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The Fuchs-Peres-Brandt �FPB� probe realizes the most powerful individual attack on Bennett-Brassard 1984
quantum key distribution �BB84 QKD� by means of a single controlled-NOT �CNOT� gate. This paper describes
a complete physical simulation of the FPB-probe attack on polarization-based BB84 QKD using a determin-
istic CNOT constructed from single-photon two-qubit quantum logic. Adding polarization-preserving quantum
nondemolition measurements of photon number to this configuration converts the physical simulation into a
true deterministic realization of the FPB attack.

DOI: 10.1103/PhysRevA.73.012315 PACS number�s�: 03.67.Dd, 03.67.Lx, 42.50.Dv

I. INTRODUCTION

Bennett-Brassard 1984 quantum key distribution �BB84
QKD� using single-photon polarization states works as fol-
lows �1�. In each time interval allotted for a bit, Alice trans-
mits a single photon in a randomly selected polarization,
chosen from horizontal �H�, vertical �V�, +45°, or −45°,
while Bob randomly chooses to detect photons in either the
H-V or ±45° bases. Bob discloses to Alice the sequence of
bit intervals and associated measurement bases for which he
has detections. Alice then informs Bob which detections oc-
curred in bases coincident with the ones that she used. These
are the sift events, i.e., bit intervals in which Bob has a de-
tection and his count has occurred in the same basis that
Alice used. An error event is a sift event in which Bob de-
codes the incorrect bit value. Alice and Bob employ a pre-
scribed set of operations to identify errors in their sifted bits,
correct these errors, and apply sufficient privacy amplifica-
tion to deny useful key information to any potential eaves-
dropper �Eve�. At the end of the full QKD procedure, Alice
and Bob have a shared one-time pad with which they can
communicate in complete security.

In long-distance QKD systems, most of Alice’s photons
will go undetected, owing to propagation loss and detector
inefficiencies. Dark counts and, for atmospheric QKD sys-
tems, background counts can cause error events in these sys-
tems, as can intrusion by Eve. Employing an attenuated laser
source, in lieu of a true single-photon source, further reduces
QKD performance as such sources are typically run at less
than one photon on average per bit interval, and the occur-
rence of multiphoton events, although rare at low average
photon number, opens up additional vulnerability. Security
proofs have been published for ideal BB84 protocols �2�, as
have security analyses that incorporate a variety of nonide-
alities �3�. Our attention, however, will be directed toward
attacking BB84 QKD, as, to our knowledge, no such experi-
ments have been performed, although a variety of potentially
practical approaches have been discussed �4�. Our particular
objective will be to show that current technology permits
physical simulation of the Fuchs-Peres-Brandt �FPB� probe

�5�, i.e., the most powerful individual attack on the single-
photon BB84 protocol, and that developments underway in
quantum nondemolition �QND� detection may soon turn this
physical simulation into a full implementation of the attack.
Thus we believe it is of interest to construct the physical
simulation and put the BB84 protocol’s security to the test:
how much information can Eve really derive about the key
that Alice and Bob have distilled while keeping Alice and
Bob oblivious to her presence.

The remainder of this paper is organized as follows. In
Sec. II we review the FPB probe and its theoretical perfor-
mance. In Sec. III we describe a complete physical simula-
tion of this probe constructed from single-photon two-qubit
�SPTQ� quantum logic. We conclude, in Sec. IV, by showing
how the addition of polarization-preserving QND measure-
ments of photon number can convert this physical simulation
into a true deterministic realization of the FPB attack on
polarization-based BB84 protocol.

II. THE FUCHS-PERES-BRANDT PROBE

In an individual attack on single-photon BB84 QKD, Eve
probes Alice’s photons one at a time. In a collective attack,
Eve’s measurements probe groups of Alice’s photons. Less is
known about collective attacks �6�, so we will limit our con-
sideration to individual attacks. Fuchs and Peres �7� de-
scribed the most general way in which an individual attack
could be performed. Eve supplies a probe photon and lets it
interact with Alice’s photon in a unitary manner. Eve then
sends Alice’s photon to Bob, and performs a probability
operator-valued measurement �POVM� on the probe photon
she has retained. Slutsky et al. �8� demonstrated that the
Fuchs-Peres construct—with the appropriate choice of probe
state, interaction, and measurement—affords Eve the maxi-
mum amount of Rényi information about the error-free sifted
bits that Bob receives for a given level of disturbance, i.e.,
for a given probability that a sifted bit will be received in
error. Brandt �5� extended the treatment of Slutsky et al. by
showing that the optimal probe could be realized with a
single CNOT gate. Figure 1 shows an abstract diagram of the
resulting Fuchs-Peres-Brandt probe. In what follows we give
a brief review of its structure and performance—see �5� for a
more detailed treatment—where, for simplicity, we assume*Electronic address: jhs@mit.edu
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ideal conditions in which Alice transmits a single photon per
bit interval, there is no propagation loss and no extraneous
�background� light collection, and both Eve and Bob have
unity quantum efficiency photodetectors with no dark counts.
These ideal conditions imply there will not be any errors on
sifted bits in the absence of eavesdropping; the case of more
realistic conditions will be discussed briefly in Sec. IV.

In each bit interval Alice transmits, at random, a single
photon in one of the four BB84 polarization states. Eve uses
this photon as the control-qubit input to a CNOT gate whose
computational basis—relative to the BB84 polarization
states—is shown in Fig. 2, namely,

�0� � cos��/8��H� + sin��/8��V� , �1�

�1� � − sin��/8��H� + cos��/8��V� , �2�

in terms of the H-V basis. Eve supplies her own probe pho-
ton, as the target-qubit input to this CNOT gate, in the state

�Tin� � C� + � + S�− � , �3�

where C=�1−2PE, S=�2PE, �± �= ��0�± �1�� /�2, and
0� PE�1/2 will turn out to be the error probability that
Eve’s probe creates on Bob’s sifted bits �9�. So, as PE in-
creases from 0 to 1/2, �Tin� goes from ��� to ���. The
�un-normalized� output states that may occur for this target
qubit are

�T±� � C� + � ±
S
�2

�− � , �4�

�TE� �
S
�2

�− � . �5�

Here is how the FPB probe works. When Alice uses the
H-V basis for her photon transmission, Eve’s CNOT gate ef-
fects the following transformation:

�H��Tin� → �H��T−� + �V��TE� , �6�

�V��Tin� → �V��T+� + �H��TE� , �7�

where the kets on the left-hand side denote the Alice � Eve
state of the control and target qubits at the CNOT gate’s input
and the kets on the right-hand side denote the Bob � Eve
state of the control and target qubits at the CNOT gate’s out-
put. Similarly, when Alice uses the ±45° basis, Eve’s CNOT

gate has the following behavior:

� + 45 ° ��Tin� → � + 45 ° ��T+� + �− 45 ° ��TE� , �8�

�− 45 ° ��Tin� → �− 45 ° ��T−� + � + 45 ° ��TE� . �9�

Suppose that Bob measures in the basis that Alice has em-
ployed and his outcome matches what Alice sent. Then Eve
can learn their shared bit value, once Bob discloses his mea-
surement basis, by distinguishing between the �T+� and �T−�
output states for her target qubit. Of course, this knowledge
comes at a cost: Eve has caused an error event whenever
Alice and Bob choose a common basis and her target qubit’s
output state is �TE�. To maximize the information she derives
from this intrusion, Eve applies the minimum error probabil-
ity receiver for distinguishing between the single-photon po-
larization states �T+� and �T−�. This is a projective measure-
ment onto the polarization basis 	�d+� , �d−�
, shown in Fig. 3
and given by

�d+� =
� + � + �− �

�2
= �0� , �10�

�d−� =
� + � − �− �

�2
= �1� . �11�

Two straightforward calculations will now complete our
review of the FPB probe. First, we find the error probability
that is created by Eve’s presence. Suppose Alice and Bob use
the H-V basis and Alice has sent �H�. Alice and Bob will
incur an error if the control � target output from Eve’s
CNOT gate is �V��TE�. The probability that this occurs is
�TE �TE�=S2 /2= PE. The same conditional error probability
ensues for the other three error events, e.g., when Alice and
Bob use the ±45° basis, Alice sends �+45° �, and the CNOT

gate output is �−45° ��TE�. It follows that the unconditional
error probability incurred by Alice and Bob on their sift
events is PE.

Now we shall determine the Rényi information that Eve
derives about the sift events for which Alice and Bob do not

FIG. 1. �Color online� Block diagram of the Fuchs-Peres-Brandt
probe for attacking BB84 QKD.

FIG. 2. �Color online� Computational basis for Eve’s CNOT gate
referenced to the BB84 polarization states.

FIG. 3. �Color online� Measurement basis for Eve’s minimum-
error-probability discrimination between �T+� and �T−�.
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suffer errors. Let B= 	0,1
 and E= 	0,1
 denote the en-
sembles of possible bit values that Bob and Eve receive on
a sift event in which Bob’s bit value agrees with Alice’s.
The Rényi information �in bits� that Eve learns about each
Alice-and-Bob error-free sift event is

IR � − log2�
b=0

1

P2�b�� + 
e=0

1

P�e�log2�
b=0

1

P2�b�e�� ,

�12�

where 	P�b� , P�e�
 are the prior probabilities for Bob’s and
Eve’s bit values, and P�b �e� is the conditional probability for
Bob’s bit value to be b given that Eve’s is e. Alice’s bits are
equally likely to be 0 or 1, and Eve’s conditional error prob-
abilities satisfy �10�

P�e = 1�b = 0� = P�e = 0�b = 1� �13�

=
1

2
�1 −�1 −

��T+�T−��2

�T+�T+��T−�T−�
� �14�

=
1

2
�1 −

�4PE�1 − 2PE�
1 − PE

� . �15�

These results imply that b is also equally likely to be 0 or 1,
and that P�b �e�= P�e �b�, whence

IR = log2�1 +
4PE�1 − 2PE�

�1 − PE�2 � , �16�

which we have plotted in Fig. 4.
Figure 4 reveals several noteworthy performance points

for the FPB probe. The IR=0, PE=0 point in this figure cor-
responds to Eve’s operating her CNOT gate with �Tin�= �+ � for
its target qubit input. It is well known that such an input is
unaffected by and does not affect the control qubit. Thus Bob
suffers no errors but Eve gets no Rényi information. The
IR=1, PE=1/3 point in this figure corresponds to Eve’s op-
erating her CNOT gate with �Tin�=�1/3�+ �+�2/3�−�, which
leads to �T±�� �d±�. In this case Eve’s Fig. 3 receiver makes

no errors, so she obtains the maximum �1 bit� Rényi infor-
mation about each of Bob’s error-free bits. The IR=0,
PE=1/2 point in this figure corresponds to Eve’s operating
her CNOT gate with �Tin�= �−�, which gives �T+�= �T−�= �TE�
=�1/2�−�. Here it is clear that Eve gains no information
about Bob’s error-free bits, but his error probability is 1 /2
because of the action of the ��� target qubit on the control
qubit.

III. PHYSICAL SIMULATION IN SPTQ LOGIC

In single-photon two-qubit quantum logic, each photon
encodes two independently controllable qubits �11�. One of
these is the familiar polarization qubit, with basis 	�H� , �V�
.
The other we shall term the momentum qubit—because our
physical simulation of the FPB probe will rely on the
polarization-momentum hyperentangled photon pairs pro-
duced by type-II phase matched spontaneous parametric
down-conversion �SPDC�—although in the collimated con-
figuration in which SPTQ is implemented its basis states are
single-photon kets for right and left beam positions �spatial
modes�, denoted 	�R� , �L�
. Unlike the gates proposed for lin-
ear optics quantum computing �12�, which are scalable but
nondeterministic, SPTQ quantum logic is deterministic but
not scalable. Nevertheless, SPTQ quantum logic suffices for
a complete physical simulation of polarization-based BB84
protocol being attacked with the FPB probe, as we shall
show. Before doing so, however, we need to comment on the
gates that have been demonstrated in SPTQ logic.

It is well known that single qubit rotations and CNOT gates
form a universal set for quantum computation. In SPTQ
quantum logic, polarization-qubit rotations are easily accom-
plished with wave plates, just as is done in linear optics
quantum computing. Momentum-qubit rotations are realized
by first performing a SWAP operation, to exchange the polar-
ization and momentum qubits, then rotating the polarization
qubit, and finally performing another SWAP. The SWAP opera-
tion is a cascade of three CNOT gates, as shown in Fig. 5. For
its implementation in SPTQ quantum logic the left and
right CNOT gates in Fig. 5 are momentum-controlled-NOT

�M-CNOT� gates and the middle CNOT gate is a polarization-
controlled-NOT �P-CNOT� gate. �An M-CNOT gate uses the mo-
mentum qubit of a single photon to perform the controlled-
NOT operation on the polarization qubit of that same photon,
and vice versa for the P-CNOT gate.� Experimental demon-
strations of deterministic M-CNOT, P-CNOT, and SWAP gates
are reported in �11,13�.

Figure 6 shows a physical simulation of polarization-
based BB84 protocol under FPB attack when Alice has a

FIG. 4. �Color online� Eve’s Rényi information about Bob’s
error-free sifted bits as a function of the error probability that her
eavesdropping creates.

FIG. 5. Quantum circuit diagram for a SWAP gate realized as a
cascade of three CNOT gates. In SPTQ quantum logic the upper rail
is the momentum qubit and the lower rail is the polarization qubit of
the same photon.
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single-photon source and Bob employs active basis selection;
Fig. 7 shows the modification needed to accommodate Bob’s
using passive basis selection. In either case, Alice uses a
polarizing beam splitter and an electro-optic modulator, as a
controllable half-wave plate �HWP�, to set the randomly se-
lected BB84 polarization state for each photon she transmits.
Moreover, she employs a single spatial mode, which we as-
sume coincides with the R beam position in Eve’s apparatus.
Eve then begins her attack by imposing the probe state �Tin�
on the momentum qubit. She does this by applying a SWAP

gate, to exchange the momentum and polarization qubits of
Alice’s photon, rotating the resulting polarization qubit �with
the HWP in Fig. 6� to the �Tin� state, and then using another
SWAP to switch this state into the momentum qubit. This
procedure leaves Alice’s BB84 polarization state unaffected,
although her photon, which will ultimately propagate on to
Bob, is no longer in a single spatial mode. Eve completes the
first stage of her attack by sending Alice’s photon through a
P-CNOT gate, which will accomplish the state transformations
given in Eqs. �6�–�9�, and then routing it to Bob. If Bob
employs active basis selection �Fig. 6�, then in each bit in-
terval he will use an electro-optic modulator—as a control-
lable HWP—plus a polarizing beam splitter to set the ran-
domly selected polarization basis for his measurement. The
functioning of this basis-selection setup is unaffected by
Alice’s photon no longer being in a single spatial mode. The
reason that we call Fig. 6 a physical simulation, rather than a
true attack, lies in the measurement box. Here, Eve has in-
vaded Bob’s turf, and inserted SWAP gates, half-wave plates,
polarizing beam splitters, and additional photodetectors, so
that she can forward to Bob measurement results correspond-
ing to photon counting on the polarization basis that he
has selected while she retains the photon counting results

corresponding to her 	�d+� , �d−�
 measurement. Clearly Bob
would never knowingly permit Eve to intrude into his re-
ceiver box in this manner. Moreover, if Eve could do so, she
would not bother with an FPB probe as she could directly
observe Bob’s bit values.

If Bob employs passive basis selection �Fig. 7�, then he
uses a 50/50 beam splitter followed by static-HWP analysis
in the H-V and ±45° bases, with only the former being ex-
plicitly shown in Fig. 7. The rest of Eve’s attack mimics
what was seen in Fig. 6, i.e., she gets inside Bob’s measure-
ment boxes with SWAP gates, half-wave plates, and additional
detectors so that she can perform her probe measurement
while providing Bob with his BB84 polarization-
measurement data. Because the Fig. 7 arrangement requires
that twice as many SWAP gates, twice as many half-wave
plates, and twice as many single-photon detectors be inserted
into Bob’s receiver system, as compared to what is needed in
the Fig. 6 setup, we shall limit the rest of our discussion to
the case of active basis selection as it leads to a more parsi-
monious physical simulation of the Fuchs-Peres-Brandt at-
tack. We recognize, of course, that the decision to use active
basis selection is Bob’s to make, not Eve’s. More impor-
tantly, however, in Sec. IV we will show how the availability
of polarization-preserving QND photon-number measure-
ments can be used to turn Fig. 6 into a true, deterministic
implementation of the FPB attack. The same conversion can
be accomplished for passive basis selection. Before turning
to the true-attack implementation, let us flesh out some de-
tails of the measurement box in Fig. 6 and show how SPDC
can be used, in lieu of the single-photon source, to perform
this physical simulation.

Let ��out� denote the polarization � momentum state at
the output of Eve’s P-CNOT gate in Fig. 6. Bob’s polarization
analysis box splits this state, according to the basis he has
chosen, so that one basis state goes to the upper branch of the
measurement box while the other goes to the lower branch of
that box. This polarization sorting does nothing to the mo-
mentum qubit, so the SWAP gates, half-wave plates, and po-
larizing beam splitters that Eve has inserted into the mea-
surement box accomplish her 	�d+� , �d−�
 projective
measurement, i.e., the horizontal paths into photodetectors in
Fig. 6 are projecting the momentum qubit of ��out� onto �d−�
and the vertical paths into photodetectors in Fig. 6 are pro-
jecting this state onto �d+�. Eve records the combined results
of the two �d+� versus �d−� detections, whereas Bob, who
only sees the combined photodetections for the upper and
lower branches entering the measurement box, gets his BB84
polarization data. Bob’s data is impaired, of course, by the
effect of Eve’s P-CNOT gate.

Single-photon on-demand sources are now under develop-
ment at several institutions �14�, and their use in BB84 QKD
has been demonstrated �15�. At present, however, it is much
more practical to use SPDC as a heralded source of single
photons �16�. In SPDC, signal and idler photons are emitted
in pairs, thus detection of the signal photon heralds the pres-
ence of the idler photon. Moreover, with appropriate con-
figurations �17�, SPDC will produce photons that are simul-
taneously entangled in polarization and in momentum. This
hyperentanglement leads us to propose the Fig. 8 configura-
tion for physically simulating the FPB-probe attack on BB84

FIG. 6. �Color online� Physical simulation of polarization-based
BB84 QKD and the FPB-probe attack.

FIG. 7. �Color online� Modification of Fig. 6 to accommodate
Bob’s using passive basis selection.
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protocol. Here, a pump laser drives SPDC in a type-II phase
matched ��2� crystal, such as periodically poled potassium
titanyl phosphate �PPKTP�, producing pairs of orthogonally
polarized, frequency-degenerate photons that are entangled
in both polarization and momentum. The first polarizing
beam splitter transmits a horizontally polarized photon and
reflects a vertically polarized photon while preserving their
momentum entanglement. Eve uses a SWAP gate and �half-
wave plate plus polarizing beam splitter� polarization rota-
tion so that her photodetector’s clicking will, by virtue of the
momentum entanglement, herald the setting of the desired
�Tin� momentum-qubit state on the horizontally polarized
photon emerging from the first polarizing beam splitter.
Alice’s electronically controllable half-wave plate sets the
BB84 polarization qubit on this photon, and the rest of the
Fig. 8 configuration is identical to that shown and explained
in Fig. 6. Inasmuch as the SPDC source and SPTQ gates
needed to realize the Fig. 8 setup have been demonstrated,
we propose that such an experiment be performed. Simulta-
neous recording of Alice’s polarization choices, Bob’s polar-
ization measurements, and Eve’s �d+� versus �d−� results can
then be processed through the BB84 protocol stack to study
the degree to which the security proofs and eavesdropping
analyses stand up to experimental scrutiny.

IV. THE COMPLETE ATTACK

Although the FPB attack’s physical simulation, as de-
scribed in the preceding section, is both experimentally fea-
sible and technically informative, any vulnerabilities it might
reveal would only be of academic interest were there no
practical means to turn it into a true deterministic implemen-
tation in which Eve did not need to invade Bob’s receiver.
Quantum nondemolition measurement technology provides
the key to creating this complete attack. As shown in the
Appendix, it is possible, in principle, to use cross-phase
modulation between a strong coherent-state probe beam and
an arbitrarily polarized signal beam to make a QND mea-
surement of the signal beam’s total photon number while
preserving its polarization state. Cross-phase modulation
QND measurement of photon number has long been a topic

of interest in quantum optics �18�, and recent theory has
shown that it provides an excellent new route to photonic
quantum computation �19�. Thus it is not unwarranted to
presume that polarization-preserving QND measurement of
total photon number may be developed. With such technol-
ogy in hand, the FPB-probe attack shown in Fig. 9 becomes
viable. Here, Eve imposes a momentum qubit on Alice’s
polarization-encoded photon and performs a P-CNOT opera-
tion exactly as discussed in conjunction with Figs. 6 and 8.
Now, however, Eve uses a SWAP-gate half-wave plate com-
bination so that the �d+� and �d−� momentum qubit states
emerging from her P-CNOT gate become �V� and �H� states
entering the polarizing beam splitter that follows the half-
wave plate. This beam splitter routes these polarizations into
its transmitted and reflected output ports, respectively, where,
in each arm, Eve employs a SWAP gate, a polarization-
preserving QND measurement of total photon number, and
another SWAP gate. The first of these SWAP gates returns Al-
ice’s BB84 qubit to polarization, so that a click on Eve’s
polarization-preserving QND apparatus completes her
	�d+� , �d−�
 measurement without further scrambling Alice’s
BB84 qubit beyond what has already occurred in Eve’s
P-CNOT gate. The SWAP gates that follow the QND boxes then
restore definite �V and H� polarizations to the light in the
upper and lower branches so that they may be recombined on
a polarizing beam splitter. The SWAP gate that follows this
recombination then returns the BB84 qubit riding on Alice’s
photon to polarization for transmission to and measurement
by Bob. This photon is no longer in the single spatial mode
emitted by Alice’s transmitter, hence Bob could use spatial-
mode discrimination to infer the presence of Eve, regardless
of the PE value she had chosen to impose. Eve, however, can
preclude that possibility. Because the result of her 	�d+� , �d−�

measurement tells her the value of the momentum qubit on
the photon being sent to Bob, she can employ an additional
stage of qubit rotation to restore this momentum qubit to the
�R� state corresponding to Alice’s transmission. Also, should
Alice try to defeat Eve’s FPB probe by augmenting her
BB84 polarization qubit with a randomly chosen momentum
qubit, Eve can use a QND measurement setup like that
shown in Fig. 9 to collapse the value of that momentum
qubit to �R� or �L�, and then rotate that momentum qubit into

FIG. 8. �Color online� Proposed configuration for a complete
physical simulation of the FPB attack on BB84 that is based on
hyperentangled photon pairs from type-II phase matched SPDC and
gates built from SPTQ quantum logic.

FIG. 9. �Color online� Deterministic FPB-probe attack on
polarization-based BB84 protocol that is realized with polarization-
preserving QND measurements and SPTQ quantum logic.
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the �R�-state spatial mode before applying the FPB-probe
attack. At the conclusion of her attack, she can then random-
ize the momentum qubit on the photon that will be routed on
to Bob without further impact—beyond that imposed by her
P-CNOT gate—on that photon’s polarization qubit. So, unless
Alice and Bob generalize their polarization-based BB84 pro-
tocol to include cooperative examination of the momentum
qubit, Alice’s randomization of that qubit will neither affect
Eve’s FPB attack, nor provide Alice and Bob with any addi-
tional evidence, beyond that obtained from the occurrence of
errors on sifted bits, of Eve’s presence.

Some concluding remarks are now in order. We have
shown that a physical simulation of the Fuchs-Peres-Brandt
attack on polarization-based BB84 protocol is feasible with
currently available technology, and we have argued that the
development of polarization-preserving QND technology for
measuring total photon number will permit mounting of a
true deterministic FBP-probe attack. Our analysis has pre-
sumed ideal conditions in which Alice employs a single-
photon source, there is no propagation loss and no extrane-
ous �background� light collection, and both Eve and Bob
have unity quantum efficiency photodetectors with no dark
counts. Because current QKD systems typically employ at-
tenuated laser sources, and suffer from propagation loss,
photodetector inefficiencies, and extraneous counts, it be-
hooves us to at least comment on how such nonidealities
could impact the FPB probe we have described.

The use of an attenuated laser source poses no problem
for the configurations shown in Figs. 6–9. This is because the
single-qubit rotations and the CNOT gates of SPTQ quantum
logic effect the same transformations on coherent states as
they do on single-photon states. For example, the same half-
wave plate setting that rotates the single-photon �H� qubit
into the single-photon �V� qubit will transform the horizon-
tally polarized coherent state ���H into the vertically polar-
ized coherent state ���V. Likewise, the SPTQ P-CNOT gate
that transforms a single photon carrying polarization
��H�= �0�, �V�= �1�� and momentum ��R�= �0�, �L�= �1�� qubits
according to

cHR�HR� + cHL�HL� + cVR�VR� + cVL�VL�

→ cHR�HR� + cHL�HL� + cVR�VL� + cVL�VR� , �17�

will transform the four-mode coherent-state input with eigen-
values

��âHR� �âHL� �âVR� �âVL�� = ��HR �HL �VR �VL� , �18�

into a four-mode coherent-state output with eigenvalues

��âHR� �âHL� �âVR� �âVL�� = ��HR �HL �VL �VR� , �19�

where the â’s are annihilation operators for modes labeled by
their polarization and beam positions. It follows that the
coherent-state PE and IB calculations mimic the qubit deriva-
tions that we presented in Sec. III, with coherent-state inner
products taking the place of qubit-state inner products. At
low average photon number, these coherent-state results re-
duce to the qubit expressions for events which give rise to
clicks in the photodetectors shown in Figs. 6–9.

Finally, a word about propagation loss, detector ineffi-
ciencies, and extraneous counts from dark current or back-
ground light is in order. All of these nonidealities actually
help our Eve, in that they lead to a nonzero quantum bit error
rate between Alice and Bob in the absence of the FPB attack.
If Eve’s PE value is set below that baseline error rate, then
her presence should be undetectable.
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APPENDIX: QND MEASUREMENT

Here we show that it is possible, in principle, to use cross-
phase modulation between a strong coherent-state probe
beam and an arbitrarily polarized signal beam to make a
QND measurement of the signal beam’s total photon number.
Let 	âH , âV , âP
 be the annihilation operators of the horizon-
tal and vertical polarizations of the signal beam and the
�single-polarization� probe beam, respectively, at the input to
a cross-phase modulation interaction. We shall take that in-
teraction to transform these annihilation operators according
to the following commutator-preserving unitary operation:

âH → âH� � exp�i	âP
† âP�âH, �A1�

âV → âV� � exp�i	âP
† âP�âV, �A2�

âP → âP� � exp�i	�âH
† âH + âV

† âV��âP, �A3�

where 0
	�1 is the cross-phase modulation coupling co-
efficient. When the probe beam is in a strong coherent state,
��NP� with NP�1/	2, the total photon number in the signal
beam can be inferred from a homodyne-detection measure-
ment of the appropriate probe quadrature. In particular, the
state of âP� will be ��NP� when the signal beam’s total photon
number is zero, and its state will be ��1+ i	��NP� when the
signal beam’s total photon number is one, where 	�1 has
been employed. Homodyne detection of the âP2� � Im�âP��
quadrature thus yields a classical random-variable outcome
�P2� that is Gaussian distributed with mean zero and variance
1/4, in the absence of a signal-beam photon, and Gaussian
distributed with mean 	�NP and variance 1/4 in the presence
of a signal-beam photon. Note that these conditional distri-
butions are independent of the polarization state of the
signal-beam photon when it is present. Using the decision
rule, “declare signal-beam photon present if and only if
�P2� 	�NP /2,” it is easily shown that the QND error prob-
ability is bounded above by exp�−	2NP /2� /2�1.

The preceding polarization independent, low error prob-
ability QND detection of the signal beam’s total photon
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number does not disturb the polarization state of that beam.
This is so because the probe imposes the same nonlinear
phase shift on both the H and V polarizations of the signal
beam. Hence, if the signal-beam input is in the arbitrarily-
polarized single-photon state,

��S� = cH�1�H�0�V + cV�0�H�1�V, �A4�

where �cH�2+ �cV�2=1, then, except for a physically unimpor-
tant absolute phase, the signal-beam output will also be in
the state ��S�.
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