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We study the problem of mapping an unknown mixed quantum state onto a known pure state without the use
of unitary transformations. This is achieved with the help of sequential measurements of two noncommuting
observables only. We show that the overall success probability is maximized in the case of measuring two
observables whose eigenstates define mutually unbiased bases. We find that for this optimal case the success
probability quickly converges to unity as the number of measurement processes increases and that it is almost
independent of the initial state. In particular, we show that to guarantee a success probability close to one the
number of consecutive measurements must be larger than the dimension of the Hilbert space. We connect these
results to quantum copying, quantum deleting, and entanglement generation.
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I. INTRODUCTION

During the last two decades a major research effort has
been conducted in the emerging field of quantum information
theory �1�. Much of this activity starts with the observation
that the capacity of physical systems to process, store, and
transmit information depends on their classical or quantum
nature �2�. Quantum algorithms, that is, algorithms based on
the laws of quantum mechanics, show an enhancement of
information processing capabilities over their classical coun-
terparts. A large collection of quantum communication pro-
tocols such as quantum teleportation �3�, entanglement swap-
ping �4�, quantum cloning �5,6�, and quantum erasing �7�
reveal forms of transmitting and storing classical and quan-
tum information. Most of these protocols have already been
experimentally implemented �8–14�.

A common assumption concerning quantum algorithms
and quantum communication protocols is the capacity of per-
forming transformations belonging to a fixed but arbitrary set
of unitary transformations together with measurements on a
given basis. An interesting application in this context is
quantum information dilution �15�. Here, an arbitrary un-
known state of a two-dimensional quantum system is asymp-
totically driven onto a particular state by interacting with a
finite reservoir of two-dimensional quantum systems. This is
implemented by means of a sequence of unitary swapping
interactions.

In this paper we study the problem of mapping a mixed
initial state onto a known pure state using measurements as
the only allowed resource, that is, a measurement driven
quantum evolution. Unitary operations and ancillary systems
are not to be used. We show how this problem connects
naturally to a generation of quantum copies, quantum delet-
ing, and entangled states generation.

This paper is organized as follows: in Sec. II we study the
problem considering states belonging to a two-dimensional
Hilbert space. In Sec. III we generalize to the case of a
d-dimensional Hilbert space and show that mutually unbi-
ased bases optimize the overall success probability. Section
IV presents the case of m target states in a d-dimensional
Hilbert space. In Sec. V we summarize our results.

II. TWO-DIMENSIONAL CASE

Let us consider a quantum system described by a two-
dimensional Hilbert space. Initially, the system is in a mixed
state �. Our goal consists in mapping this state onto the
known target state ��� by using quantum measurements as
the only allowed resource.

In order to accomplish this task we define a nondegener-
ate observable �̂. Its spectral decomposition is

�̂ = ������� + ���������� , �1�

where the ��� and ���� states are eigenstates of �̂ with the
eigenvalues � and ��, respectively. Thereby, the target state
must belong to the spectral decomposition.

A measurement of the �̂ observable onto the � state
projects the system to the target state ��� with the probability
p= �������. In this case we succeed and no further action is
required. However, the process fails with probability 1− p
when the measurement projects the system onto the ����
state. Since this state cannot be projected to ���, the target
state, by means of another measurement of �̂, it is necessary

to introduce a second observable �̂ whose nondegenerate
eigenstates �0� and �1� are

�0� = cos������ + ei� sin������� ,
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�1� = − e−i� sin������ + cos������� , �2�

with � and � being real numbers.

A measurement of �̂ projects the ���� state onto the state
�0� or �1�. Since both states have a component on the ���
state, a second measurement of �̂ allows us to project again,
with a certain probability, to the target state ���. The prob-
ability p� that this procedure fails after a first measurement
of �̂ but is successful after a consecutive measurement of the

�̂ and �̂ operators is,

p� = ������������0�����2����0��2 + ��1�����2����1��2�

=
1

2
���������sin2�2�� , �3�

where we have used Eq. �2�. Then, the success probability in

the sequence of measurements �M��̂�M��̂��M��̂� is

p + p� = 1 − ���������	1 −
1

2
sin2�2��
 . �4�

Similarly, the success probability ps of mapping the initial
state � onto ���, the target state, after applying the consecu-

tive measurement processes �M��̂�M��̂��NM��̂�, that is, a
measurement of �̂ followed by N measurement processes

each one composed of �̂ followed by �̂, is given by

ps,N = 1 − ����������1 − �
j=0

1

��j�����2����j��2N

, �5�

or equivalently

ps,N = 1 − ����������1 −
1

2
sin2�2��N

. �6�

Clearly, the extreme values �=0 and �=� /2 correspond to

observables �̂ and �̂ defining the same basis. Consequently,

in this case the success probability becomes simply �������.
The expression �6� indicates that the success probability ps,N
can be maximized by choosing �=� /4. In this case
we obtain

ps,max = 1 −
���������

2N . �7�

Figure 1�a� aillustrates the behavior of the maximum success
probability ps,max as a function of N for the different values
of ���������. We observe that ps,max quickly converges to 1
almost independently of the ��������� even if the initial
state � belongs to a subspace orthogonal to ���. For instance,
in this particular case, if the success probability for the first
measurement of �̂ vanishes, after four successive measure-

ments of �̂ and �̂, the success probability has increased to
approximately 0.937 50, while after twelve measurement
processes it reaches approximately the value 0.999 76. The
fact that the success probability is maximized for �=� /4

indicates that in this case the �̂ and �̂ observables define two
mutually unbiased bases in a two-dimensional Hilbert space.
Figure 1�b� shows ps,N versus N for � equal to � /12 �circle�,
� /8 �square�, and � /4 �triangle�. Since mutually unbiased
bases give the optimal process for each N, ps,N approaches to
1 faster than in the other cases. As is apparent from Fig. 1�b�,
the convergence of the success probability strongly depends
on the relation between the involved bases.

If we start the process measuring �̂ instead of �̂, the suc-
cess probability �5� slightly changes its form. In Eq. �5� N
must be replaced by N−1 �with N=1,2 , . . .� and ���������
by cos4���−cos�2�����������+ ��ei� /4�sin�4����������
+c.c.�. In this case, mutually unbiased bases also lead to the
highest success probability and, for large values of N, the
behavior of the success probability remains unchanged.

In the following section we study this relation and gener-
alize the results of this section to the d-dimensional case.

FIG. 1. Behavior of; �a� ps,max as a function of
N for the three values of ���������; 1 /3 �tri-
angle�, 2 /3 �square�, 1 �circle�, �b� ps,N as a func-
tion of N for the three values of �; � /4 �triangle�,
� /8 �square�, � /12 �circle�, with ���������=1.
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III. D-DIMENSIONAL CASE

Two noncommuting and nondegenerate observables de-
fined on a d-dimensional Hilbert space can have at most n
equal eigenstates with 0�n�d−2. Thus, on this
n-dimensional subspace both observables can be well defined
simultaneously, that is, the system can be described by one of
the n common eigenstates. However, on the
�d−n�-dimensional subspace only one of them can be well
defined. This property for two noncommuting observables
turns up in a Hilbert space only when its dimension is higher
than 2. One can easily conclude that observables having
some common eigendirections are not useful for our purpose.
In this case the noncommutativity of the observables is a
necessary but not sufficient condition, as in the two-
dimensional case studied in the previous section. This moti-
vates us to study the scheme of driving a quantum state by
means of measurement in the general case of a
d-dimensional Hilbert space.

We now generalize the previous results to the case of a
target state, ��1�, belonging to a d-dimensional Hilbert space.
Let ���1� , ��2� , . . . , ��d�� and ��1� , �2� , . . . , �d�� be orthonormal
bases defined by the spectral decompositions of the nonde-

generate observables �̂ and �̂, respectively. Initially the sys-
tem is described by the � state to be mapped onto the known
pure state ��1�. The probability of success after the N mea-

surement processes of �̂ followed by �̂, is given by,

ps,N = ��1����1�

+ �
i=2

d

��i����i��
k=1

N 	�
n=1

k ��
j1=2

d

¯ �
jn=2

d

pi,j1
pj1,j2

¯ pjn,1
 ,

�8�

where pk,j is defined as

pk,j = �
i=1

d

��i��k��2��� j�i��2. �9�

The process which maps the ��k� state with k�1 onto the
��1� state is fundamental in this protocol because it is re-
peated when we do not succeed. The success probability of
this process is pk,1. This can be seen as an inner product
between Ai

k vectors whose d real, nonnegative components
are ��i ��k��2 �i=1, . . . ,d�, that is, pk,1=�i=1

d Ai
kAi

1. This prod-
uct is at maximum when both vectors are parallel, which
implies that Ai

k=	kAi
1 for all k. Since these vectors are real

and the sum of their components is unitary, we deduce that
	k=1 for all k and that ��i ��k��2= ��i ��k���

2. Therefore, we
conclude that ��i ��k��=1/�d∀ i, k. This property indicates

that, in the optimal case, the two �̂ and �̂ observables define
two mutually unbiased bases. An alternative proof can be
obtained by noting that it suffices to optimize the first step.
That is, we need to project a ���� state onto some element of
the ��i�� basis in order to take the state out from the subspace
orthogonal to the desired direction. The resulting density ma-
trix of this process is

� = �
i

��i�����2�i��i� . �10�

Now we look for the basis which leads to the state nearest to
the target state ��1�. This can be quantified by means of the
Hilbert-Schmidt distance �16�. In this case, we need to mini-
mize the expression

D = min‖� − ��1���1�‖2. �11�

Considering the � state, this expression becomes

D = 2�1 − �
i

��i�����2���1�i��2 . �12�

Taking into account the properties of the above probabilities,
it is clear that the minimum distance is reached under the
condition

��i�����2 = ���1�i��2, �13�

which means that the ��i�� basis must be complementary to
the original ��� j�� basis. That is, the two required bases are
related by means of the discrete Fourier transformation. In
this scheme only two complementary bases are required,
which can always be found �17–19�. A different proof can be
obtained by interpreting pk,1 as a correlation function and
considering the property p1
 pk �20�.

For mutually unbiased bases the success probability, Eq.
�8�, simplifies considerably to

ps,N = 1 − �1 − ��1����1���1 −
1

d
N

. �14�

In the limit, d�1, this expression becomes

ps,N = 1 − �1 − ��1����1��e−N/d. �15�

Thus, in the case of higher dimensions, in order to reach a
success probability close to 1, it is required that the number

N of the measurement processes of the �̂ observable fol-
lowed by �̂ must be larger than the dimension d of the Hil-
bert space. Otherwise, the term ��1����1� entered in Eqs. �14�
and �15� dominates.

We now proceed to obtain an average success probability
which does not depend on the initial pure state. This is
achieved by integrating over the whole Hilbert space, that is,

p̄s,N =� d�ps,N, �16�

where d� denotes the Haar integration measure and we con-
sider initially pure states only. In this case the average prob-
ability p̄s,N is

p̄s,N = 1 − �1 −
1

d
N

+ �1 −
1

d
N� d����1����2, �17�

where we have considered the case of mutually unbiased
bases. The starting point is the identity �21�
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� d����n��k��������� =
n,kI + �n��k�

d�d + 1�
, �18�

where ��n�� with n=1, . . . ,d is an arbitrary base for a
d-dimensional Hilbert space. Taking the trace of this identity
we obtain,

� d����n��k��� =
n,k

d
. �19�

Making n=k and considering ��1� as belonging to the basis,
we obtain, for any ��1� state, the identity

� d����1����2 =
1

d
. �20�

Thereby, the average success probability becomes

p̄s,N = 1 − �1 −
1

d
N+1

. �21�

Thus, if we randomly select an initial state, the average suc-
cess probability of mapping this state onto the target state
��1� is given by p̄s,N. In the limit of large N, p̄s,N becomes

p̄s,N = 1 − e−�N+1�/d. �22�

These results are equal to the case when the initial state � is
I /d, see Eqs. �14� and �15�.

An interesting application of this result arises when we
study the case of a target state ��1� belonging to a bipartite
system, each system being described by a d-dimensional Hil-
bert space. In particular

��1� = 	������� + �������� . �23�

Assuming a factorized initial state of the form

�i = � � � , �24�

the success probability of the process which maps this state
onto the ��1� state is given by

ps,N = 1 − �1 − ��������1 − ���������1 + 2 Re�	�*����2��

��1 −
1

d2N

, �25�

where the � coefficient gives an account of the initial deco-
herence process affecting the � state, defined by

�������� = ������������������ , �26�

with 0� ����1, which relates to the diagonal coefficients of
� to the nondiagonal ones. It can be shown that the success
probability can be upper bounded as

ps,N � 1 − �1 −
1

4
�1 + 2 Re�	�*����2���1 −

1

d2N

.

�27�

Thereby, when Re �	�*��0, the maximum probability for
fixed N is achieved under the condition ���2=1, that is, for a
pure initial state. However, if Re �	�*��0, the probability is
maximum when ���2=0. This means that, for states fulfilling

the condition Re �	�*��0, such as the singlet state, the suc-
cess probability is higher in the case of the total initial deco-
herence than in any other case, corresponding to the smallest
probability to an initially pure state.

This scheme can also be connected to the application of
quantum erasure. If we fix the target state, and consequently

the �̂ and �̂ operators, then the sequence of measurements
will map any initial state onto that same target state. Thereby,
the overall effect will correspond to probabilistically erasing
the information content of the initial state. The success prob-
ability of this probabilistic erasure will be given by Eq. �21�.

IV. GENERALIZATION TO m ORTHOGONAL TARGET
STATES

The above results can be generalized to the case of m
orthogonal target states belonging to a d-dimensional Hilbert
space. Here we consider again the bases ���1� , ��2� , . . . , ��d��
and ��1� , �2� , . . . , �d�� of the observables �̂ and �̂, respec-
tively. Our aim is to map the initial state � onto any of the
target states ���1� , . . . , ��m��. After measuring the �̂ observ-
able and failing, the state of the system is in one of the
���m+1� , . . . , ��d�� states. The probability of mapping the sys-
tem from any one of these states onto any one of the target

states by a consecutive measurement of the �̂ and �̂ observ-
ables is given by

p = �
j=m+1

d

�
k=1

m

pj,k. �28�

This probability can be written as a sum of �d−m�m scalar
products of the Ai

j vectors defined in the previous section,
that is,

p = �
j=m+1

d

�
k=1

m

�
i=1

d

Ai
jAi

k. �29�

The maximum value of this quantity is achieved when each
scalar product involves two parallel vectors, that is

Ai
j = 	 j,kAi

k ∀ j = m + 1, . . . ,d, and k = 1, . . . ,m and

i = 1, . . . ,d . �30�

Since the sum of the elements of each Ai
j vector is unity, we

obtain 	 j,k=1∀ j, k. Thus, it holds that Ai
j =Ai

k, that is, all the
Ai

j vectors are equal. This implies that any state �i� has the
same projection onto all the states belonging to the
���1� , ��2� , . . . , ��d�� basis, which is possible only if ��� j � i��2

=1/d. Therefore, the �̂ and �̂ observables define mutually
unbiased bases. Considering these types of bases, which op-
timize the process, the probability of mapping the initial state
� onto any of m states ��1� , . . . , ��m� after N measurement

processes of �̂ and �̂ is given by

ps,N = 1 − �1 − �
k=1

m

��k����k��1 −
m

d
N

. �31�

As an application, let us suppose that we want to generate
l copies of each of the m orthogonal states ��1�, ��2� , . . .,
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��m�, belonging to a d-dimensional Hilbert space. So, we can
assume that the m target states belong to a multipartite sys-
tem composed of l identical systems and that they have the
form ��i�= ��i�1 � ��i�2 � ¯ � ��i�l, where i=1, . . . ,m. Then
the probability of generating any of these “state-copies” after

the N processes of measurement of �̂ followed by �̂ is

ps,N = 1 − �1 − �
k=1

m

��k����k�l�1 −
m

dlN

, �32�

where we have assumed that the initial state is factorized and
that each of the l systems is in the � state. Independent of the
initial condition, this probability is closer to unity when
dl�m and Nm�dl. On the other hand, randomly selecting
an initially pure state the average success probability of map-
ping this state onto one of the m target state-copies is given
by the expression

p̄s,N = 1 − �1 −
m

dlN+1

, �33�

which in the limit dl�m behaves as

p̄s,N = 1 − exp�−
m�N + 1�

dl  . �34�

Thus, in this limit the more the number l of copies, the prob-
ability of success decreases or converges more slowly to 1.

V. CONCLUSIONS

We have studied a scheme to map an unknown mixed
state of a quantum system onto an arbitrary state belonging
to a set of known pure quantum states. This scheme is based

on a sequence of measurements of two noncommuting ob-
servables. The target states are eigenstates of one of the two
observables, while the other observable maps the states out
of the subspace orthogonal to the one defined by the target
states. The success probability turns out to be maximal under
the condition that the observables define mutually comple-
mentary bases. In other words, both required bases are al-
ways related by a discrete Fourier transform. We have also
shown that these results hold in the case of arbitrary but
finite dimensions. The scheme consists of applying a mea-
surement of the �̂ observable followed by N measurement

processes, each one composed of �̂ followed by �̂, this is,

��̂�̂�N�̂. The target states belong to the spectral decomposi-
tion of the �̂ observable. The success probability quickly
converges to unity when the number N of the sequences of
measurement processes is larger than the dimension of the
Hilbert space. We have connected these results to the genera-
tion of quantum copies, quantum deleting, and pure en-
tangled states generation. The extension of these results to
the case of continuous variables is under study.

We have specifically restricted ourselves to the use of two
observables. It is possible to define a larger number of ob-
servables to accomplish the process we are dealing with. In
this case it might be possible to optimize jointly the relation
between the observables and the number of observables.
However, the analysis of this case becomes involved and
deserves a separate study.
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