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We propose a scheme for implementing quantum computation with N atoms trapped in a single-sided cavity.
In our scheme, a multiqubit controlled-phase-flip �MCPF� gate as well as a quantum controlled phase flip gate
is performed by only one step. The numerical simulations show that the protocol is robust to practical noise. In
addition, the scheme can also be extended to achieve other multiqubit controlled unitary gates, and implement
MCPF gate on atoms trapped in different cavities.
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I. INTRODUCTION

Quantum computing has attracted much interest since
quantum algorithms are exponentially better than the best-
known classical solutions �1�. The recent studies show that
quantum algorithms need the techniques to efficiently imple-
ment general n-qubit gates �2�. Although multiqubit gates
can be implemented by concatenating a sequence of two-
qubit controlled-phase-flip �CPF� gates and single-qubit
gates �3,4�, the complexity of quantum circuits will have a
great increase with a large number of multiqubit gates inter-
vening. For instance, Barenco et al. showed that the simula-
tion of N-qubit controlled-phase-flip gate with N−1 control
qubits requires at least N−1 CPF gates �3�. Therefore, reduc-
ing the number of required physical logical gates is quite a
significant task for practical quantum computation �5�. For a
physical system, if we can easily implement general n-qubit
gates as well as universal single-qubit and two-qubit logical
gates, it will bring immense advantages to reduce the com-
plexity of practical quantum computation.

Recently, an interesting scheme through cavity-assisted
interaction has been proposed to realize the CPF gate be-
tween the single-photon pulses �6�. In this scheme, photons
act as qubits. As we know, photons have some special advan-
tages, such as the long coherence time and being easy to
manipulate with linear optical methods to realize single-qubit
logical gates. But, on the other hand, they are inconvenient to
store. These features make photons more appropriate to be
used as flying qubits to connect different nodes in a quantum
network. Hence, in our proposal, atoms trapped in the optical
cavity are adopted as storing qubits while photons as flying
qubits. Although similar treatments have been found in a
large number of references �7�, our proposal has some pecu-
liar advantages. At first, for N identical atoms trapped in an
optical cavity, we can implement m-qubit CPF gates for the
arbitrary m�m�N� atoms in this optical cavity. Moreover,
these multiqubit controlled-phase-flip �MCPF� gates can be

realized just by one step, which may cause a great reduction
of the complexity for some quantum circuits since it be-
comes dispensable that some multiqubit gates decompose
into a sequence of universal single-qubit and two-qubit logi-
cal gates. The numerical simulations show that these MCPF
gates are robust to certain practical sources of noise, such as
randomness in the atom’s position and atomic spontaneous
emission. Furthermore, considering the scalability of quan-
tum computation, we provide a further method to implement
MCPF gate for the atoms located in different optical cavities.

The paper is arranged as follows: In Sec. II, we describe
the fundamental model of the MCPF gate in detail. Based on
the relation between input and output modes in cavity QED
systems, we put forward a qualitative illustration for imple-
menting a MCPF gate. In Sec. III, we do a numerical simu-
lation in the situation in which three atoms are trapped in an
optical cavity. The fidelity and success probability of the
MCPF gate are also discussed. Sec. IV gives several appli-
cations of this model. Finally, we summarize the results in
Sec. V.

II. THE FUNDAMENTAL MODEL AND THEORETICAL
ANALYSIS

The schematic setup of the fundamental model is shown
in Fig. 1 N identical alkali atoms, for example, 85Rb
atoms, are trapped in a resonant single-mode optical cavity,
and separated from each other by more than one optical
wavelength so that the dipole-dipole interaction can be ne-
glected. A single-photon pulse with right-circular �R� polar-
ization enters the cavity, after reflection from the one-sided
cavity, and the MCPF gate for N atoms trapped in the cavity
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FIG. 1. �Color online� Schematic setup to implement the multi-
qubit controlled-phase-flip �MCPF� gate with N trapped atoms,
where the input single-photon pulse is R polarization, and D is
single-photon detector.
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is implemented. Figure 2 shows the relevant atomic levels
and transitions. The states �0�, �f�, and �1� correspond to
�F=2,m=0�, �F=2,m=2�, and �F=3,m=2� of 5S1/2, respec-
tively, while �e� corresponds to �F=3,m=3� of 5P3/2. The
qubit is represented by the atomic states �0� and �1�. The
transition �1�→ �e� is resonantly coupled to the cavity mode
aR, which has R polarization and is resonantly driven by the
input single-photon pulse with R polarization. In the rotating
wave approximation and the rotating frame at the frequency
�e1 �i.e., the atomic transition frequency of �1�→ �e��, the
whole Hamiltonian of the system of N atoms and cavity,
including the coupling to the cavity output, has the following
form �setting �=1�:

H = �
j=1

N

�gjaR�e� j�1� + gjaR
† �1� j�e�� + �aR

†aR

+ 	
−�

�

�d�bR
†���bR��� + i
 �

2�
	

−�

�

d��aRbR
†���

− aR
†bR���� , �1�

where gj represents the coupling rate of the jth atom to cav-
ity field, � is the cavity decay rate, � �here �=0, but we keep
it for the following analysis� denotes the detuning of the
cavity field mode aR from the atomic transition, and bR���
with the standard relation �bR��� ,bR

†�����=���−��� denote
the one-dimensional free-space modes which couple to the
cavity mode aR. Here, based on the fact that only terms
which are almost resonant are important, the range �−� ,��
of the � integration replacing �−�e1 ,�� is a good approxi-
mation �8�. The Heisenberg equations of motion for bR���
and aR are

ḃR = − i�bR +
 �

2�
aR�t� �2�

and

ȧR�t� = − i�aR�t�,HI� − i�aR −
 �

2�
	

−�

�

bR���d� , �3�

where the Hamiltonian

HI = �
j=1

N

�gjaR�t��e� j�1� + gjaR
†�t��1� j�e�� �4�

depicts the coherent interaction between the atoms and the
cavity mode aR. We now define input and output field opera-
tors by �8�

bR
in�t� =

1

2�

	
−�

�

e−i�tb0���d� �5�

and

bR
out�t� =

1

2�

	
−�

�

e−i��t−t1�b1���d� , �6�

where b0��� �b1���� is the value of bR��� at t=0 �t= t1 , t1

� t� and has the same commutation relations as bR���, so
bR

in�t� and bR
out�t� satisfy the following commutation relations:

�bR
in�t�,bR

in+�t��� = ��t − t�� , �7�

�bR
out�t�,bR

out+�t��� = ��t − t�� . �8�

From Eqs. �2�–�6�, we can learn that the single-sided cavity
input bR

in�t� and output bR
out�t� are connected with the cavity

mode aR�t� through the following relations �6,8�:

ȧR�t� = − i�aR�t�,HI� − �i� +
�

2
�aR�t� − 
�bR

in�t� �9�

and

bR
out�t� = bR

in�t� + 
�aR�t� . �10�

Eqs. �9� and �10� describe the evolution of the joint state of
atoms and photon pulse.

Before solving exactly the problem through numerical
simulations, we first give a rough theoretical analysis to un-
derstand the basic physics of the model. For convenience, the
coupling rates of all atoms to the cavity field mode are taken
to be the same gj =g, but in Sec. III we will simulate the
result for the case of unequal gj. We use the notation
�n ,N−n�a to denote the state of the N-atom system in which
n atoms are in �0� and N−n atoms in �1�. Similar to Ref. �6�,
we have the following two cases: �i� If the N-atom system is
in the state �N ,0�a, the Hamiltonian HI does not work. Simi-
larly, we define the Fourier components of the intracavity
field by

aR�t� =
1


2�
	

−�

�

e−i�taR���d� . �11�

By substituting Eqs. �5�, �6�, and �11�, into �9� and �10� we
can obtain

bR
out�t� 

i� − �/2

i� + �/2
bR

in�t� �12�

when nonresonant terms contribute very little, which is a
valid approximation if the input pulse shape changes slowly
with time t compared with the cavity decay rate �. Therefore,
in the case of resonant interaction �=0, we have

FIG. 2. �Color online� The relevant level structure and transition
of rubidium atom. The states �0� and �f� ��1�� correspond to the
Zeeman sublevels of the F=2�F=3� ground hyperfine level 5S1/2

while �e� corresponds to the excited hyperfine level of 5P3/2.
�1�→ �e� is resonantly coupled to the cavity mode aR with coupling
constant g.
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bR
out�t�−bR

in�t�. �ii� If the N-atom system is in the state
�n ,N−n�a �0	n	N−1�, for the case of strong coupling �9�,
the
effective detunings of two dressed cavity modes from the
input pulse are �= ±
N−ng, respectively. So we have
bR

out�t�bR
in�t� in the case that g
�. When the detector D

in Fig. 1 is triggered, the state of the whole system including
N atoms, cavity, and free space is collided into the state
described by the first term of right-hand sides of latter
Eqs. �19� or �27�. Consequently, we conclude that the state
of the whole system acquires the phase � or 0 because
bR

out�t�−bR
in�t� or bR

out�t�bR
in�t�. The whole input-output

process can be described by

�N,0�a�R� → − �N,0�a�R� , �13�

or

�n,N − n�a�R� → �n,N − n�a�R� , �14�

where we have discarded the state of cavity since it is always
in the vacuum state, and �R� denotes the state of free-space
photon. If the atoms are initially in a superposition state
��N�N ,0�a+�n=0

N−1�n�n ,N−n�a�, this input-output process is

��N�N,0�a + �
n=0

N−1

�n�n,N − n�a��R�

→ �− �N�N,0�a + �
n=0

N−1

�n�n,N − n�a��R� , �15�

where �n is superposition coefficient. After the detector D is
triggered, the atomic state is collided into the state
�−�N�N ,0�a+�n=0

N−1�n�n ,N−n�a�. Thus we have realized the
desired MCPF gate UN

CPF=ei��N , 0�a�N,0� on atoms, which has
N−1 control qubits. In other words, only if all of the atoms
are initially in �0�, the state of the N-atom system acquires
the phase � after one single-photon pulse is reflected from
the cavity; otherwise, the state of the N-atom system acquires
the phase 0. Actually, the following numerical simulation
results show that the MCPF gate works remarkably well
even if g��.

With the same setup, we can also implement a two-qubit
CPF gate U2

CPF on any two atoms trapped in the cavity,
which is important for universal quantum computation. As-
sume that the jth atom is known as the control qubit and the
�th atom as the target qubit; we firstly completely transfer
the occupations of the state �1� of all atoms except the jth and
�th to those of the state �f�, which is feasible with present
technologies �10,11�. Then the single-photon input pulse
with R polarization enters the cavity. After the detector D
clicks, the occupations of the state �f� of atoms are again
transferred to those of the state �1�. Thus a CPF gate
described by

U2
CPF = U2

j� = ei��2,0�a�2,0� �16�

between two desired atoms is performed. Following a similar
consideration, we can easily implement the number of qubit-
adjustable MCPF as we will, if only to alter the state �1� of
the needless qubits to the state �f�.

III. NUMERICAL SIMULATIONS AND BRIEF
DISCUSSION

Next we adopt the Hamiltonian method to solve exactly
the systemic dynamics �8,12,13�. After considering atomic
spontaneous emission noise, Eq. �1� becomes

H� = �
j=1

N �− i


2
�e� j�e� + gjaR�e� j�1� + gjaR

† �1� j�e��
+ 	

−�b

+�b

�d�bR
†���bR��� + i
 �

2�
	

−�b

+�b

d��aRbR
†���

− aR
†bR���� , �17�

where  is the spontaneous emission rate from the state �e�,
and we have taken an approximate condition that all the
modes outside of the bandwidth ��e1−�b ,�e1+�b� have
negligible contributions to related dynamics due to the
strongly detuning. Assuming that the N-atom system is ini-
tially in the state

���0�� = �
j=1

N

�� j�0� j + � j�1� j� , �18�

with �� j�2+ �� j�2=1, which can be prepared by Raman pulse
sequences �10� or stimulated Raman adiabatic passage �11�,
it can be divided into the two following cases:

�i� When the N-atom system is initially in the state �N ,0�a,
the whole state of the system of N atom, cavity, and free
space can be expanded into the following superposition at t
time

���t�� = �N,0�a�0�c � ���t�� f + d�t��N,0�a�1�c�vac� f ,

�19�

where

���t�� f = 	
−�b

+�b

c��,t�bL
†����vac� fd� �20�

denotes the state of the single-photon output pulse, �vac� f
stands for the vacuum state of the free-space modes, �m�c
represents the state with m photons in cavity. According to
the Schrödinger equation

i�t���t�� = H����t�� , �21�

the coefficients c�� , t� and d�t� satisfy the following evolu-
tion equations:

ċ��,t� = − i�c��,t� +
 �

2�
d�t� , �22�

ḋ�t� = −
 �

2�
	

−�b

+�b

c��,t�d� . �23�

For the numerical simulations, the free-space field bh���
need to be discretized by introducing a finite but small fre-
quency interval �� between two adjacent modes, and the
state ���t�� f becomes �13�
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���t�� f = �
�=1

M

c����,t�b�
+����vac� f , �24�

where b� represents the �th mode of the free space,
��= ��−M /2���, and M =2�b /��. Thus, Eqs. �22� and �23�
are replaced by

ċ� = − i��c� +
���

2�
d , �25�

ḋ = −
���

2�
�
�=1

M

c�. �26�

At the time t=0, the coefficients c���� ,0� is determined by
the corresponding Fourier transformation of input pulse f�t�,
and d�0�=0.

�ii� When the N-atom system is initially in the state
�n ,N−n�a �0	n	N−1�, where we assume that the first n
atoms of N atoms are in �0�, and thus the whole state of the
system of N atom, cavity, and free-space can be expanded
into the following superposition at t time:

���t�� = �n,N − n�a�0�c � ����t�� f + p�t��n,N − n�a�1�c�vac� f

+ q�t� �
�=n+1

N
1


N − n
�n,N − n − 1,e��a�0�c�vac� f , �27�

where

����t�� f = �
�=1

M

c�� ���,t�b�
† ����vac� f , �28�

�n ,N−n−1,e��a denotes the state of the first n atoms in the
state �0�, the �th atom in the state �e�, and other N−n−1
atoms in the state �1�. Following the same discretized proce-
dure above, we can gain the following evolution equations:

ċ�� = − i��c�� +
���

2�
p , �29�

ṗ = −
���

2�
�
�=1

M

c�� − i
N − ngq , �30�

q̇ = − i
N − ngp −


2
q , �31�

with p�0�=q�0�=0, c�� ��� ,0�=c���� ,0�, where we have as-
sumed gj =g for simplicity. For other initial states �n ,N−n�a,
we can acquire the similar equations.

In the following, we present numerical calculation
results for N=3. Assume that the input pulse is taken to be
Gaussian pulse with f�t��exp�−�t−T /2�2 / �T /5�2�, Fig. 3
shows the phase variation between input pulse and output
pulse of the cavity, and demonstrates that the phase factor
is either ei� or ei0 depending on the atomic state �3,0�a
or �n ,3−n�a �0	n	2�. Where we have taken the input
pulse f�t� duration T=5 �s and referred to the parameters
of Ref. �14� for numerical simulation, i.e., g6�,

�� ,� /2��2.8,6� MHz. The fidelity of the MCPF gate
U3

CPF=ei��3 , 0�a�3,0� depends on the initially atomic state. We
define the minimum of the fidelity F as the quality factor Q
of the MCPF gate

Q = Fmin = ���ideal��real��2, �32�

where ��ideal� refers to the state of the atomic system in the
ideal case after a single-photon pulse is reflected from the
cavity; ��real� refers to the state of the atomic system by
numerical simulations. The simulation shows that F has its
minimum value Fmin=Q0.989 at ��1�2= ��2�2= ��3�2=1, i.e.,
the initial state of atoms system is in the state �3,0�a, and the
quality factor Q of the gate is independent of the variation of
the coupling rate g. But, for the initial atomic state such as

���0�� = �
j=1

3
1

2

��0� j + �1� j� , �33�

the fidelity change is about 10−4 for g varying from 2� to
10�. If each gj�j=1,2 ,3� of Eq. �17� is unequal, for ex-
ample, g1=2�, g2=6�, g3=10�, the gate fidelity is about
99.86% �given an initial atomic state such as Eq. �33��. This
means that the gate operation works remarkably well even if
the atoms are not localized in the Lamb-Dicke regime, which
is very important on account of current experimental tech-
nology. The main noise in our scheme arises from atomic
spontaneous emission, which leads to a vacuum-state output.
However, the spontaneous emission noise does not affect the
gate fidelity but lowers the success probability. The highest
probability of spontaneous emission happens for the initially
atomic state �2,1�a. The reason is that the effective coupling
rate g� �i.e., g�=
N−ng, see Eqs. �30� or �31�� is enhanced,
i.e., 
2g or 
3g, for the initially atomic state �1,2�a or �0,3�a.
Figure 4 shows the highest probability Ps of spontaneous
emission as a function of g /�, which is well simulated by the
empirical formula Ps1/ �1+g2 /��. In the case g=15�, Ps

is only about 0.95%. This confirms that spontaneous emis-
sion is effectively restrained for strong coupling. Recently,
an important advance has been achieved in trapping and

FIG. 3. �Color online� The phase variation �� between input
pulse and output pulses of cavity with three-atom in the state �3,0�a

�dotted curve�, �2,1�a �solid curve�, �1,2�a �solid curve�, and �0,3�a

�solid curve�, respectively. Here, we have taken g=6�, �� ,� /2�
= �2.8,6� MHz, and T=5 �s.
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cooling inside high-Q cavities in a regime of strong coupling
�15–18�. In particular, Ref. �19� has reported trapping life-
times in excess of 1 s, and the number of atoms trapped
within the mode of an optical cavity can be determined in
real time �20�. These technologic progresses will make it
possible to implement experimentally the scheme in the
future.

IV. APPLICATIONS

In this section, we will discuss some other applications of
this model. First, we can take advantage of the MCPF gate to
implement other important multiqubit gates by exerting some
single-qubit operations—for example, a Toffoli gate. If the
operation U=H3U3

CPFH3 �where H3 denotes the Hadamard
operation on the third atom, which can be performed with
classical laser pulses� is performed on the three-atom system
trapped in a cavity, we can get the following outcomes:
�000�→ �001�, �001�→ �000�, while other initially atomic
states keep unchanged. Thus the Toffoli gate is realized by
one step, while it needs six CPF gates in general quantum
circuit �21�. Here, “one step” means that it just need one step
of a physical process to realize the nonlocal operation. Of
course, for realizing a Toffoli gate some secondary local op-
erations are necessary. It does not allow for the quantity of
local gate operations because, in our architecture of quantum
computing, implementing local operations is easy to handle
compared with performing nonlocal operations. This sce-
nario also takes place in other model of quantum computing.
Thus, we may further reduce the “actual” complexity of
quantum computing to the quantity of nonlocal operations in
quantum circuits. Our present scheme exactly makes a great
reduction for MCPF gate. As we know, to construct an
n-qubit Toffoli gate �n�3�, 2n−2+2n−3−2 Toffoli gates are
needed �4�, while in our proposal, concatenating exponential
time nonlocal operations reduce to a single actual operation.
Although there is no theory which shows that this reduction
will essentially lead to the decline of computational com-
plexity of quantum algorithms, some special algorithms can

obtain great advantages from this reduction �22�.
A more significant application of the model is that it can

be used to implement MCPF gate on atoms trapped in dif-
ferent cavities. Based on current experimental technology,
the above model is not readily scaled up to large-scale quan-
tum computation, which requires that many atoms be sepa-
rately addressed within a tiny optical cavity. Therefore, it is
very important for scalable quantum computing to imple-
ment the connection between cavities. The setup for realizing
the idea is shown in Fig. 5. Two single-mode cavities A and
B trap N and M 85Rb atoms, respectively, which are initially
in the state described by Eq. �18�. The polarization beam
splitters PBS1, PBS2, and PBS3 transmit only horizontal �h�
polarization component and reflect the vertical �v� polariza-
tion component. The quarter-wave plates QWP1 and QWP2
perform the transformation between R polarization and h po-
larization photons. The v polarized component of input pulse
is reflected without shape and phase changes by the mirrors
M1 and M2. Based on the results above, after reflection from
cavity A �B�, the h polarized component of input pulse ac-
quires a phase of ei� if the N- �M-� atom system is initially in
the state �N ,0�aA ��M ,0�aB�; however, the phase of h photon
pulse keeps unchanged if the N- �M-� atom system is initially
in the state �nA ,N−nA�aA ��nB ,M −nB�aB�, where nA�N
�nB�M�. Two half-wave plates HWP1 and HWP2 change
the state �h� into 1/
2��v�− �h�� or the state �v� into
1/
2��v�+ �h��. The unidirectional coupling between the two
single-sided cavities is achieved by circulator. The input
single-photon pulse with initial state ���p=1/
2��h�+ �v��
pass through the following way: PBS1→QWP1, cavity
A�or M1�→PBS1→HWP1→C→PBS2→QWP2, cavity
B�or M2�→PBS2→C→HWP2→PBS3. When the detector
D1 is triggered, one can find that a MCPF gate for N+M
atoms described by UN+M

CPF =ei��N + M , 0�a�N+M,0� is performed.
But when the detector D2 is triggered, we must let single-
photon pulse with R polarization enter cavity A again and be
reflected �as shown in Fig. 1�. After the detector D triggered,
the same unitary operation UN+M

CPF is performed. In particular,
if cavities A and B both trap only one atom, through the

FIG. 4. �Color online� The highest probability Ps of spontaneous
emission as a function of g /�. The dots denote the results of nu-
merical simulation, and the solid curve describes the empirical for-
mula Ps1/ �1+g2 /��. The parameters are the same as those in
Fig. 3.

FIG. 5. �Color online� Schematic setup to implement the multi-
qubit controlled-phase-flip �MCPF� gate on distant atoms. Where
PBS1, PBS2, and PBS3 symbolize polarization beam splitters,
QWP1 and QWP2 are quarter-wave plates, HWP1 and HWP2
mark half-wave plates, M1 and M2 represent reflecting mirrors,
D1 and D2 are single-photon detectors, and C denotes circulator.
The optical paths from PBS1→M1 �PBS2→M2� and from
PBS1→QWP1, cavity A �PBS2→QWP2, cavity B� are assumed to
be equal.
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above process the state of two atoms is prepared into

��� = − �1�2�00� + �1�2�01� + �1�2�10� + �1�2�11� .

�34�

Namely we have implemented two-qubit phase gate U2
CPF

=ei��2 , 0�a�2,0�. If �i=�i=1/
2�i=1,2�, the state �34� can be
written as

��� =
1

2

��0��− � + �1�� + �� �35�

where �+ �=1/
2��1�+ �0��, �−�=1/
2��1�− �0��, i.e., we have
prepared the maximally entangled state between distant at-
oms, which is one of key problems of quantum computation
and quantum communication.

V. CONCLUSION

In conclusion, we have made a protocol to realize not
only the CPF gate but also the MCPF gate by one step. The
direct implementation of multiqubit controlled-phase-flip
gate would be more efficient than implementation built from
a series of one- and two-qubit rotations, and this efficiency
would become even more significant with an increasing
number of the qubits. Obviously, a smaller number of gate
steps keeps the scheme easier to implement from the experi-
mental point of view. The numerical simulations show that

the scheme has the following significant advantages: �i� It is
so insensitive to variation of the atom-photon coupling rate
that it has high fidelity even if the atoms are not localized in
the Lamb-Dicke regime. �ii� The scheme is inherently robust
to atomic spontaneous emission, which simply decreases the
success probability but exerts no influence on the fidelity of
the gate. In addition, the protocol may be adopted to achieve
other implement multiqubit controlled unitary gates, and
implement MCPF gate on distant atoms for large-scale quan-
tum computation.

Note added.—After submission of this work, we become
aware that similar ideas have been recently proposed by
Duan, Wang, and Kimble �23� independently.
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