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We demonstrate that the entropy of entanglement and the distillable entanglement of regions with respect to
the rest of a general harmonic-lattice system in the ground or a thermal state scale at most as the boundary area
of the region. This area law is rigorously proven to hold true in noncritical harmonic-lattice systems of
arbitrary spatial dimension, for general finite-ranged harmonic interactions, regions of arbitrary shape, and
states of nonzero temperature. For nearest-neighbor interactions—corresponding to the Klein-Gordon case—
upper and lower bounds to the degree of entanglement can be stated explicitly for arbitrarily shaped regions,
generalizing the findings of Phys. Rev. Lett. 94, 060503 �2005�. These higher-dimensional analogs of the
analysis of block entropies in the one-dimensional case show that under general conditions, one can expect an
area law for the entanglement in noncritical harmonic many-body systems. The proofs make use of methods
from entanglement theory, as well as of results on matrix functions of block-banded matrices. Disordered
systems are also considered. We moreover construct a class of examples for which the two-point correlation
length diverges, yet still an area law can be proven to hold. We finally consider the scaling of classical
correlations in a classical harmonic system and relate it to a quantum lattice system with a modified interaction.
We briefly comment on a general relationship between criticality and area laws for the entropy of
entanglement.
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I. INTRODUCTION

Ground states of quantum systems with many constituents
are typically entangled. In a similar manner to identifying
characteristic length scales of correlation functions, quantum
correlations are expected to exhibit some general scaling be-
havior, beyond the details of a fine-grained description. Such
characteristic features provide a physical picture that goes
beyond the specifics of the underlying microscopic model. A
central question of this type is the following. If one distin-
guishes a certain collection of subsystems, representing some
spatial region, of a quantum many-body system in a pure
ground state, the state of this part will typically have a posi-
tive entropy, reflecting the entanglement between this region
and the rest of the system �1–8�. This degree of entanglement
is certainly expected to depend on the size and also on the
shape of the region. Yet, how does the degree of entangle-
ment specifically depend on the size of the distinguished
region? In particular, does it scale as the volume of the
interior—which is meant to be the number of degrees of
freedom of the interior? Or, potentially as the area of the
boundary, i.e., the number of contact points between the in-
terior and the exterior?

This work provides a detailed answer to the scaling be-
havior of the entanglement of regions with their exterior in a
general setting of harmonic-bosonic-lattice systems and pro-
vides a comprehensive treatment of upper and lower bounds
on these quantities. We find that in arbitrary spatial dimen-
sions the degree of entanglement in terms of the von Neu-
mann entropy scales asymptotically as the area of the bound-
ary of the distinguished region. This paper significantly
extends the findings of Ref. �9� on harmonic-bosonic-lattice
systems. There, the area dependence of the geometric en-

tropy has been proven for cubic regions in noncritical
harmonic-lattice systems of arbitrary dimension with
nearest-neighbor interactions, corresponding to discrete ver-
sions of Klein-Gordon fields. In this work we extend our
analysis to a general class of finite-ranged harmonic interac-
tions and also take regions of arbitrary shape into account.
For thermal Gibbs states, the entropy of a reduction is no
longer a meaningful measure of entanglement. Instead, an
area dependence for an appropriate mixed-state entanglement
measure, the distillable entanglement, is established. Also, an
analogous statement holds for classical correlations in clas-
sical systems. The area dependence is even found in certain
cases where one can prove the divergence of the two-point
correlation length. This demonstrates that this previously
conjectured dependence between area and entanglement is
valid under surprisingly general conditions.

The presented analysis will make use of methods from the
quantitative theory of entanglement in the context of
quantum-information science �10–12�. It has become clear
recently that on questions about scaling of entropies and de-
grees of entanglement—albeit often posed some time ago—
new light can be shed with such methods �1–9,13–27�. In
this language, quantum correlations are sharply grasped in
terms of rates that can be achieved in local physical transfor-
mations. To assess quantum correlations using novel power-
ful tools from quantum information and to relate them to
information-theoretical quantities constitutes an exciting
perspective.

In the context of quantum field theory, such questions of
scaling of entropies and entanglement have a long tradition
under the keyword of geometric entropy. In particular, work
on the geometric entropy of free Klein-Gordon fields was
driven in part by the intriguing suggested connection �28� to
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the Bekenstein-Hawking black-hole entropy �29–31�. In
seminal works by Bombelli et al. �32� and Srednicki �33� the
relation between the entropy and the boundary area of the
region has been suggested and supplemented with numerical
arguments. This connection has been made more specific us-
ing a number of different methods. In particular, for half
spaces in general and intervals in the one-dimensional case,
the problem has been assessed employing methods from con-
formal field theory, notably in �34,35�, based on earlier work
by Cardy and Peschel �36� and by Cardy and Calabrese �14�.

In one-dimensional noncritical chains, one observes a
saturation of the entanglement of a distinguished block, as
was proven analytically for harmonic chains �5,9� and was
later observed for noncritical spin chains numerically �6� and
analytically �7,13,14�. In turn, in critical systems, one
often—but not always—finds a logarithmically diverging en-
tropy �6,7,13,14�. In case of a model the continuum limit of
which leads to a conformal field theory, the factor of the
logarithmically diverging term is related to the central charge
of the conformal field theory. The findings of the present
paper and of the above-mentioned results motivate further
questions concerning the general area dependence of the de-
gree of entanglement, for example in fermionic systems
�24,25�. In particular, the connection between the geometric
entropy satisfying no area law and the correlated quantum
many-body system being critical is not fully understood yet.
This is particularly true for the interesting case of more than
one-dimensional quantum systems.

This paper is structured as follows. We start, in Sec. II,
with a presentation of the major results of the paper. In Sec.
III we define our notation and recall some basics on
harmonic-lattice systems. Section IV provides a general
framework of upper and lower bounds for entanglement
measures, expressed in terms of the spectrum of the Hamil-
tonian and two-point correlation functions. This analysis is
performed for the case of the ground state as well as for
mixed Gibbs states. Of particular interest are Hamiltonians
with finite-ranged interactions in Sec. V. For such Hamilto-
nians, we first study the behavior of the two-point correlation
functions, then the entanglement bounds. In Sec. VI, discuss-
ing the Gibbs-state case, we determine temperatures above
which there is no entanglement left. A class of examples of
Hamiltonians that exhibit a divergent two-point correlation
length in their ground state, but an area dependence of the
entanglement, is presented in Sec. IX and expressed in ana-
lytical terms. The specific case of Hamiltonians the interac-
tion part of which can be expressed as a square of a banded
matrix is discussed in Sec. VIII. In this case, very explicit
expressions for entanglement measures can be found. We
then consider, in Sec. X, the case of classical correlations in
classical harmonic systems with arbitrary interaction struc-
ture. Interestingly, this case is related to the quantum case for
squared interactions in the sense of Sec. VIII. Finally, we
summarize what has been achieved in the present paper, and
present a number of open questions in this context.

II. MAIN RESULTS

Throughout the whole paper we will consider
harmonic subsystems on a D-dimensional cubic lattice

C= �1, . . . ,n��D �see Fig. 1�. For more general lattices corre-
sponding to general graphs in arbitrary spatial dimensions,
see Ref. �36�. The system thus has nD canonical degrees of
freedom. The central question of this work will be, how does
the degree of entanglement of a distinguished region I�C
with the rest O=C \ I scale with the size and shape of I?

We define the volume v�I� and surface s�I� of the distin-
guished region I as

v�I� = �
i�I

1, s�I� = �
i�O

�
j�I

d�i,j�=1

1,

where

d�i,j� ª �
�=1

D

�i� − j��

defines the one-norm distance for vectors i= �i1 , . . . , iD��C
that specify the position of oscillators on the D-dimensional
lattice. More specifically, s�I� is the number of contact
points, that is, the number of pairs of sites of I and O that
are immediately adjacent. Note that the distinguished region
I may have arbitrary shape and does not have to be
contiguous.

For the pure ground state �, we will study the entropy of
entanglement of I�C given by

EC,I
S = S��I� ,

where S=−tr�� log2 �� is the von Neumann entropy of a state
� and �I=trO��� denotes the reduced state associated with
the degrees of freedom of the interior I. For the pure ground
state, this entropy of entanglement is identical to both the
distillable entanglement and the entanglement cost. For pure
states, it is indeed the unique asymptotic measure of en-
tanglement. For Gibbs states, in turn, we have to study a
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mixed-state entanglement measure, as the entropy of a sub-
system no longer meaningfully quantifies the degree of en-
tanglement. We will bound the rate at which maximally en-
tangled pairs can be distilled, i.e., the distillable
entanglement EC,I

D �T�. Clearly, EC,I
D �0�=EC,I

S for zero tem-
perature.

We will subsequently suppress the index C for notational
clarity. We derive the following properties of EI

S and EI
D�T�.

�i� For D-dimensional harmonic-lattice systems, we de-
rive general upper and lower bounds to EI

S for pure ground
states and to EI

D�T� for Gibbs states with respect to a tem-
perature T�0. These bounds are expressed entirely in terms
of the potential matrix and stated in Eqs. �8�–�10�.

A necessary condition for the following results to hold is
that the spectral condition number �=�max�V� /�min�V� of the
coupling matrix V satisfies �	c	
 for some c�0 indepen-
dent of I and O.

�ii� For nearest-neighbor interactions and the ground
state, the entropy of entanglement EI

S scales as the
surface area s�I� of I. More specifically, there exist numbers
c1 ,c2�0 independent of O and I such that

c1s�I� 	 EI
S 	 c2s�I� .

This is stated in Eqs. �12� and �15�. Note that the specific
case of cubic regions I= �1, . . . ,m��D has already been
proven in the shorter paper Ref. �9�.

�iii� For general finite-ranged harmonic interactions—
meaning arbitrary interactions which are strictly zero after a
finite distance—the entropy of entanglement EI

S of the
ground state scales at most linearly with the surface area of I:
There exists a c�0 independent from O and I such that

EI
S 	 cs�I� .

This is expressed in Eq. �12�.

�iv� For Gibbs states with respect to a temperature
T�0 and general finite-ranged interactions the distillable en-
tanglement EI

D�T� scales at most linearly with the surface
area of I, so

EI
D�T� 	 c�T�s�I� ,

with c�T��0 being independent of O and I; see again Eq.
�12�, which applies for any temperature. We also determine
temperatures above which the entanglement is strictly zero;
see Eq. �13�.

�v� We construct a class of Hamiltonians the ground state
of which exhibit an infinite two-point correlation length, for
which the entropy of entanglement EI

S scales provably at
most linearly in the boundary area. This is stated in Eq. �19�.

�vi� For interactions that are specified by potential matri-
ces V, see Eq. �1� that can be written as V=W2 with W

corresponding to a finite-ranged interaction, we determine
the entropy of entanglement. This is made specific in particu-
lar for D=1; see Eq. �18�.

�vii� For classical systems of harmonic oscillators with
nearest-neighbor interactions prepared in a thermal state, the
mutual information

II�T� = SI�T� + SO�T� − SC�T�

measuring classical correlations scales linearly with the sur-
face area of the region. Here, SI, SO, and SC are the discrete
classical entropies in phase space of the interior, the exterior,
and the entire system with respect to an arbitrary coarse
graining as defined in Eq. �22�, for a classical Gibbs state at
temperature T�0. The mathematical formulation of the
problem is intimately related to case VI.

The remainder of the paper is now concerned with the
detailed discussion and rigorous proofs of these statements.

III. HARMONIC LATTICE SYSTEMS—
PRELIMINARIES

We consider quantum systems on D-dimensional lattices,
where each site is associated with a physical system. The
starting point is the following Hamiltonian which is qua-
dratic in the canonical coordinates:

H =
1

2��i
pi

2 + �
i,j

xiVi,jxj� . �1�

The matrix V is the potential matrix. Vi,i denotes the potential
energy contained in the degree of freedom labeled with i. For
i� j the element Vi,j describes the coupling between the two
oscillators at i and j. We assume that V is a real symmetric
positive matrix. In this paper, we will consider finite-ranged
and nearest-neighbor interactions. Furthermore, interactions
for which the correlation length diverges are considered.

We will subsequently study properties of the ground state
��0� as well as of Gibbs states

��T� =
e−H/T

tr�e−H/T�

corresponding to some nonzero temperature T. Note that we
have set the Boltzmann constant k=1. The questions we ask
are essentially those of the geometric entropy �T=0�, and
those on the distillable entanglement �T�0� with respect to a
distinguished region I of the lattice C. The specific case of
nearest-neighbor interactions, considered in Refs.
�5,9,20,33�, corresponds to the one of a discrete version of
free Klein-Gordon fields in flat space-time. Here, we con-
sider regions of arbitrary shape and allow for more general
interactions.

A. Phase space, covariance matrices, and ground states

The system we consider embodies nD canonical degrees
of freedom, associated with a phase space �R�2nD

,��, where
the �2nD�� �2nD� matrix �,
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� ª 	 0nD 1nD

− 1nD 0nD

 ,

specifies the symplectic scalar product, reflecting the canoni-
cal commutation relations between the 2nD canonical coor-
dinates o= �x1 , . . . ,xnD , p1 , . . . , pnD� of position and momen-
tum. Instead of considering states we will refer to their
moments, considering that both the ground state as well as
the Gibbs states are quasifree �Gaussian� states. The second
moments can be collected in the �2nD�� �2nD� real symmet-
ric covariance matrix � �see, e.g., Ref. �10��, defined as

� j,k ª 2 Re�tr��ojok�� = 2 Re�ojok��.

Here, the first moments vanish as the ground state is the
vacuum.

Following Ref. �5�, we find from symplectic diagonaliza-
tion that for the ground state at zero temperature

�0 = V−1/2
� V1/2,

i.e., there is no mutual correlation between position and mo-
mentum, and the two-point vacuum correlation functions are
given by the entries of V−1/2 and V1/2, respectively,

Gi,j ª �gs�xixj�gs� = �V−1/2�i,j, �2�

Hi,j ª �gs�pipj�gs� = �V1/2�i,j. �3�

Here, �gs� denotes the state vector of the ground state. For the
thermal Gibbs state at finite temperature the covariance ma-
trix takes the form �5�

��T� = �V−1/2W�T�� � �V1/2W�T�� ,

where we define

W�T� ª 1 + 2�exp�V1/2/T� − 1�−1. �4�

Note that the additional term W�T� is the same for the posi-
tion as well as for the momentum canonical coordinates. As
in the zero-temperature case position and momentum are not
mutually correlated and V−1/2W�T�, V1/2W�T� are the two-
point correlation functions of position and momentum, re-
spectively, now with respect to the Gibbs state.

B. Measures of entanglement

The entropy of entanglement can be expressed in terms
of the symplectic eigenvalues of the covariance matrix
corresponding to a reduction. Let the �2v�I��� �2v�I��
matrix ��0�I denote the covariance matrix associated with the
interior I; this is the principal submatrix of �0 associated
with the degrees of freedom of the interior. The symplectic
spectrum of ��0�I is then defined as the spectrum 
�BI� of the
matrix

BI ª ���0�I�1/2�i���I����0�I�1/2.

For the situation at hand we find that

��0�I = �V−1/2�I � �V1/2�I,

where we denote by �V±1/2�I the principal submatrix of V±1/2

associated with the interior and we index the entries of the

submatrix as �V−1/2�i,j with vectors i , j� I. Given the direct-
sum structure of ��0�I and counting doubly degenerate eigen-
values only once, we find that the entropy of entanglement
can be evaluated as

EI
S = �

i=1

v�I� 	 f�
i − 1

2
� − f�
i + 1

2
�
 , �5�

where f�x�=−x log2 x, and the 
i=
i�AI� are the square
roots of the regular eigenvalues �i=�i�AI� of the v�I��v�I�
matrix AI,


i = 
�i�AI�, AI = �V−1/2�I�V1/2�I.

This reflects the fact that the entropy of a harmonic system is
the sum of the entropies of uncoupled degrees of freedom
after symplectic diagonalization.

Using vectors i , j� I to label the entries of AI, we find due
to V−1/2V1/2=1,

�AI�i,j = ��V−1/2�I�V1/2�I�i,j = �i,j − �
k�O

�V−1/2�i,k�V1/2�k,j. �6�

This form of AI=1−R hints at an area theorem in the
following way �see Fig. 2, where we depict the entries of R�:
if the entries of V±1/2 decay fast enough away from the main
diagonal, i.e., if the correlation functions decay sufficiently
fast, the main contribution to the entropy comes from oscil-
lators inside a layer around the surface of I as for all the
others the product �V−1/2�i,k�V1/2�k,j will be very small �here
vectors i , j are inside I, k outside the region I�. Thus, the
matrix R has an effective rank proportional to s�I�, and the
number of symplectic eigenvalues contributing to the sum in
Eq. �5� is approximately proportional to s�I�. Much of the
remainder of the paper aims at putting this intuition on rig-
orous grounds.

For mixed states, such as thermal Gibbs states, the von
Neumann entropy no longer represents a meaningful mea-
sure of the present quantum correlations, and has to be re-

FIG. 2. �Color online� Entries of R in one dimension, D=1, for
a finite-ranged coupling matrix V, C= �1, . . . ,100� and
I= �30, . . . ,35�� �65, . . . ,70�, yielding s�I�=4. Bars show Ri,j;
color-encoded surface depicts ln�Ri,j�. All units are arbitrary. Note
that the entries decay exponentially away from the boundary of I.
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placed by concepts such as the distillable entanglement. The
distillable entanglement is the rate at which one can asymp-
totically distill maximally entangled pairs, using only local
quantum operations assisted with classical communication.
For pure states, it coincides with the entropy of
entanglement—the entropy of a reduction—giving an opera-
tional interpretation to this quantity �10–12�.

From entanglement theory we know that an upper bound
for the distillable entanglement is provided by the logarith-
mic negativity �37�. Note that this is the case even in this
infinite-dimensional context for Gaussian states can be im-
mediately verified on the level of second moments and a
single-mode description. Moreover, the entropy of entangle-
ment indeed still has the interpretation of a distillable en-
tanglement, albeit the fact that distillation protocols leave the
Gaussian setting. This is true as long as one includes an
appropriate constraint to the mean energy in the distillation
protocol �38�.

The logarithmic negativity �37� is defined as

EI
N�T� = ���T���1,

where � · �1 denotes the trace norm, and ��T�� is the partial
transpose of ��T� with respect to the split I and O=C \ I.
Again following Ref. �5�, we find after a number of steps

EI
N�T� = �

i�C

log2�max�1,�i�Q��� , �7�

where �i�Q� labels the nD eigenvalues of Q,

Q ª P�−�T�P�+�T� ,

and matrices �±�T� are defined as

�±�T� ª W�T�−1V±1/2,

which become �±=V±1/2 for zero temperature following Eq.
�4�. The diagonal matrix P, defined as

Pi,j = �ij��i�O − �j�I� ,

�i�S = �1 if i � S ,

0 otherwise,
�

is the matrix that implements time reversal in the subsystem
corresponding to the inner part I, reflecting partial transposi-
tion �� on the level of states.

IV. UPPER AND LOWER BOUNDS

In this section we will derive upper and lower bounds
for the entropy of entanglement and the distillable entangle-
ment of the distinguished region I with respect to the rest
of the lattice. These bounds depend only on the geometry
of the problem, i.e., the region I and on properties of V,
namely, its minimal and maximal eigenvalues, which we
define as aª�min�V� and bª�max�V�, respectively, its
condition number

� ª

b

a
=

�max�V�
�min�V�

,

and the entries of V±1/2, respectively, the two-point correla-
tion functions G and H, as in Eqs. �2� and �3�. In later sec-

tions these bounds will be made specific for a wide range of
interaction matrices V.

A. Upper bound

An upper bound for the entropy of entanglement and the
distillable entanglement is provided by the logarithmic nega-
tivity as in Eq. �7�. Utilizing this fact, we derive upper
bounds using l1-norms �39� in this section. For brevity and
clarity, we will present the case for T=0 and finite tempera-
ture in a single argument.

A direct calculation shows that the matrix Q is given by

Q = �−�+ − 2X�+ = W�T�−2 − 2X�+,

introducing the matrix X with entries

Xi,j ª �i,j
− ��i�I�j�O + �i�O�j�I� .

Therefore, we can bound the eigenvalues of Q according to

�i�Q� � �min„W�T�…−2 + �i�− 2X�+�

� �min„W�T�…−2 + 2��i�X�+�� ,

where we denote by �min(W�T�) the smallest eigenvalue of
W�T� which is given by

�min„W�T�…−1 = �max� eV1/2/T − 1

eV1/2/T + 1
� =

e
b/T − 1

e
b/T + 1
.

Hence, we can write

EI
N�T� � �

i�C

log2�max�1,�min„W�T�…−2 + 2��i�X�+����

�
1

ln�2� �
i�C

max�0,�min„W�T�…−2 − 1 + 2��i�X�+��� ,

i.e., for �min(W�T�)−2+2 maxi��i�X�+��	1, there is no longer
any bipartite entanglement in the system. We will later see
that there is a temperature Tc above which this happens. But
for now, we use the fact that �min(W�T�)−2�1 to bound the
logarithmic negativity, and relate it to the l1-norm � · �l1

�39�
of X. We have �max��+�=
b /�min(W�T�) and therefore

EI
N�T� �

1

ln�2� �
i�C

2��i�X�+�� =
2

ln�2�
�X�+�1

�
2
b

�min„W�T�…ln�2�
�X�1 �

2
b

�min„W�T�…ln�2�
�X�l1

.

The l1-norm is defined as the sum of the absolute values of
all matrix entries. Inserting the definition of X, we find

�min„W�T�…ln�2�
2
b

EI
D � �X�l1

= �
i,j�C

�Xi,j� = 2 �
j�I

i�O

��i,j
− � �8�

for finite temperature, and
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EI
S �

4
b

ln�2� �
j�I

i�O

��V−1/2�i,j� �9�

for zero temperature. These constitute upper bounds on the
entropy of entanglement and the distillable entanglement.
Both depend only on the distinguished region I, the maxi-
mum eigenvalue of V, and the entries of V−1/2, i.e., the two-
point correlation function with entries Gi,j. This will be the
starting point to derive explicit upper bounds for special
types of interaction matrices V.

B. Lower bound

To achieve lower bounds for the zero-temperature case,
we consider the entropy of entanglement directly. Starting
from the general expression Eq. �5�, we use the fact that the
symplectic eigenvalues are never smaller than 1, i.e., that the
eigenvalues of AI are contained in the interval �1,�I�, with �I

being the maximal eigenvalue of AI. Using the pinching in-
equality �39�, we find �I� ��max�V� /�min�V��1/2= �b /a�1/2

=�1/2. Thus we can bound the entropy of entanglement as
follows:

EI
S � �

i=1

v�I�

log2�
i� = �
i=1

v�I�
log2��i�

2
�

log2��I�
2��I − 1��i=1

v�I�

��i − 1�

�
log2�
��
2�
� − 1�

tr�AI − 1� .

Using vectors i , j� I to label the entries of the v�I��v�I�
matrix AI, we finally arrive at the lower bound

EI
S � −

log2�
��
2�
� − 1�

�
i�I

j�O

�V−1/2�i,j�V1/2�j,i. �10�

This lower bound depends only on the geometry of I, the
spectral condition number � of V, and the entries of V±1/2,
i.e., the two-point correlation functions.

Equation �10� is difficult to evaluate in general but for
special cases of the interaction matrix V it can nevertheless
be made specific. In Sec. VII, for example, we give an ex-
plicit expression for the important case of nearest-neighbor
interactions. We expect Eq. �10� to be a convenient starting
point to derive such lower bounds also for more general
cases of V.

A lower bound for the finite temperature case is difficult
to obtain. Generally speaking, a lower bound to the distill-
able entanglement �two-way distillable entanglement in our
case� is given by the hashing inequality �40�,

EI
D�T� � max�S��I� − S���,S��O� − S���,0� ,

where �I=trO��� and �O=trI���. Yet, naively applied, this
inequality will vanish, as generally S��I�−S���	0 and
S��O�−S���	0: this can be made intuitively clear from the
following argument. The above analysis demonstrates that
both the interior I and the exterior O can be approximately
disentangled with local unitaries up to a layer of the thick-

ness of the two-point correlation length. That is, degrees of
freedom associated with i�O for which d�i , j� is sufficiently
large for every j�s�I�, can to a very good approximation be
decoupled and unitarily transformed into a thermal Gibbs
state. Each such degree of freedom will therefore contribute
a constant number to S���, such that S��I�−S���	0 for suf-
ficiently large n. Similarly, one can argue to arrive at
S��O�−S���	0. In order to establish a lower bound to the
distillable entanglement, however, we may start with any
protocol involving only local quantum operations and classi-
cal communication, and apply the hashing inequality on the
resulting quantum states. This first step can include in par-
ticular local filterings. A bound linear in the boundary area is
expected to become feasible if one first applies an appropri-
ate unitary both in I and O, and then performs a local filter-
ing involving degrees of freedom associated with i� I and
j�O for which d�i , j�=1. This option will be explored else-
where.

V. FINITE-RANGED INTERACTIONS

In this section we will make the upper bound on the en-
tropy of entanglement and the distillable entanglement ex-
plicit for symmetric finite-ranged interaction matrices V, i.e.,
matrices for which

Vi,j = 0 for d�i,j� � k/2,

where d�i , j� denotes again the one-norm distance. Denoting
as before the maximum and minimum eigenvalues of V as
a=�min�V� and b=�max�V�, respectively, we require that the
spectral condition number �=b /a be strictly less than infin-
ity independent of C, i.e., independent of n. Note that we do
not require any further assumptions on the matrix V.

A. General upper bounds for finite-ranged interactions

We will make use of a result of Ref. �41� concerning the
exponential decay of entries of matrix functions. After gen-
eralizing this result to matrices V with the properties speci-
fied above it enables us to bound the entries of �− as follows
�see Appendix A�:

��i,j
− � � Ka,bq�

d�i,j�, q� = �� − 1

� + 1
�2/k

, �11�

and

Ka,b =
e�/T − 1

e�/T + 1

� + 1

�
,

where

� ª �a
�

� + 1
�1/2

.

For zero temperature we then find

Ka,b =
� + 1

a

�� + 1

�
�1/2

.

This shows that off-diagonal terms of V−1/2 decay exponen-
tially �see Fig. 3�. Substituting Eqs. �11� into the general
result in �8�, we find
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�min„W�T�…ln�2�
4
bKa,b

EI
N�T� � �

i�I
j�O

q�
d�i,j� = �

l=1




q�
l Nl,

where

Nl = �
j�O

�
i�I

d�i,j�=l

1.

Note that N1=s�I� coincides with the definition of the surface
area of I. We find Nl�2�2l�2D−1s�I� �see Appendix C�, i.e.,
we have

�
i�I

j�O

q�
d�i,j� � 22Ds�I��

l=1




q�
l l2D−1

¬ KD,�s�I� .

Thus we finally arrive at the desired upper bound linear in
the surface area of I for both the entropy of entanglement and
the distillable entanglement,

EI
N�T� �

4
bKa,bKD,�

�min�W�T�…ln�2�
s�I� , �12�

which becomes

EI
N �

4�� + 1�3/2KD,�

ln�2�
s�I�

for zero temperature, i.e., these upper bounds depend solely
on the maximal and minimal eigenvalue of the interaction
matrix V and the surface area of the region I. This result
demonstrates that indeed, an area bound of the degree of
entanglement holds in generality for bosonic-harmonic-
lattice systems. This shows that the previously expressed in-
tuition can indeed be made rigorous in form of an analytical
argument.

B. Disordered systems

Notably, the derived results hold also for systems in
which the coupling coefficients are not identical, but inde-
pendent realizations of random variables. If the coefficients
Vi,j of the real symmetric matrix V are taken from a distribu-
tion with a carrier �x0 ,x1�, such that �i� the interaction is
finite ranged, and �ii� the carrier is chosen such that

� =
�max�V�
�min�V�

	 
 ,

then the same result holds true. This follows immediately
from the considerations in Appendix A, where it is not as-
sumed that the Hamiltonian exhibits translational symmetry.
Equation �12� is thus valid also for disordered harmonic-
lattice systems, see also Ref. �36�

VI. TEMPERATURES ABOVE WHICH THERE IS NO
MORE ENTANGLEMENT LEFT

In Sec. IV A we found that for �min(W�T�)−2

+2 maxi��i�X�+��	1 there is no entanglement between the
regions I and O. For finite-range interactions V we found in
Sec. V

max
i

��i�X�+�� � �min„W�T�…−1
b�X�l1

� 2�min„W�T�…−1
bKa,bKD,�s�I� ,

i.e., we have

�min„W�T�…−2 + 2 max
i

��i�X�+�� � �min„W�T�…−2

+ 4�min„W�T�…−1
bKa,bKD,�s�I� .

On the right-hand side only Ka,b and �min(W�T�)−2 depend on
the temperature; both are decreasing in T and go to zero as T
goes to infinity, i.e.,

�min„W�T�…−2 +
4
bKa,bKD,�s�I�

�min„W�T�…
= 1 �13�

gives an implicit equation for the temperature Tc above
which there is no bipartite entanglement left in the system.

VII. NEAREST-NEIGHBOR INTERACTIONS

In this section we consider nearest-neighbor interactions
and periodic boundary conditions in D spatial dimensions,
i.e., block-circulant matrices V. For n→
 this is a special
case of the matrices considered in Sec. V as boundary con-
ditions become irrelevant in this limit, i.e., the upper bound
coincides with the one derived for finite-ranged interactions.
For a tighter bound see Appendix B. We will now make use
of the circulant structure of V to show that for matrices of
this kind it is possible to also derive a lower bound on the
entropy of entanglement that it is proportional to the surface

area of I. We write M =circ�M̄� for the block circulant matrix
M whose first block column is specified by the tupel of ma-

trices M̄. We can then recursively define V=VD via

FIG. 3. �Color online� The entries �V−1/2�i,j for a finite-ranged
coupling matrix V in two dimensions, D=2, j= i+ �x1 ,x2�. Bars
show �V−1/2�i,j and the color-encoded surface shows ln��V−1/2�i,j�.
The inset depicts the same for x1=x2. All units are arbitrary. Note
the exponential decay away from the main diagonal i= j.
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V�+1 = circ�V�,− c1n�,0n�, . . . ,0n�,− c1n�� ,

where V1=circ�1,−c ,0 , . . . ,0 ,−c�. We choose an energy
scale in which Vi,i=1 and we demand c�0 �42�. This circu-
lant structure leads to the following properties of V. The
eigenvalues of V are given by

�i�V� = 1 − 2c�
�=1

D

cos�2�i� /n�, i � C;

in particular the maximum eigenvalue is given by
�max�V��1+2cD, where equality holds for n even. The
minimum eigenvalue reads �min�V�=1−2cD, i.e., positivity
of V demands c	1/2D. Note that the assumption that
c	1/2D independent of I and O is essential for the argu-
ment. If we allow for an n dependence of c as it arises, e.g.,
in the field limit where c=1/ �1/n2+2D�, then in one spatial
dimension we will encounter an area law up to a logarithmi-
cally divergent correction. This behavior—resembling the
behavior of critical spin chains and quadratic fermionic
models—will be studied in more detail elsewhere.

Furthermore the circulant nature of V yields the following
explicit expressions for the entries of V±1/2:

�V±1/2�i,j =
1

nD �
k�C

e2�ik�i−j�/n��k�V��±1/2. �14�

This reasoning leads to the following properties for i� j that
are crucial for the present proof �see Appendix B�:

− �V−1/2�i,j�V1/2�j,i = ��V−1/2�i,j�V1/2�j,i� � � c

2
�2d�i,j�

�� d�i,j�!

��2d�i,j�� − 1���=1

D
�i� − j��!�2

.

Substituting these results into the general lower bound �10�
and keeping only terms with d�i , j�=1 immediately yields

EI
S �

log2�
��c2

8�
� − 1�
s�I� , �15�

where

� =
1 + 2cD

1 − 2cD

in this case. This generalizes the result of Ref. �9� to regions
I of arbitrary shape. We expect that these lower bounds can
be generalized to other interactions V and numerical results
suggest that these bounds hold quite generally.

VIII. SQUARED INTERACTIONS

A simple special case is related to a certain kind of inter-
action: this is the one where the interaction matrix V can be
written as

V = M2

with a real symmetric matrix M corresponding to a finite-
range interaction. Then the covariance matrix associated with
the interior is nothing but

��0�I = �M−1�I � �M�I. �16�

In this case, the symplectic spectrum can be determined in a
fairly straightforward manner. We mention this case also as it
appears to be an appropriate toy model as a starting point for
studies aiming at assessing the symplectic spectrum of the
reduction itself and therefore the spectrum of the reduced
density matrix �26�.

We are looking for the spectrum of the v�I��v�I� matrix
AI as in Eq. �6� which now takes the form �recall that we
label the entries of AI by vectors i , j� I�

�AI�i,j = �i,j − �
k�O

�M−1�i,kMk,j = �i,j − Ri,j.

It is now the central observation that the number of rows of
the matrix R that are nonzero—and therefore also the number
of eigenvalues that are nonzero—is proportional to the sur-
face area of I, as M is a banded matrix. That is,

Mi,j = 0

for d�i , j��k /2, meaning that Ri,j=0 if d�k , j��k /2 for all
k�O. As the eigenvalues of AI are bounded through the
pinching inequality by 1 and �max�W� /�min�W�, an upper
bound linear in the surface area of the interior follows im-
mediately from the fact that the number of eigenvalues en-
tering the sum in Eq. �5� is proportional to s�I�. This argu-
ment demonstrates that in this simple case, one immediately
arrives at bounds that are linear in the number of contact
points.

The task of finding the eigenvalues of AI explicitly is now
reduced to finding the eigenvalues of the sparse matrix R,


i�AI� = 
1 − �i�R� .

This case is particularly transparent in the one-dimensional
case, D=1, and for M being a circulant matrix with first row
�1,−c ,0 , . . . ,−c� for 0	c	1/2. The potential matrix V cor-
responds then to nearest-neighbor interactions, together with
next-to-nearest-neighbor interactions. In this one-
dimensional setting, we set I= �1, . . . ,m�. The matrix R then
takes the simple form �see Fig. 4�

Ri,j = �
k=m+1

n

�M−1�i,kMk,j = − c��M−1�i,m+1� j,m + �M−1�i,n� j,1� .

To find its eigenvalues, we calculate det�R−�1�, which is
straightforward for a matrix of this form:

det�R − �1� = − �− ��m−2 det�R11 − � R1m

Rm1 Rmm − �
�

= �− ��m−2�R1mRm1 − �R11 − ���Rmm − ��� ,

reflecting the fact that m−2 eigenvalues are zero, i.e., the
number of nonzero eigenvalues is s�I�=s��1, . . . ,m��=2. We
find for the nonvanishing eigenvalues

2�± = R11 + Rmm ± ��R11 − Rmm�2 + 4R1mRm1�1/2.

Symmetry of M−1 yields
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�± = R11 ± R1m = − c��M−1�1,n ± �M−1�m,n� .

From the circulant structure of M we have

�M−1�i,j =
1

n
�
k=1

n
e2�ik�i−j�/n

1 − 2c cos�2�k/n�
=

1

n
�
k=1

n
cos�2�k�i − j�/n�
1 − 2c cos�2�k/n�

,

i.e., for large n we arrive at

�M−1�1,n =
1

2c
1 − 4c2
−

1

2c
,

�M−1�m,n =
1


1 − 4c2
�1 − 
1 − 4c2

2c
�m

. �17�

Note that these expressions are asymptotically independent
of m as shown in the inset of Fig. 4. In this limit we finally
arrive at

�± =
1

2
−

1

2
1 − 4c2
. �18�

This expression specifies the symplectic spectrum of the re-
duction in a closed form.

IX. DIVERGING CORRELATION LENGTH AND AREA
LAW OF THE ENTROPY

In this section we will analytically demonstrate that there
exist Hamiltonians for which the ground-state two-point cor-
relation functions diverge whereas the geometric entropy is
still bounded by an area law. In spin systems with a long-
range Ising interaction such a behavior has been observed in
the one-dimensional case and sketched for higher dimensions

�23�. Here, we present a class of examples of this type valid
in arbitrary dimension D, for which one can prove the valid-
ity of an upper bound linear in the boundary area. Moreover,
this set of examples is not restricted to cubic regions. The
interaction is here a suitable harmonic long-range interac-
tion. This analysis shows that a divergent two-point correla-
tion function alone is no criterion for a saturating block en-
tropy in the one-dimensional case, and for an area
dependence in higher dimensions.

Consider the matrix M with entries

Mi,j =
1

d�i,j�� ,

Mi,i = 1 + �
j�C
j�i

1

d�j,i��

for some ��0. Now set V=M−2. This choice implies that
the correlation function Gi,j= �V−1/2�i,j decays only algebra-
ically. We will show that despite this fact one still has an
upper bound linear in the boundary area of I for appropriate
values of �.

First, we have to make sure that the maximum eigenvalue
of V can be bounded from above independent of n. From
Gershgorin’s theorem �see, e.g., Ref. �39�� we know that for
every eigenvalue ��M� there exists an i such that

���M� − Mi,i� � �
j�C
j�i

Mi,j,

i.e.,

�min�M� � min
i �Mi,i − �

j�C
j�i

Mi,j� = 1,

and therefore

b = �max�V� = �max�M−2� =
1

�min
2 �W�

� 1.

Substituting this and the specific form of M into the general
expression for the entropy, we obtain

ln�2�
4

EI
S � �

j�I
i�O

1

�d�i,j��� = �
l=1



1

l�Nl � 22Ds�I��
l=1




l2D−�−1,

which converges for ��2D to

EI
S �

22D+2

ln�2�
��� − 2D + 1�s�I� , �19�

where ��x� is the Riemann zeta function. Note that these
bounds are not necessarily tight in the sense that even for
smaller values of �, such a behavior can be expected. Steps
toward tightening these bounds seem particularly feasible in
the case of cubic regions, where we conjecture that for
��D we arrive at an area dependence. This analysis shows
that for long-range interactions, an area law in the degree of
entanglement can be concomitant with divergent two-point
correlation functions.

FIG. 4. �Color online� Matrix entries of R for the case D=1,
C= �1, . . . ,100�, I= �1, . . . ,15�, V=M2, where M is a nearest-
neighbor circulant matrix. Note that for this particular form of V the
entries Ri,j are exactly zero for j�1,m. This is in contrast to the
general form of R depicted in Fig. 2. The inset shows the entries Ri,1

as bars and ln�Ri,1� in blue, cf. Eq. �17�.
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X. AN AREA LAW FOR CLASSICAL CORRELATIONS

In previous sections we have considered the entanglement
between some region and the rest of a lattice of interacting
quantum harmonic oscillators with Hamiltonians that are at
most quadratic in position and momentum. We have demon-
strated that both for the ground state and the thermal state of
the entire lattice the quantum correlations, i.e., the amount of
entanglement, between the region and the remainder of the
lattice is bounded by quantities proportional to their bound-
ary surface area.

This suggests similar questions concerning the classical
correlations between a region and the rest of the lattice in the
corresponding classical systems when the lattice system as a
whole is prepared in a thermal state. In this section we will
demonstrate that indeed analogous area laws hold. We will
note furthermore that there is a quite striking intimate rela-
tion between the classical system with potential matrix Vc
and the quantum system with potential matrix Vq=Vc

2 in this
context.

A. Hamiltonian, entropy, and mutual information

For the following considerations we use the classical
equivalent of the quantum-mechanical Hamiltonian �1�,
namely, again,

H =
1

2��i
pi

2 + �
i,j

xiVi,jxj� , �20�

where now x= �x1 , . . . ,xnD� and p= �p1 , . . . , pnD� are vectors
of classical position and momentum variables, respectively,
and V denotes again the potential matrix. The state of
the classical system is characterized by a phase-space
density �=����, a classical probability distribution, where
�= �x1 , . . . ,xnD , p1 , . . . , pnD� denotes all the canonical
coordinates in phase space. For nonzero temperatures T�0
this phase-space distribution is given by the Boltzmann
distribution

���� =
1

Z
e−�H��� �21�

where �=1/T �as before, k=1�, and

Z ª� d� e−�H���.

Given this density in phase space we will encounter a
familiar ambiguity when defining the entropy of the system.
Using the discrete classical entropy �43�, we split the phase
space into cubic cells each with a volume h2N, where
N=kD and h�0 being an arbitrary constant. From the phase-
space density we obtain the probability associated with each
of these cells which in turn can be used to determine the
entropy function of this probability distribution. We will now
make use of the multiple indices i= �i1 , . . . , iN� and
j= �j1 , . . . , jN�, assuming that the cell corresponding to �i , j� is
centered around x= �hi1 , . . . ,hiN� and p= �hj1 , . . . ,hjN�. That
is, for each degree of the nD degrees of freedom, the phase
space is discretized. The contribution of each cell to the dis-
cretized probability density is then given by

p�i,j� = �
cell

d� ���� .

As usual, the discrete classical entropy is then defined as the
corresponding Shannon entropy

SC�h� ª − �
i,j

p�i,j�log2 p�i,j� . �22�

We will denote the discrete classical entropy with respect to
the degrees of freedom of the interior by SI�h� and the en-
tropy of the exterior by SO�h�.

The value for the entropy will depend on the choice of h
and in the limit h→0 this entropy definition will diverge
due to a term proportional to −log2�h2N�. In classical statis-
tical mechanics this problem is avoided with the help of the
third law of thermodynamics. The entropy itself is however
not the quantity that we wish to compute but rather the mu-
tual information II between the interior I and the rest of a
lattice, denoted as before by O. This classical mutual infor-
mation meaningfully quantifies the classical correlations be-
tween the inner and the outer. In that case we find that the
limit h→0 exists and that the mutual information I can be
defined as

II ª lim
h→0

�SI�h� + SO�h� − SC�h�� .

Following these preparations we are now in a position to
determine the mutual information between a region and the
rest of the lattice explicitly when the lattice as a whole is in
a thermal state.

B. Evaluation of the mutual information

For the evaluation of the mutual information we need to
determine the entropy of the total lattice C, as well as
the entropy determined by the reduced densities describing
the two regions I and O. To this end we carry out the partial
summation over all degrees of freedom of region O in
order to find the reduced phase space density �I describing
region I only. Employing the Schur complement we find
that the reduced density �I is described by the Boltzmann
distribution corresponding to the same temperature and the
Hamiltonian

HI =
1

2� �
i,j�I

xi���V�I�−1�i,jxj + �
i�I

pi
2� . �23�

An analogous result holds for the reduced phase-space den-
sity of region O.

For a thermal phase-space distribution Eq. �21� corre-
sponding to a classical Hamiltonian function of the form Eq.
�20� we can compute the entropy straightforwardly, to find

SA = −
1

2
log2 det��V�A�−1 + v�A�log2

2�

�
+ v�A� .

A� �I ,O ,C�, which increases with temperature as expected.
For the mutual information we find
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II =
1

2
log2

�det V�I�det V�O
det V

,

which is, perhaps surprisingly, independent of temperature.
Using Jacobi’s determinant identity

�det V�Odet V−1 = �det V−1�I

this expression can be rewritten as

II =
1

2
log2 det��V�I�V−1�I� =

1

2
log2 det�1 − R� .

It is now advantageous to notice the close connection of this
expression, in particular of the matrix R

Ri,j = �
k�O

�V−1�i,kVk,j

with those that arise in the quantum-mechanical problem that
we have treated previously in Sec. VIII. Indeed, the classical
problem for a system with potential matrix Vc is related to
the quantum mechanical system with the squared potential
matrix Vq=Vc

2. This formal similarity arises because in Sec.
VIII we have shown that for a lattice of quantum harmonic
oscillators with potential matrix Vq=Vc

2 in its ground state
the symplectic eigenvalues of the covariance matrix describ-
ing region I alone are exactly the standard eigenvalues of the
matrix �1−R�1/2. The properties of these eigenvalues have
already been discussed in detail in Sec. VIII. This allows us
now straightforwardly to establish the area theorem for the
mutual information in a classical system employing the re-
sult for the corresponding quantum system.

This establishes in particular that the classical correlations
as measured by the mutual information IC,I between the dis-
tinguished region I and the rest of the lattice O=C \ I satisfy

c1�s�I� � II�T� � c2�s�I�

for large v�I� and appropriate constants c1,2� �0 independent
of O and I. �Compare also the assessment of the thermody-
namical entropy of parts of classical fluids in Ref. �44�.� In
summary we have seen that the area dependence of correla-
tions is not restricted to quantum systems, as long as one
replaces the notion of entanglement—representing quantum
correlations—by the notion of classical correlations in a clas-
sical system.

XI. SUMMARY AND OUTLOOK

In this paper, we have considered the question of the area
dependence of the geometric entropy and the distillable en-
tanglement in general bosonic-harmonic-lattice systems of
arbitrary dimension. The question was the general scaling
behavior of these measures of entanglement with the size of
a distinguished region of a lattice. Such an analysis general-
izes assessments of block entropies in the one-dimensional
case. Using methods from entanglement theory, we estab-
lished bounds that allow for a conclusion that may be ex-
pressed in a nutshell as follows: in surprising generality, we
find that the degree of entanglement scales at most linearly in
the boundary area of the distinguished region. This analysis

shows that the intuition that both the interior and the exterior
can be approximately disentangled up to a layer of the thick-
ness of the two-point correlation length by appropriate local
unitaries carries quite far indeed.

For cubic regions I= �1, . . . ,m��D the area law can be
formulated as

EI
D = ��mD−1� , �24�

where � is the Landau theta function.
Such area laws are expected to have an immediate impli-

cation on the accuracy to which ground states can be ap-
proximated with matrix-product states and higher-
dimensional analogs in classical simulations of the ground
states of quantum many-body systems �18�. After all, the
failure of DMRG algorithms close to critical points can be
related to the logarithmic divergence of the block entropy in
the one-dimensional case. Similarly, one might reasonably
expect that higher-dimensional analogues of matrix-product
states form a faithful approximation whenever an area law
holds.

The findings of the present paper raise a number of inter-
esting questions. Notably, in general quantum many-body
systems on a lattice �fermionic or bosonic�, what are neces-
sary and sufficient conditions for an area law in the above
sense to hold? Clearly, as we have seen above, the diver-
gence of two-point correlation functions alone is not in one-
to-one correspondence with an area law. It would be inter-
esting to consider and possibly decide the conjecture that a
one-to-one relationship between a system being critical and
not satisfying a law of the form as in Eq. �24� holds if one �i�
restricts attention to systems in arbitrary dimension with
nearest-neighbor interactions, and �ii� grasps criticality in
terms of two-point correlation functions with algebraic de-
cay, concomitant with a vanishing energy gap. Note that the
latter two criteria of criticality have not been rigorously re-
lated to each other yet and may indeed not be simultaneously
satisfied in lattice systems. The general relationship is still
awaiting rigorous clarification.

As steps toward such an understanding of a relationship
between criticality and properties of ground-state entangle-
ment in more than one-dimensional fermionic and bosonic
systems, it seems very interesting to study models different
from the ones considered in this paper. For example, comple-
menting our bosonic analysis, area laws in fermionic critical
systems have been addressed �24,25�, where logarithmic cor-
rections have been found also in higher-dimensional settings.
Other settings in the bosonic case, corresponding to field
theories beyond this quasifree setting, are also still not clari-
fied. In particular, the scaling behavior of the geometric en-
tropy in general bosonic theories in higher dimensions is far
from clear. Then, the case of finite-size effects in harmonic-
lattice systems where the correlation length is larger than the
full system, resembling the critical case, will be presented
elsewhere. In less generality, it seems also feasible to iden-
tify the prefactors of the leading- and next-to-leading-order
terms in an area law of the geometric entropy. It is the hope
that the present work can contribute to an understanding of
genuine quantum correlations in quantum many-body sys-
tems and inspire such further considerations.
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APPENDIX A: EXPONENTIAL DECAY OF ENTRIES OF
MATRIX FUNCTIONS

The result concerning the exponential decay of entries of
matrix functions of Ref. �41� relies on the fact that the pth
power Ap of a k-banded matrix A= �Ai,j� is pk banded, i.e.,
�Ap�i,j =0 for �i− j�� pk /2 for a matrix A with Ai,j =0 for
�i− j��k /2. For the purposes of the present paper, we will
need a generalization of the result of Ref. �41� to block-
banded matrices. We refer to V= �Vi,j� as being k banded, if
Vi,j=0 for d�i , j��k /2. It can be proven by induction over p
that the pth power of V is pk banded in this sense. This
enables us to formulate the general form of Ref. �41� as
follows.

Let V= �Vi,j� be a k-banded symmetric matrix, i.e.,
Vi,j=0 for ���i�− j���k /2. Define a=�min�V�, b=�max�V�,
�=b /a,

� : C → C, ��z� =
�b − a�z + a + b

2
,

and �� as an ellipse with foci in −1 and 1 and half axes �, �,
�=�+�.

Now let f : C→C be such that f �� is analytic in the
interior of the ellipse ��, ��1, and continuous on ��. Fur-
thermore suppose �f ����z��R for z�R. Then there exist
constants K and q, 0�K, 0�q�1 such that

��f�V��i,j� � Kq��=1
D �i�−j��,

where

K = max�max
i

��i„f�V�…�,
2�M���

� − 1
� ,

q = � 1

�
�2/k

, M��� = max
z���

��f � ���z�� .

To bound the entries of �−, we apply the above theorem to
the function

�−�z� =
e
z/T − 1

e
z/T + 1
z−1/2.

For 1	�	 �
�+1�2 / ��−1�, we have that �− �� is analytic
in the interior of the ellipse �� and continuous on ��, i.e., �−

satisfy the assumptions of the above theorem. To make K and
q specific, we choose

�
� + 1�2

� − 1
� � ª

� + 1

� − 1
� 1,

which yields

q� = �� − 1

� + 1
�2/k

, Ka,b =
e�/T − 1

e�/T + 1

� + 1

�
,

where

� = �a
�

� + 1
�1/2

,

and for zero temperature Ka,b reduces to

Ka,b =
� + 1

�
.

These findings explicitly relate the spectral properties of the
Hamiltonian to the two-point correlation functions.

APPENDIX B: ENTRIES OF THE CORRELATION MATRIX
FOR THE NEAREST-NEIGHBOR CASE

In this appendix, we make specific the evaluation of the
entries of V1/2 and V−1/2 of the important case of nearest-
neighbor interactions. The power-series expansion of the
square root is given by

�1 − x�±1/2 = 1 � �
k=1




ak
±xk, ak

− = �
l=1

k
2l − 1

2l
,

ak
− �

ak
−

2k − 1
= ak

+ �
1

2k�2k − 1�
,

which is valid for �x�	1, i.e., the positivity constraint
0	c	1/2D allows us to write

��k�V��±1/2 = 1 � �
l=1




al
±	2c�

�=1

D

cos�2�k�

n
�
l

= 1 � �
l=1




al
±cl��

�=1

D

e2�ik�/n + e−2�ik�/n�l

.

Using the multinomial theorem, we have

��
�=1

D

e2�ik�/n + e−2�ik�/n�l

= � l!�
�=1

D
�e2�ik�/n + e−2�ik�/n�n�

n�!
,

where the sum runs over all n� with ��n�= l. Now, applying
the binomial theorem

�e2�ik�/n + e−2�ik�/n�n� = �
r=o

n� �n�

r
�e2�ik��n�−2r�/n.

Substituting all the above into Eq. �14�, we find

�V±1/2�i,j = �i,j � �
l=1




al
±cl � l!�

�=1

D

f�d�,n�� ,

where d�= i�− j� and
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f�d�,n�� = �
r=0

n� 1

�n� − r�!r!�k=1

n
e2�ik�d�+n�−2r�/n

n
.

To the sum over r only terms with d�+n�−2r=zn for some
z�Z contribute. We thus arrive at the following expression
for the entries of V±1/2:

�V±1/2�i,j = �i,j � �
l=1




al
±cl �

��n�=l

l!�
�=1

D

�
r=0

d�+n�−2r=zn

n� 1

�n� − r�!r!
,

i.e., for nearest-neighbor interactions the product
−�V−1/2�i,j�V+1/2�i,j is always positive for i� j. This does not
hold in general and makes it difficult to obtain explicit
bounds on the entries of V±1/2 for more general interactions
V. To obtain a lower bound we keep only the term l=d�i , j�
and n�= �d��. The restriction on r is then satisfied for r=0
�r= �d��� if d�	0 �d��0�, yielding

��V±1/2�i,j� � ad�i,j�
± cd�i,j� d�i,j�!

��=1

D
�i� − j��!

� � c

2
�d�i,j� d�i,j�!

�2d�i,j� − 1���=1

D
�i� − j��!

.

It is also possible to obtain an upper bound that is tighter
than the one derived for finite-ranged interactions: The ele-
ments of V±1/2 are symmetric under i− j�ne�− �i− j�, where
e� is a unit vector along dimension �. Thus, we can demand
−n /2� i�− j��n /2. Then we find that n� has to be larger
than or equal to �i�− j��, otherwise the restriction on r cannot
be satisfied. This in turn means that l has to be larger than or
equal to d�i , j�. We then obtain an upper bound by summing
all terms in the sum over r regardless of the given restriction,
yielding

��V±1/2�i,j� � �
l�d�i,j�

al
±cl �

��n�=l

l!�
�=1

D
2n�

n�!
= �

l�d�i,j�
al

±�2cD�l

= �
l=0




al+d�i,j�
± �2cD�l+d�i,j� � ad�i,j�

± �2cD�d�i,j��
l=0




�2cD�l

=
ad�i,j�

±

1 − 2cD
�2cD�d�i,j�.

APPENDIX C: ENUMERATING THE RELEVANT TERMS
IN THE AREA LAW

We start by identifying the set of oscillators that can con-
tribute to Nl, l�1,

Nl = �
j�O

�
i�I

d�i,j�=l

1

�see Fig. 5�. Oscillators j�O can only contribute if their
distance to the boundary �O is not larger than l−1,

�O = �j � O� ∃ i � I : d�i,j� = 1� .

Thus, we can restrict the sum over O to the set Al,

Al = �
i��O

�j � O�d�i,j� � l − 1� ,

i.e., we can write

Nl = �
o�Al

�
i�I

d�i,o�=l

1 � �
o�Al

�
i�C

d�i,o�=l

1 � �Al�ml,

where ml is the number of surface oscillators of a ball with
radius l within the metric d, i.e., ml�2�2l+1�D−1 for l�1.
Using the fact that ��O��N1=s�I�, �Al� can now be bounded
from above in the following way:

�Al� � ��O�Ml−1 � s�I�Ml−1,

where Ml is the volume of a ball with radius l within the
metric d, i.e., Ml� �2l+1�D. To summarize, we have

Nl � 2�2l − 1�D�2l + 1�D−1s�I� � 2�2l�2D−1s�I� .
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