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We present an analytical treatment of quantum walks on a cycle graph. The investigation is based on a
realistic physical model of the graph in which decoherence is induced by continuous monitoring of each graph
vertex with a nearby quantum point contact. We derive an analytical expression of the probability distribution
along the cycle. An upper-bound estimate to the mixing time is shown.
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Quantum walks have been widely discussed recently as a
promising technique for development of quantum algorithms
�1,2�. Both discrete-time quantum coined walks and
continuous-time quantum walks have been argued to give an
algorithmic speedup with respect to their classical counter-
parts �3�. Unlike common discrete-time quantum algorithms
�4� that are very sensitive to environmental quantum noise
�5�, quantum walks show some promise in dealing with de-
coherence processes. Numerical studies of discrete-time
quantum walks on a cycle and hypercube have shown that a
small amount of decoherence may be useful �6�. In this paper
we present a theoretical investigation of continuous-time
quantum walks on a uniform cycle graph CN. We derive the
expression for the probability distribution and obtain an
upper-bound estimate to the mixing time.

In our investigation, the cycle is represented by a ring-
shaped array of identical tunnel-coupled quantum dots
�QDs�; see Fig. 1. The walks are performed by an electron
initially placed in one of the dots. Each dot is continuously
monitored by an individual point contact �PC�, which intro-
duces decoherence to the electron’s evolution as discussed in
Ref. �7�. The analytical expression for the probability distri-
bution is obtained for a cycle of arbitrary size, i.e., the num-
ber of nodes may be large. The latter property allows one to
study dynamics and mixing on large graphs, avoiding the
usual limitations on size arising in numerical simulations �6�.

The QD cycle with “attached“ PCs can be, in principle,
fabricated with the help of gate-engineering techniques in
semiconductor heterostructures �8�. Such techniques allow
the formation of QDs and PCs electrostatically by placing
metal gates on the structure with a two-dimensional electron
gas �2DEG�. By changing the potential on the gates one can
allocate areas of 2DEG, creating the necessary confinement
profile. The simplest example of such a structure containing
two QDs was investigated experimentally in Ref. �9�. Our
key assumptions are as follows: identical PCs are formed far
enough from the QD structure so that the tunneling between
them is negligible; Coulomb interaction between electrons in
the QD and PC is taken into account.

We begin with formulating the basic equations of our
model. The Hamiltonian of an electron placed in the QD
cycle is

Hcycle =
1

4 �
j=0

N−1

�cj+1
† cj + cj

†cj+1� , �1�

where cj
† �cj� are creation �annihilation� operators for an

electron on site j, N is the number of QDs in the cycle, and
cN�c0. We renormalize the time for convenience, so that it
becomes dimensionless, and all the amplitudes further on are
given in terms of the hopping amplitude between neighbor-
ing QDs.

The point contact, placed next to each QD, consists of two
reservoirs of electrons, source and drain, that are coupled
through the potential barrier shaped by PC gates �see Fig. 1�.
The Hamiltonian of the jth PC can be written as

HPC,j = �
l

El,jal,j
† al,j + �

r

Er,jar,j
† ar,j

+ �
lr

�lr,j�al,j
† ar,j + ar,j

† al,j� , �2�

where al,j
† �al,j� and ar,j

† �ar,j� are creation �annihilation� op-
erators in the left �source� and right �drain� reservoirs of the
jth PC. �lr,j are the tunneling amplitudes between states l
and r of the jth PC. In our discussion we consider all elec-
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FIG. 1. �Color online� Continuous-time quantum walk architec-
ture: ring of quantum dots, each of which is monitored by the cor-
responding point contact that introduces decoherence. Fl,j and Fr,j

are chemical potentials of the source and drain of the jth point
contact. The presence of an electron in the jth quantum dot affects
the source-to-drain tunneling amplitude �lr,j→�lr,j +��lr,j of the
jth point contact.
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trons to be spinless fermions. Source and drain reservoirs are
kept at zero temperature with chemical potentials Fl,j
and Fr,j. By allowing weak Coulomb interaction between
electrons in the PC and QD we observe the presence of
the electron in the jth QD as it changes the tunneling ampli-
tude through the barrier of the adjoining PC, i.e., effectively
�lr,j→�lr,j +��lr,j, so that ��lr,j represents the rise of
the potential barrier in the PC when the corresponding QD is
occupied. The correction is assumed to be small compared
to the other amplitudes in the problem. This process
introduces weak measurement on the electron in each
node of the graph, and, therefore, results in some loss of
coherence in electron evolution. Summarizing the above dis-
cussion, we produce the following correction to the PC
Hamiltonian �2�:

Hint,j = �
lr

��lr,jcj
†cj�al,j

† ar,j + ar,j
† al,j� . �3�

The total Hamiltonian is

H = Hcycle + �
j=0

N−1

�HPC,j + Hint,j� . �4�

In our investigation we assume that all PCs are identical, and
that the hopping amplitudes �lr,j are only weakly dependent
on states l ,r, which allows us to replace �lr,j and ��lr,j, as

well as Fl,j �Fr,j�, by their averages: �̄, ��̄, and F̄l �F̄r�.
Considering the continuous measurement of an electron in a
double-well potential by a point contact described above,
Gurvitz has shown �7� that for the case of large bias voltages

F̄l− F̄r, the evolution of the reduced density matrix traced
over all states of source and drain electrons is given by
Bloch-type rate equations. Applied to our model this tech-
nique yields the following equation for the reduced density
matrix:

d

dt
��� =

i

4
����+1 − ��+1� − ��−1� + ���−1� − ��1 − �������,

�5�

where � ,� number the sites on the cycle, running from 0 to

N−1; �=��̄2�F̄r− F̄l�2fSfD; and fS �fD� stands for the density
of states in source �drain� reservoirs. We also set �=1 for
convenience.

For further discussion, it is convenient to introduce real
variables, defining

��� � i�−�S��. �6�

Considering �6� we obtain

dS��

dt
= �

�,	=0

N−1

�L��
�	 + U��

�	�S�	, �7�

where � ,� ,� ,	 run from 0 to N−1, and we have L��
�	 and

U��
�	 defined as

L��
�	 =

1

4
���,���,	−1 + ��,�−1��,	 − ��,���,	+1 − ��,�+1��,	� ,

�8�

U��
�	 = − ���,���,	�1 − ��,�� . �9�

As mentioned earlier, we initialize the system by localizing
the electron in one of the quantum dots and allow it to
evolve, spreading all over the cycle. Therefore, the reduced
density matrix elements at t=0 are set as follows:

����0� = S���0� = ��,0��,0. �10�

Condition �10� simply states that the electron is initially
localized in dot 0. The choice of the initial condition in
the form of Eq. �10� is convenient for further calculations
and, in fact, is quite general. Indeed, the symmetry of
the system with respect to cyclic rotations allows us to
construct the solution to the reduced density matrix for
any classical, i.e., with zero off-diagonal elements, initial
distribution. The solution for an arbitrary distribution is
given by

�
j=0

N−1

Cj��+j�+j�t� , �11�

where Cj represents the initial probability distribution over
the cycle.

Equation �7� can be solved perturbatively in the low-
decoherence �quantum� regime, considering �N
1. The
zero-order solution is given as an expansion on the eigenvec-
tors of L��

�	, defined by

�
�,	=0

N−1

L��
�	V�	

�mn� = ��mn�
0 V��

�mn�, �12�

where 0�m ,n�N−1. From Eq. �12�, after some algebra,
one can show that the eigenvalues ��mn�

0 are

��mn�
0 = i sin

�m + n�
N

cos
�m − n�

N
, �13�

and the eigenvectors V�mn� are given by

V�	
�mn� =

1

N
e�2i/N��m�+n	�. �14�

Calculation of the corrections requires careful investigation
of the unperturbed spectrum �13�. The analysis of �13� and
�14� allows us to highlight several important subsets of cer-
tain degeneracy which lead to nonzero off-diagonal matrix
elements of �9� on the basis of �14�. First of all, one can
notice the symmetry of �13� with respect to index exchange,
while the eigenvectors �14� are clearly affected by such an
operation. Hence, for n�m we deal with at least twofold-
degenerate eigenvalues. Another subset reveals itself when
we consider the eigenvalues �13� with m=n=0 or m+n=N.
The eigenvalues �13� with these relations for indices are all
zero and yet the corresponding eigenvectors are not the
same.

First-order corrections to the eigenvalues ��nn�
0 of

spectrum �13� are given, as one can show, by the diagonal
matrix elements of �9� calculated on the eigenvectors �14�.
They are equal to −��N−1� /N. The perturbation removes the
degeneracy of the first subset introducing −��N−1±1� /N
to each pair of ��mn�

0 with n�m and n+m�N. Corrections to
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the zero eigenvalues are irrelevant to our calculations
due to the fact that the corresponding eigenvectors are
anyway excluded from the final expression by the initial
condition �10�. One can simply analyze the expansion of the
right-hand side of �10� in terms of the eigenvectors �14�,
yielding

S���0� =
��,�

N
+

1

N2 �
m,n=0

N−1

�1 − �m+n,0

− �m+n,N�exp�2i�m� + n��
N

� . �15�

The solution to �7� is naturally formed by

S���t� = �
m,n=0

N−1

C�mn�e
��mn�tY��

�mn�, �16�

where Y��
�mn� are some linear combinations of eigenvectors

�14� and ��mn� representing the corrected spectrum. The ex-
pansion coefficients C�mn� are completely defined by expres-
sion �15�. Finally, the solution to �7� is

S���t� =
��,�

N
+ �

m,n=0

N−1
1 − �m+n,0 − �m+n,N

N
��mnet��mn�

0 −���N−1�/N�t

+ �1 − �mn�et��mn�
0 −���N−2�/N�t�V��

�mn�. �17�

The probability distribution, which is given by the diagonal
elements of the reduced density matrix �17�, considering �6�,
is

Pj�t� =
1

N
+ �

m,n=0

N−1
1 − �m+n,0 − �m+n,N

N2 ��mne−���N−1�/N�t

+ �1 − �mn�e−���N−2�/N�t�

� exp�it sin
�m + n�

N
cos

�m − n�
N

+
2i

N
�m + n�j� .

�18�

Expression �18� is the final result of our analyses. It gives the
probability for an electron, initially placed at node 0, to be
found on node j at time t. The probability distribution is
shown in Fig. 2. As one can see, weak measurement of the
system �shown in Fig. 2�b�� leaves the time evolution of the
random walk almost unchanged from that of the coherent
walk �shown in Fig. 2�a��. Figure 2�a� shows the evolution of
the walk in the absence of decoherence. Figure 2�b� shows
the evolution when the system is exposed to weak measure-
ment �decoherence�. In the latter case the coherent oscillation
pattern is suppressed by effective averaging that leads to the
onset of a uniform distribution.

In quantum walk studies, it is often important to analyze
the time it takes for the electron, as a walking particle, to
spread along the cycle. This is called the “mixing time”
�2,6,10�, and for continuous-time quantum walks is used to
describe two types of processes. The first one, called “instan-
taneous mixing,” refers to the uniform �or nearly uniform�
spread of probability of the walking particle that can happen
at some particular moment of evolution �10�. The other, “av-

erage mixing,” is the decay of the time-averaged deviation of
the probability distribution from the uniform case �6�. In the
latter case, time averaging is required to settle down the co-
herent oscillations of probability which, otherwise, would
not converge to any static distribution. In our case the aver-
aging arises naturally from the fact that the electron walking
on the cycle is continuously monitored by the environment,
i.e., the PCs.

Let us briefly discuss how fast mixing on a circle can be.
One of the apparently necessary �but not at all sufficient�
conditions for the walking particle is to have some nonzero
amplitude on each node. Therefore, the wave of probability
of the particle localized initially in one of the nodes has to
travel all over the cycle at least once. We should note that for
our range of parameters this has already happened by times
of order 1 /�.

Below, we obtain an upper-bound estimate based on the
solution �18�. The mixing time tmix is defined �6� as the mini-
mum time that satisfies the mixing condition

�
j=0

N−1 	Pj�tm� −
1

N
	 � � , �19�

where � is some small dimensionless constant that presets
the desired degree of mixing, and 1/N stands for the uniform
distribution. To find the upper-bound estimate, let us analyze
the left part of inequality �19�. After some algebra with ex-
pression �18� one can obtain

	Pj�tm� −
1

N
	 = e−���N−2�/N�tm	S2�j,tm/2� −

2

N

+
e−�tm/N − 1

N
�S�2j,tm� −

2 − N mod 2

N
�	 ,

�20�

where

FIG. 2. �Color online� Probability distribution along the
cycle as function of time and node number, for N=20 and �=0 �a�,
and 0.01 �b�. Here j� �0,N−1� stands for the node number;
darker regions denote higher probabilities. The electron is initially
placed at j=0. The probability distribution of the walks with
some decoherence added, �b�, converges to uniform, i.e., to
1 /N.
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S�j,t� =
1

N
�
n=0

N−1

eit sin�2n/N�+i�2n/N�j . �21�

The absolute value of the sum �21� is always smaller than
or equal to unity, which allows us to majorize �20� as
follows:

	Pj�tm� −
1

N
	 � e−���N−2�/N�tm
1 +

2

N
+

1 − e−�tm/N

N
�1 +

2

N
�� .

�22�

In Fig. 3 we plot the sum of the absolute deviation of the
probability distribution from the uniform one, curve A, along
with the majorizing expression, curve B. Substituting �22�
into �19� we obtain the relation

N + 2 +
N + 2

N
�1 − exp�− �tm/N�� � ��exp��tm/N��N−2,

�23�

which always has a solution at some large tm. The upper
bound for the mixing time can be defined as tmix�min tm.
The latter minimum is estimated considering the fact that
the last term of the left-hand side in �23� does not exceed
�N+2� /N. As a result, assuming N�2 we obtain

tmix �
3

�
ln�N + 4

�
� . �24�

As mentioned above, expression �24� is based on the solution
�18�. At the same time one can estimate the effect of higher-
order corrections. The right-hand side of Eq. �24� yields
3 ln��N+4��1+O���� /� /��1+O����. As we see, in low-
decoherence mode the mixing time may not exceed a quan-
tity logarithmic in N for a given �. This result needs to be
explained. Indeed, one would expect the mixing time to de-
velop at least linearly in the size of the cycle. There is no
contradiction, however, as long as one notices that the solu-
tion is obtained for small �, namely, �N
1. Note that by the
time �−1 our walking particle has already reached the oppo-
site site on the cycle �see, for example, Fig. 2�. Therefore
expression �24� bounds the mixing time as a function of N
when Eq. �18� is valid. On the other hand, for a fixed size of
the cycle the mixing time is expected to decrease as 1/�.
Eventually, as � increases one goes to the regime of strong
measurement with emerging Zeno effect, where the electron
is localized by the measurement itself, which obviously de-
stroys mixing. Observing �24�, one may speculate that there
must be some optimal value for the decoherence parameter �
which corresponds to the minimum mixing time for a given
size of a cycle. This behavior requires careful investigation
and goes beyond the scope of the present paper. We should
also note that instantaneous mixing �if it exists� can actually
happen much earlier as compared to �24�. The mixing time in
the latter case is determined, primarily, by the pattern of
coherent oscillations.

In conclusion, we have studied quantum walks on a cycle
graph, represented by a ring-shape array of quantum dots
continuously monitored by individual point contacts, which
introduce decoherence. An analytical expression for the
probability distribution along the cycle has been obtained for
a small amount of decoherence. We have shown that at fixed
low decoherence rates the upper-bound estimate for the mix-
ing time has a log-linear dependence on the size of the cycle,
while on fixing the size, one observes an inverse linear de-
pendence on the decoherence rate.
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