

Here the mod function has the range �−�� ,���.
This entire sequence of operations—errors and correction

procedure—transforms the qubit to the state

�QL� → ei��u1,v1,u2,v2,n�e−i�v1−v2�x̂1

� e−i�u1−1/2mod2���2u1+2u2��p̂1�QL� , �15�

where ei��u1,v1,u2,v2,n� is a phase factor independent of the in-
put qubit. If �u1+u2���� /2, then the qubit is “corrected” to
the state

�QL� → ei��u1,v1,u2,v2,n�e−i�v1−v2�x̂1e−iu2p̂1�QL� . �16�

Notice that both the ancilla and the qubit’s p shift errors v1
and v2 both appear now acting on the qubit. Also, the qubit
has been affected by the ancilla’s x shift error u2. In the case
when �u1+u2�	�� /2, the error-correcting procedure applies
the Pauli X operator to the qubit state, producing

�QL� → ei��u1,v1,u2,v2,n�e−i�v1−v2�x̂1e−iu2p̂1X�QL� . �17�

Correcting the X error would require the use of a standard
quantum error-correcting code �concatenated with this con-
tinuous variable code�. See �18� for an introduction to quan-
tum error-correcting codes.

The procedure for correcting shifts to the qubit’s
p-quadrature wave function is similar to that used for x
shifts. It is pictured in Fig. 3. In this case, we prepare the
ancilla qubit in the state �0L�, we measure the p-quadrature

basis of mode 2, we apply the squeezing operator Ŝ�1/�2�,
and the correcting shift is e−is�p2�x̂1. The errors and correcting
procedure produces the new state

�QL� → ei
�u1,v1,u2,v2,n�e−i�u1−u2�p̂1

� e−i�v1−1/2mod2���2v1+2v2��x̂1�QL� , �18�

where the phase factor ei
�u1,v1,u2,v2,n� is independent of the
initial qubit state. When �v1+v2���� /2, the correcting pro-
cedure is successful, resulting in the state

�QL� → ei
�u1,v1,u2,v2,n�e−i�u1−u2�p̂1e−iv2x̂1�QL� . �19�

When v1 and v2 are too large, the correcting circuit creates a
Pauli Z error in the logical qubit basis.

Armed with a clear understanding of the error-correction
procedure, we can formulate a bound on the maximum error

that this scheme can always correct. In the following, we
imagine that the only error source is in the preparation of the
qubit and ancilla states. We assume that all of the operations
of the error-correcting procedure are error-free. In the above
analysis, we have shown how errors in ancillas are trans-
ferred to the qubit. We would like to find a bound on the size
of shift errors affecting the qubit and ancillas that ensures
that the qubit never receives an X or Z error and that the sizes
of x and p shifts do not grow after multiple steps of error
correction. To accomplish this, we follow the qubit’s x and p
shifts as it passes through multiple steps of correction.

Before the error-correction procedure, the qubit has errors
u1 and v1, and the first ancilla has errors u2 and v2. If we first
correct errors of the x quadrature, the qubit will have errors
u2 �in x� and v1−v2 �in p�, provided that �u1+u2���� /2.
This result comes directly from Eq. �16�. Now, we should
correct errors of the p quadrature using a new ancilla, which
may have errors u3 and v3. The p error correction produces a
new qubit with errors u2−u3 �in x� and v3 �in p�, provided
that �v1−v2+v3���� /2. At this point, the first stage of error
correction is complete. The qubit’s original errors have been
entirely eliminated and replaced by errors introduced by the
ancillas. A second correction of the x quadrature using a third
ancilla with errors u4 and v4 is successful if �u2−u3+u4�
��� /2. The qubit now has errors u4 and v3−v4. In this and
each subsequent stage, we find that at any time, the qubit has
errors inherited from one ancilla in the quadrature that was
just corrected and errors from two ancillas in the quadrature,
which should be corrected next. During the next correction,
errors from a new ancilla are introduced. The correction suc-
ceeds if the magnitudes of the now three errors is less than
�� /2. Therefore, we can be certain that repeated error-
correction steps will be successful if the magnitude of all
error shifts is smaller than �� /6.

We would now like to calculate the probability that an

approximate qubit state such as �0̃� or �1̃� has shifts smaller
than �� /6 in both x and p quadratures. To find this probabil-
ity, we decompose the approximate qubit states in a basis
defined by the states that are x and p shifts of �0L�, which we
may express as

�u,v� = �−1/4e−iup̂e−ivx̂�0L� �20�

=�−1/4 �
s=−�

�

e−iv2s���x = 2s�� + u� . �21�

We can express any state ��� of a single oscillator in this
basis using a wave function f�u ,v�= 
u ,v ���,

��� = 	
−��

��

du	
−��/2

��/2

dvf�u,v��u,v� . �22�

The limits of the above integral are chosen to match the
periodicity in �0L�. The probability density for a state having
shifts u and v from �0L� is simply

P�u,v� = �f�u,v��2. �23�

Examples of P�u ,v� are shown in Figs. 4 and 5.

The probability that the �0̃� state has errors less than �� /6

FIG. 3. Procedure to correct p shifts acting on the qubit. The
circuit shows errors acting on the qubit and ancilla. Then the qubit
and ancilla modes meet in a beam splitter, mode 1 is squeezed, the
p quadrature of mode 2 is measured, and a correcting shift of s�p2�
is applied to the qubit.
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�which guarantees that its errors may always be corrected� is

Pno error = 	
−��/6

��/6

du	
−��/6

��/6

dvP�u,v� . �24�

We plot Pno error in Fig. 6. Achieving Pno error=0.9 requires
�=k=0.214, and Pno error=0.99 requires �=k=0.149.

We generally believe that protecting an oscillator from
decoherence usually becomes more difficult when the oscil-
lator contains large numbers of photons, so we are motivated
to calculate the mean number of photons in the approximate
qubit states. A crude estimate of this quantity for small � and
k is given by


n� �
1

4�2 +
1

4k2 . �25�

In Fig. 7, we plot the mean number of photons contained in
an approximate qubit state as a function of Perror=1
− Pno error using an exact expression. We find that an approxi-
mate qubit state with Pno error=0.9 must contain 
n�=10.4

photons, and to achieve Pno error=0.99 requires 
n�=22.1
photons.

Production of these states is likely to be very challenging.
We are aware of four proposals for production of qubit states
for the GKP quantum computer. The first is from the original
work of GKP �1�, in which they propose the use of a two-
mode Hamiltonian of the form x̂1n̂2. This might be achieved
by coupling an optical mode with a mirror that may exist in
a coherent superposition of position states. For a discussion
of the possibility of such experiments, see Refs. �19,20� and
references therein. The second proposal is from Travaglione
and Milburn �21�. They describe a method that prepares the
qubit states in the oscillatory motion of a trapped ion rather
than the photons in an optical mode. The third proposal is by
Pirandola et al. �22� and discusses the preparation of optical
GKP states using a two-mode Kerr interaction �described by
a Hamiltonian of the form n̂1n̂2� followed by a homodyne
measurement of one of the modes. The same authors also
describe a fourth method for GKP state production in
�23,24�. This method would prepare the GKP state in the
motion of a neutral atom that interacts with a photon field
confined to a high finesse optical cavity. They show that this
may be done so that the atom is trapped in the cavity, or the

FIG. 4. �Color online� P�u ,v� the probability density that the �0̃�
approximate qubit state contains errors u �in its x quadrature� and v
�in its p quadrature�. Here we have used �=k= 1

4 .

FIG. 5. �Color online� P�u ,v� the probability density that the �1̃�
approximate qubit state contains errors u �in its x quadrature� and v
�in its p quadrature�. Here we have used �=k= 1

4 .

FIG. 6. Here we plot Pno error, the probability that an approxi-
mate qubit state has shifts in both x and p quadratures less than
�� /6 as a function of �=k. This shows the case of �0̃�, but the �1̃�
plot is indistinguishable.

FIG. 7. Here we plot the mean number of photons contained in
an approximate qubit state as a function of the probability that such
a state has a shift error larger than �� /6.
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atom may be free to pass through the cavity. State prepara-
tion is currently the most problematic aspect of the GKP
quantum computation scheme, and it is an area in need of
more experimental effort.

In this paper, we have investigated error correction in the
GKP quantum computer, considering errors in both qubit and
ancilla states. Provided that all input states have displace-
ment errors in their x and p quadratures less than �� /6, the
error-correction schemes will operate successfully. Because
it is impossible to prepare perfectly error-free GKP states, we
have calculated the probability that approximate GKP states
contain an error larger than �� /6. An approximate GKP state
with error probability less than 0.1 must contain a mean
number of photons greater than 10.4.

There are some cases in which states with errors larger
than �� /6 will not cause logical qubit errors. For example,
the qubit’s and the ancilla’s errors may actually cancel one
another. Because of effects like this, our �� /6 bound may be
refined with more detailed analysis. We have not considered
full fault tolerant computation in the presence of noisy logic

operations, nor have we considered the effects of phase er-
rors or photon absorption. Phase errors and photon absorp-
tion are likely to be primary error sources for this �or any�
optical quantum computer. Because linear superpositions of
displacements span the space of possible single-qubit errors,
one may correct phase and absorption errors using the GKP
error-correction scheme. However, phase errors affecting
states with large numbers of photons correspond to large
displacements. This fact highlights two competing influ-
ences: �i� To lower the number of intrinsic errors in each
approximate qubit state, we must prepare states with large
numbers of photons. �ii� To reduce the displacements caused
by phase errors, we should prepare states with fewer pho-
tons. A detailed analysis of these constraints requires further
study.

ACKNOWLEDGMENTS

We thank Hilma Vasconcelos and Rich Mirin for helpful
comments on the manuscript.

�1� D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64,
012310 �2001�.

�2� S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65, 042304
�2001�.

�3� E. Knill, R. Laflamme, and G. Milburn, e-print quant-ph/
0006088.

�4� E. Knill, R. Laflamme, and G. Milburn, e-print quant-ph/
0006120.

�5� E. Knill, R. Laflamme, and G. Milburn, Nature �London� 409,
46 �2001�.

�6� T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S.
Glancy, Phys. Rev. A 68, 042319 �2003�.

�7� N. Yoran and B. Reznik, Phys. Rev. Lett. 91, 037903 �2003�.
�8� M. A. Nielsen, Phys. Rev. Lett. 93, 040503 �2004�.
�9� D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501

�2005�.
�10� A. Gilchrist, A. J. F. Hayes, and T. C. Ralph, e-print quant-ph/

0505125.
�11� S. Glancy, J. M. LoSecco, H. M. Vasconcelos, and C. E. Tan-

ner, Phys. Rev. A 65, 062317 �2002�.
�12� M. Silva, e-print quant-ph/0405112.
�13� T. C. Ralph, A. J. F. Hayes, and A. Gilchrist, Phys. Rev. Lett.

95, 100501 �2005�.
�14� M. Silva, M. Rötteler, and C. Zalka, Phys. Rev. A 72, 032307

�2005�; e-print quant-ph/0502101.
�15� M. Varnava, D. E. Browne, and T. Rudolph, e-print quant-ph/

0507036.
�16� C. M. Dawson, H. L. Haselgrove, and M. A. Nielsen, e-print

quant-ph/0509060.
�17� Although these particular circuits are not given by Gottesman,

Kitaev, and Preskill �1�, their paper provides a clear outline of
this error correction procedure and theoretical tools for con-
structing these circuits.

�18� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, 2000�.

�19� V. Giovannetti, S. Mancini, and P. Tombesi, Europhys. Lett.
54, 559 �2001�.

�20� M. Pinard, A. Dantan, D. Vitali, O. Arcizet, T. Briant, and A.
Heidmann, e-print quant-ph/0507275.

�21� B. C. Travaglione and G. J. Milburn, Phys. Rev. A 66, 052322
�2002�.

�22� S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, Europhys.
Lett. 68, 323 �2004�.

�23� S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, e-print
quant-ph/0503003.

�24� S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, e-print
quant-ph/0510053.

ERROR ANALYSIS FOR ENCODING A QUBIT IN AN… PHYSICAL REVIEW A 73, 012325 �2006�

012325-5


