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We introduce an architecture for robust and scalable quantum computation using both stationary qubits �e.g.,
single photon sources made out of trapped atoms, molecules, ions, quantum dots, or defect centers in solids�
and flying qubits �e.g., photons�. Our scheme solves some of the most pressing problems in existing nonhybrid
proposals, which include the difficulty of scaling conventional stationary qubit approaches, and the lack of
practical means for storing single photons in linear optics setups. We combine elements of two previous
proposals for distributed quantum computing, namely the efficient photon-loss tolerant build up of cluster
states by Barrett and Kok �Phys. Rev. A 71, 060310�R� �2005�� with the idea of repeat-until-success �RUS�
quantum computing by Lim et al. �Phys. Rev. Lett. 95, 030505 �2005��. This idea can be used to perform
eventually deterministic two qubit logic gates on spatially separated stationary qubits via photon pair measure-
ments. Under nonideal conditions, where photon loss is a possibility, the resulting gates can still be used to
build graph states for one-way quantum computing. In this paper, we describe the RUS method, present
possible experimental realizations, and analyze the generation of graph states.
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I. INTRODUCTION

Quantum computing offers a way to realize certain algo-
rithms exponentially more efficiently than with the best
known classical solutions �1,2�. A substantial effort has
therefore been made to develop the corresponding quantum
technologies. Proof-of-principle experiments demonstrating
the feasibility of quantum computing have already been per-
formed. Using nuclear magnetic resonance techniques,
Vandersypen et al. �3� realized a simple instance of Shor’s
algorithm by factoring 15=3�5. A two-qubit gate has been
implemented in a color center in diamond utilizing the elec-
tron spin state of the nitrogen vacancy defect center together
with a nearby nuclear spin as qubits �4�. Groups in Innsbruck
and Boulder implemented a universal two-qubit gate in an
ion trap �5,6�, and the three-qubit teleportation protocol
�7,8�. Adding more qubits to this “proto quantum computer”
will increase the density of the motional states used for the
two-qubit interaction. Consequently, it will become even
harder to implement clean two-qubit gates. Scaling ion trap
quantum computers much further therefore seems to require
some form of distributed quantum information processing,
possibly involving ion transport �9�.

The schemes mentioned above are based on manipulating
stationary qubits such as atoms, molecules, or trapped ions.
An alternative route to finding a feasible and scalable tech-
nology for building quantum computers is based on flying
qubits, such as photons. The main advantage of photons is
their extremely long coherence time. In vacuum and in
simple dielectric media, photons do not interact with their
environment, and hence do not lose their quantum informa-
tion. This is why photons are usually the qubits of choice for
quantum communication �10,11�. However, at the same time
this lack of interaction means that it is very hard to create
two-photon entangling gates. It therefore came as a surprise

that the bosonic symmetry requirement of the electromag-
netic field, together with photon counting and proper single-
photon sources, is sufficient for implementing scalable quan-
tum computing �12�. The overhead cost for linear optical
quantum computing �LOQC� has subsequently been brought
down significantly. In particular, the one-way or cluster-state
model for quantum computing �13� has allowed for drastic
improvements in the scalability �14–16�. Recently, a four-
qubit cluster state was realized experimentally by Walther
et al. �17�. The main drawbacks of LOQC are the difficulties
of maintaining interferometric stability, the lack of practical
“on demand” single-photon sources, and the lack of quantum
memories for photonic qubits �18�.

In this paper, we consider the practical advantage of com-
bining stationary and flying qubits for the realization of scal-
able quantum computing. The stationary qubits �single pho-
ton sources� are arranged in a network of nodes with each
node processing and storing a small number of qubits. To
achieve scalability, the concept of distributed quantum com-
puting was introduced and it was proposed that distant qubits
communicate with each other through the means of flying
qubits �i.e., photons� �19,20�. Initial schemes for the imple-
mentation of this idea relied on entangled ancillas as a re-
source �19–23�. Others required that the photon from one
source is fed into another source �24–29� or a photon-
mediated interaction between two fiber-coupled distant cavi-
ties needed to be established �30�. More hybrid approaches
to quantum computing can be found in Refs. �31,32�.

Other authors developed schemes for the probabilistic
generation of highly entangled states between distant single
photon sources �33–41�. In these schemes, one generates a
photon in each of the sources and then performs an entan-
gling photon measurement. By virtue of entanglement swap-
ping, this results in entangled stationary qubits. It has been
shown that similar ideas can also result in the implementa-
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tion of probabilistic remote two-qubit gates �42�. At this
point, it was believed that scalable quantum computing with
distant photon sources requires additional resources such as
local entangling gates �22� or entangled ancillas in order to
become deterministic.

The concrete setup that we consider in this paper has re-
cently been introduced by Lim et al. �43� and allows for the
more efficient implementation of universal two-qubit gates
than previous proposals. The presented scheme consists of a
network of single stationary qubits �like trapped atoms, mol-
ecules, ions, quantum dots, and nitrogen vacancy color cen-
ters� inside optical cavities, which act as a source for the
generation of single photons on demand. Readout measure-
ments and single qubit rotations can be performed on the
stationary qubits using laser pulses and standard quantum
optics techniques as employed in the recent ion trap experi-
ments in Innsbruck and Boulder �5,6�.

The main building block for the realization of a two-qubit
gate, which qualifies the setup for universal quantum com-
puting, is shown in Fig. 1. It requires the simultaneous gen-
eration of a photon in each source involved in the operation.
Afterwards the photons should pass through a linear optics
setup, where a pair measurement is performed in the output
ports. This photon pair measurement results either in the
completion of the gate or indicates the presence of the origi-
nal qubits. In the later event, the gate should be repeated. The
qubits are never lost in the computation and the presented
scheme is therefore called repeat-until-success quantum
computing �43�.

Under realistic conditions, i.e., in the presence of finite
detector efficiencies and finite success rates for the genera-
tion of a single photon on demand, the setup in Fig. 1 can
still be used for the implementation of probabilistic gates
with a very high fidelity. As shown recently by Barrett and
Kok �44�, it is possible to use probabilistic gates to effi-
ciently generate graph states for one-way quantum comput-
ing �13�. Both schemes, �43,44�, overcome the limitations to
scalable quantum computing faced before when using the
same resources. In Ref. �43� this is achieved with an even-
tually deterministic gate. Reference �44� introduced a so-
called double-heralding scheme, in which the entangling
photodetection stage was employed twice to eliminate un-
wanted separable contributions to the density matrix.

In this paper, we combine the ideas presented in our pre-
vious work �43,44�. In this way, we obtain a truly scalable
design for quantum computing, i.e., even in the presence of

imperfect components, with several key advantages.
�1� Since our system uses no direct qubit-qubit interac-

tions, the qubits can be well isolated. Not only does this
allow us to address the individual qubits easily, it also means
that there are fewer decoherence channels and hence fewer
errors in the computation.

�2� We achieve robustness to photon loss. In the presence
of photon loss, the two-qubit gates become nondeterministic.
However, the gate failures are heralded, and so the gates can
still be used to build high-fidelity entangled states, albeit in a
nondeterministic manner. Photon loss thus increases the
overall overhead cost associated with the scheme, but does
not directly reduce the fidelity of the computation. When
realistic photodetectors and optical elements are used, pho-
ton loss is inevitable and this built-in robustness is essential.

�3� Our scheme largely relies only on components that
have been demonstrated in experiments like atom photon
entanglement �45,46�. Apart from linear optics, we require
only relatively good sources for the generation of single pho-
tons on demand �47–51�, preferrably at a high rate �52�, and
relatively efficient but not necessarily number resolving pho-
ton detectors �53�. Combining these in a working quantum
computer will be challenging, but the basic physics has been
shown to be correct.

�4� The photon pair measurement is interferometrically
stable. Since each generated photon contributes equally to
the detection of a photon in the linear optics setup, fluctua-
tions in the length between the photon source and the detec-
tors can at most result in an overall phase factor with no
physical consequences. This constitutes a significant advan-
tage compared to previous schemes based on one-photon
measurements �the only interferometrically stable schemes
are �36,38,39,43��, since the photons do not need to arrive
simultaneously in the detectors as long as they overlap
within their coherence time in the setup.

�5� The basic ideas presented in this paper are implemen-
tation independent and the stationary qubits can be realized
in a variety of ways. Any system with the right energy level
structure and able to produce encoded flying qubits may be
used.

�6� Our scheme is inherently distributed. Hence, it can be
used in applications which integrate both quantum computa-
tion and quantum communication. We show that entangle-
ment can be generated directly between any two stationary
qubits in the physical quantum computer. This significantly
reduces the computational cost compared to architectures in-
volving only nearest-neighbor interactions between the qu-
bits �54�.

This paper is organized as follows. In the next section, we
give an overview on the basic principles of measurement-
based quantum computing, since the described hybrid ap-
proach to quantum computing constitutes an implementation
of these ideas. Section III details the general principle of a
remote two-qubit gate implementation. In Sec. IV we discuss
possible gate implementations with polarization and time-bin
encoded photons. In Sec. V we describe how to overcome
imperfections of inefficient photon generation and detection
with the help of prefabricated graph states. Finally, we state
our conclusions in Sec. VI.

FIG. 1. �Color online� Experimental realization of a universal
two-qubit gate for the considered network of single photon sources
�stationary qubits�. This requires the generation of a photon within
each of the sources involved. The two photons then pass within
their coherence time through a linear optics network which per-
forms a certain photon pair measurement.

LIM et al. PHYSICAL REVIEW A 73, 012304 �2006�

012304-2



II. MEASUREMENT-BASED QUANTUM COMPUTING

One condition for the successful implementation of a
measurement-based quantum gate is that the measurement
outcome is mutually unbiased �55� with respect to the com-
putational basis. In this way, an observer does not learn any-
thing about the state of the qubits and the information might
remain stored inside the computer. To avoid the destruction
of qubits, it is not allowed to measure on the qubits directly.
Measurements should only be performed on ancillas, which
have interacted and therefore share entanglement with the
qubits. These ancillas can be of the same physical realization
as the computational qubits �13,56–58� but they might also
be realized differently. If the stationary qubits are atoms, the
ancilla can be the quantized field mode inside an optical
cavity �59�, a common vibrational mode �60� or newly gen-
erated photons, as in the setup considered here. Vice versa, it
has been found advantageous to use collective atomic states
as ancillas for photonic qubits �31,32�.

Let us now briefly describe the principles of
measurement-based quantum computing in a more formal
way. Using the terms “qubits” and “ancillas” provides a con-
venient picture, which is especially suited for the description
of hybrid approaches, where the qubits may remain encoded
in the same physical qubits instead of being assigned dy-
namically as the computation proceeds. As in Ref. �61�, we
consider two systems, s and a, that are initially in the state
�cn�C�

���s�A0�a � �
n

cn��n�s � �A0�a. �1�

After some interaction, the joint system evolves into

���s�A0�a → �
n

cn��n�s � �An�a � ��� , �2�

where the �An�a are the eigenstates of an observable A. We
can then measure A, which will reveal the state of the system
s. This can be interpreted as a quantum nondemolition mea-
surement of s but this is not what we are interested in here.

In this paper we will instead consider measurements of an
observable B, as shown in Fig. 2, that is complementary to
A. In other words, the eigenvectors of A and B form a so-
called mutually unbiased basis of the Hilbert space of system
s. A specific outcome labeled k of such a measurement cor-

responds to the application of the projection operator B̂k �as-

sociated with the kth eigenvector of B�, and the state of
system s is then given by

��k�s =
Tra�	��1 � B̂k����

Trsa�	��1 � B̂k����
. �3�

This can be generalized to situations where B̂k is a multirank
projector or a positive operator valued measure �POVM�.
The conditions for the evolution ��n�s→ ��k�s to be a unitary
transformation on system s are presented in Lapaire et al.
�61�. If s describes the qubits and a the ancilla, they guaran-

tee, as mentioned above, that the detection of B̂k does not
reveal any information about the qubits.

Especially, in the setup considered in this paper the sys-
tem s consists of a set of N stationary qubits occupying a
Hilbert space of size 2N, and system a consists of N flying
quantum systems occupying a Hilbert space of dimension
d�2N. A measurement of the observable B on the flying
qubits will result in a multiqubit �entangling� operation on
the stationary qubits. We are interested in the case where the

projector B̂k induces a unitary transformation on the station-
ary qubits,

��k�s = Uk���s, �4�

which means that B̂k is a proper projector. There are two
interesting cases to consider.

�1� The set 
B̂k�a corresponds to a basis of states that
induces a complete set 
Uk�a of entangling quantum gates. As
a result, finding any measurement outcome k will induce a
unitary entangling gate operation on the stationary qubits.

�2� The set 
B̂k�a corresponds to a basis that can be di-
vided into two sets of states. Some of the projectors will
induce a unitary entangling gate Uk on the stationary qubits,
while the remaining projectors induce a transformation that
is locally equivalent to the identity map 1.

The second setup is interesting for the following reason:
Suppose that system s consists of N noninteracting �e.g.,
well-separated� stationary qubits with long decoherence
times. If this system can generate flying qubits in the manner
described above, we can perform a measurement of the ob-
servable B and entangle the noninteracting stationary qubits.
When not all measurement outcomes produce an entangling
gate on the stationary qubits �some yield instead the identity
operator�, then the unitary gate is applied only part of the
time. However, due to the fact that a gate failure corresponds
to an identity operation �or something locally equivalent�, we
can again prepare the flying qubits in the state �A0�a. This
allows us to repeat the protocol until the entangling gate is
applied successfully, which is why we called this idea repeat-
until-success quantum computing �43�.

III. REMOTE TWO-QUBIT PHASE GATES

One of the requirements for universal quantum computing
is the ability to perform an entangling two-qubit gate opera-
tion, like a controlled phase gate �62�. In this section we
describe the general concept for the implementation of this

FIG. 2. �Color online� Measurement-based quantum computing.
The input state ���s and the auxiliary state �A0�a are transformed in
an N port that induces a unitary transformation Usf. Given a detec-

tor outcome corresponding to a POVM B̂k, the output state is ��k�s.
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gate between two distant single photon sources. Note that
our method of distributed quantum computing allows to re-
alize entangling operations, since the measurement on a pho-
ton pair can imprint a phase on the state of its sources al-
though it cannot change the distribution of their populations.
The first step for the implementation of a two-qubit gate is
the generation of a photon within each respective source,
which encodes the information of the stationary qubit.

A. Encoding

Let us denote the states of the photon sources, which en-
code the logical qubits �0�L and �1�L as �0� and �1�, respec-
tively. An arbitrary pure state of two stationary qubits can
then be written as

��in� = ��00� + ��01� + 	�10� + 
�11� , �5�

where �, �, 	, and 
 are complex coefficients with ���2
+ ���2+ �	�2+ �
�2=1. Suppose that a photon is generated in
each of the two sources, whose state �i.e., its polarization or
generation time� depends on the state of the respective
source. In the following we assume that source 1 prepared in
�i� leads to the creation of one photon in state �xi�, while
source 2 prepared in �i� leads to the creation of one photon in
state �yi�,

�i�1 → �i,xi�1, �i�2 → �i,yi�2. �6�

The simultaneous creation of a photon in both sources then
transfers the initial state �5� into

��enc� = ��00,x0y0� + ��01,x0y1� + 	�10,x1y0� + 
�11,x1y1� .

�7�

Note that the generation of photons whose state depends on
the states of the stationary qubits is a highly nonlinear pro-
cess. The preparation of the generally entangled state �7� is
indeed the key step which allows the completion of an even-
tually deterministic two-qubit gate with otherwise nothing
else than linear optics and photon pair measurements. The
way the encoding step �6� can be realized experimentally is
discussed in Sec. IV. In this section we focus on the general
ideas underlying RUS quantum computing.

B. Mutually unbiased basis

Once the photons have been created, an entangling phase
gate can be implemented by performing an absorbing mea-
surement on the photon pair. Thereby, it is important to
choose the photon measurement such that none of the pos-
sible outcomes reveals any information about the coefficients
�, �, 	, and 
, as mentioned in Sec. II. This can be achieved
with a photon pair measurement in a basis mutually unbiased
�55� with respect to the computational basis given by the
states 
�x0y0� , �x0y1� , �x1y0� , �x1y1��. More concretely, all pos-
sible outcomes of the photon measurement should be of the
form

��� = 1
2 ��x0y0� + ei�1�x0y1� + ei�2�x1y0� + ei�3�x1y1�� . �8�

As we see below, a complete set of basis states of this form
can be found. Any bias in the amplitudes would yield infor-

mation about �, �, 	, and 
, and would therefore not induce
a unitary gate on the stationary qubits. Detecting the state �8�
and absorbing the two photons in the process transfers the
encoded state �7� into

��out� = ��00� + e−i�1��01� + e−i�2	�10� + e−i�3
�11� . �9�

Note that the output state �9� differs from the initial state �5�
by a two-qubit phase gate.

Let us now consider the angle

�3 = �1 + �2. �10�

In this case, the state ��� is a product state and the output �9�
differs from the initial state �5� only by local operations.
However, if

�3 = �1 + �2 + � , �11�

the state �8� becomes a maximally entangled state, as it be-
comes obvious when writing ��� as

��� = 1
2 ��x0���y0� + ei�1�y1�� + ei�2�x1���y0� − ei�1�y1��� .

�12�

The detection of a photon pair in this maximally entangled
state results in the completion of a phase gate with maximum
entangling power on the stationary qubits. Vice versa, maxi-
mum entanglement of the state �8� also automatically implies
Eq. �11� as one can show by calculating the entanglement of
formation of the state �8�.

C. A deterministic gate

In the following, we denote the states of the measurement
basis, i.e., the mutually unbiased basis, by 
��i��. In order to
find a complete Bell basis with all states of form �8�, we
define

��1� �
1
�2

��a1b1� + �a2b2�� ,

��2� �
1
�2

��a1b1� − �a2b2�� ,

��3� �
1
�2

��a1b2� + �a2b1�� ,

��4� �
1
�2

��a1b2� − �a2b1�� , �13�

where the states �ai� describe photon 1 and the �bi� describe
photon 2. Assuming orthogonality, i.e., 	a1 �a2�=0 and
	b1 �b2�=0, one can write the photon states on the right-hand
side of Eq. �13� without loss of generality as

�a1� = c1�x0� + ei
1s1�x1� ,

�a2� = e−i�1�e−i
1s1�x0� − c1�x1�� ,

�b1� = c2�y0� + ei
2s2�y1� ,
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�b2� = e−i�2�e−i
2s2�y0� − c2�y1�� �14�

with

si � sin �i, ci � cos �i. �15�

Inserting this into Eq. �13�, we find

��1� =
1
�2

��c1c2 + e−i�
1+
2�e−i��1+�2�s1s2��x0y0� + �ei
2c1s2

− e−i
1e−i��1+�2�s1c2��x0y1� + �ei
1s1c2

− e−i
2e−i��1+�2�c1s2��x1y0� + �ei�
1+
2�s1s2

+ e−i��1+�2�c1c2��x1y1�� ,

��2� =
1
�2

��c1c2 − e−i�
1+
2�e−i��1+�2�s1s2��x0y0� + �ei
2c1s2

+ e−i
1e−i��1+�2�s1c2��x0y1� + �ei
1s1c2

+ e−i
2e−i��1+�2�c1s2��x1y0� + �ei�
1+
2�s1s2

− e−i��1+�2�c1c2��x1y1�� ,

��3� =
1
�2

��e−i
2e−i�2c1s2 + e−i
1e−i�1s1c2��x0y0� − �e−i�2c1c2

− e−i�
1−
2�e−i�1s1s2��x0y1� + �ei�
1−
2�e−i�2s1s2

− e−i�1c1c2��x1y0� − �ei
1e−i�2s1c2 + ei
2e−i�1c1s2�

��x1y1�� ,

��4� =
1
�2

��e−i
2e−i�2c1s2 − e−i
1e−i�1s1c2��x0y0� − �e−i�2c1c2

+ e−i�
1−
2�e−i�1s1s2��x0y1� + �ei�
1−
2�e−i�2s1s2

+ e−i�1c1c2��x1y0� − �ei
1e−i�2s1c2 − ei
2e−i�1c1s2�

��x1y1�� . �16�

These states are of the form �8�, if the amplitudes are all of
the same size, which yields the conditions

�c1c2 ± e−i�
1+
2+�1+�2�s1s2� = �c1s2 ± e−i�
1+
2+�1+�2�s1c2� =
1
�2

,

�17�

and

�c1s2 ± e−i�
1−
2+�1−�2�s1c2� = �c1c2 ± e−i�
1−
2+�1−�2�s1s2� =
1
�2

.

�18�

The only solution of the constraints �17� and �18� is

cos�2�1�cos�2�2� = cos�
1 ± 
2 + �1 ± �2� = 0 �19�

provided that neither cos�2�1� nor cos�2�2� equals 1. In the
special case, where either cos�2�1�=1 or cos�2�2�=1, condi-
tion �19� simplifies to cos�2�1�cos�2�2�=0 with no restric-
tions in the angles 
1, 
2, �1, and �2.

One particular way to fulfill the restrictions �19� is to set

�2 = − 1
2�, �1 = 
1 = 
2 = 0, and �1 = �2 = 1

4� , �20�

which corresponds to the choice �cf. �43��

�a1� =
1
�2

��x0� + �x1�� ,

�a2� =
1
�2

��x0� − �x1�� ,

�b1� =
1
�2

��y0� + �y1�� ,

�b2� =
i

�2
��y0� − �y1�� , �21�

and yields

��1� = 1
2ei�/4��x0y0� − i�x0y1� − i�x1y0� + �x1y1�� ,

��2� = 1
2e−i�/4��x0y0� + i�x0y1� + i�x1y0� + �x1y1�� ,

��3� = 1
2ei�/4��x0y0� − i�x0y1� + i�x1y0� − �x1y1�� ,

��4� = − 1
2e−i�/4��x0y0� + i�x0y1� − i�x1y0� − �x1y1�� .

�22�

To find out which gate operation the detection of the corre-
sponding maximally entangled states �13� combined with a
subsequent absorption of the photon pair results into, we
write the input state �7� as

��enc� = 1
2�

i

4

��i� � ��i� �23�

and determine the states ��i� of the stationary qubits. Using
the notation

UCZ � �00�	00� + �01�	01� + �10�	10� − �11�	11� �24�

for the controlled two-qubit phase gate �the controlled-Z
�CZ� gate� and the notation

Zi��� � �0�ii	0� + e−i��1�ii	1� �25�

for the local controlled-Z gate on photon source i �63�, we
find

��1� = exp�− 1
4 i��Z2�− 1

2��Z1�− 1
2��UCZ��in� ,

��2� = exp� 1
4 i��Z2� 1

2��Z1� 1
2��UCZ��in� ,

��3� = exp�− 1
4 i��Z2�− 1

2��Z1� 1
2��UCZ��in� ,

��4� = − exp� 1
4 i��Z2� 1

2��Z1�− 1
2��UCZ��in� . �26�

From this we see that one can indeed obtain the CZ gate
operation �24� up to local unitary operations upon the detec-
tion of any of the four Bell states ��i�, as it has been pointed
out already by Protsenko et al. �42�.
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D. Repeat-until-success quantum computing

When implementing distributed quantum computing with
photons as flying qubits, the problem arises that it is impos-
sible to perform a complete deterministic Bell measurement
on the photons using only linear optics elements. As it has
been shown �64�, in the best case, one can distinguish two of
the four Bell states. Since the construction of efficient non-
linear optical elements remains experimentally challenging,
the above described phase gate could therefore be operated at
most with a success rate of 1 /2.

What must be done to solve this problem is to choose the
photon pair measurement basis 
��i�� such that two of the
basis states are maximally entangled while the other two ba-
sis states are product states. Most importantly, all basis states
must be mutually unbiased with respect to the computational
basis and information will not be destroyed at any stage of
the computation. In the following we choose ��3� and ��4�
as in Eq. �13� and ��1� and ��2� as product states such that

��1� = �a1b1�, ��2� = �a2b2� ,

��3� �
1
�2

��a1b2� + �a2b1�� ,

��4� �
1
�2

��a1b2� − �a2b1�� . �27�

The aim of this is �see Sec. II� that in the event of the “fail-
ure” of the gate implementation �i.e., in case of the detection
of ��1� or ��2�� the system remains, up to a local phase gate,
in the original qubit state. This means that the initial state �5�
can be restored and the described protocol can be repeated,
thereby eventually resulting in the performance of the uni-
versal controlled phase gate �24�. The probability for the
realization of the gate operation within one step equals 1 /2
and the final completion of a quantum phase gate therefore
requires on average two repetitions of the above described
photon pair generation and detection process.

Let us now determine the conditions under which the
states 
��i�� are of the form �8�. Proceeding as above, we
find that the angles 
i, �i, and �i in Eq. �14� should fulfill, for
example, Eq. �20�. In analogy to Eqs. �17� and �18�, we find
that ��1� and ��2� are mutually unbiased if

�c1c2� = �c1s2� = �s1c2� = �s1s2� = 1
2 , �28�

which also holds for the parameter choice in Eq. �20�. Using
Eq. �21�, one can easily verify that with the above choice the
basis �27� becomes

��1� = 1
2 ��x0y0� + �x0y1� + �x1y0� + �x1y1�� ,

��2� =
i

2
��x0y0� − �x0y1� − �x1y0� + �x1y1�� ,

��3� = 1
2ei�/4��x0y0� − i�x0y1� + i�x1y0� − �x1y1�� ,

��4� = − 1
2e−i�/4��x0y0� + i�x0y1� − i�x1y0� − �x1y1�� .

�29�

Choosing the states �ai� and �bi� as in Eq. �21� allows to
implement the gate operation �24� eventually deterministi-
cally.

Finally, we determine the gate operations corresponding
to the detection of a certain measurement outcome ��i�. To
do this, we decompose the input state �7� again into a state of
the form �23�. Proceeding as in the previous section, we find

��1� = ��in� ,

��2� = − iZ2���Z2�����in� ,

��3� = exp�− 1
4 i��Z2�− 1

2��Z1� 1
2��UCZ��in� ,

��4� = − exp� 1
4 i��Z2� 1

2��Z1�− 1
2��UCZ��in� . �30�

Again one obtains the CZ gate operation �24� up to local
unitary operations upon the detection of either ��3� or ��4�.
In the event of the detection of the product states ��1� or
��2�, the initial state can be restored with the help of one-
qubit phase gates, which then allows us to repeat the opera-
tion until success.

It should be emphasized that there are other possible en-
codings that yield a universal two-qubit phase gate upon the
detection of a Bell-state, but where the original state is de-
stroyed upon the detection of a product state �see, e.g., �40��.
This happens when the product states are not mutually unbi-
ased and their detection erases the qubit states in the respec-
tive photon sources. To achieve the effect of an insurance
against failure, the encoding �6� should be chosen as de-
scribed in this section.

IV. POSSIBLE EXPERIMENTAL REALIZATIONS

Possible experimental realizations of the above described
eventually deterministic quantum phase gate consist of two
basic steps. Firstly, the information of the stationary qubits
involved in the operation has to be redundantly encoded in
the states of two newly generated ancilla photons. After-
wards, a measurement is performed on the photon pair re-
sulting with probability 1 /2 in the desired gate operation.
Depending on the type of photon source, one can choose
different types of encoding. There are also different possibili-
ties how to perform the photon pair measurement. Examples
are given below.

A. Redundant encoding

In order to obtain robust qubits, the states �0� and �1�
should be two different long-living ground states of the
single photon source. Each photon source carries one qubit.
Depending on its level structure �see Fig. 3�, it might be
advantageous to realize the encoding step �7� either by gen-
erating photons with different polarizations �polarization en-
coding� or photons that agree in all degrees of freedom apart
from their creation time �time bin encoding�. Note that dif-
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ferent encodings can easily be transformed into each other
using linear optics elements like a polarizing beam splitters
and delaying photons in time.

Polarization encoding. Suppose, the photon source con-
tains an atomic double � level configuration as shown in Fig.
3�a� �see also Ref. �65��. A single photon can then be created
by simultaneously applying a laser pulse with increasing
Rabi frequency to the 0-e0 transition and the 1-e1 transition
of the atomic system. Thereby, the atom goes to the ground
state �v0� and �v1�, respectively, depending on whether its
initial state equalled �0� or �1� due to the coupling of the
e0-v0 transition and the e1-v1 transition to the cavity mode. It
has been shown in the past that this technique �66� is very
well suited to place exactly one excitation into the field of an
optical resonator, from where it can leak out �47�.

If the two transitions, e0-v0 and e1-v1, couple to the two
different polarization modes h and v, in the cavity field, the
photon generation results effectively, for example, in the op-
eration

�0�i → �0,h�i, �1�i → �1,v�i �31�

once atom i has been repumped into its initial state �0�i and
�1�i, respectively. Finally we remark that the encoding does
not affect the coefficients �, �, 	, and 
 of the initial state
�5�. As long as no measurement is performed on the system
all coherences are preserved.

Time-bin encoding. Alternatively, if the photon sources
possess a level structure like the one shown in Figure 3�b�,
one can redundantly encode the information contained in the
qubits into time bin encoded photons,

�0�i → �0,E�i, �1�i → �1,L�i. �32�

This encoding is simpler and may therefore find realizations
not only in atoms but also in quantum dots and nitrogen
vacancy color centers. In Eq. �32�, �E� and �L� denote a
single photon generated at an early and a later time, respec-
tively. The above operation can be achieved by first coupling
a laser field with increasing Rabi frequency to the 1-e1 tran-
sition, while the cavity mode couples to the e1-v1 transition.
Once the excitation has been placed into the cavity mode and
leaked out through the outcoupling mirror, the atom can be
repumped into �0�. Afterwards, one should swap the states �0�
and �1� and repeat the process. This results in the generation
of a late photon, if the system was initially prepared in �1�.
To complete the encoding, the states �0� and �1� have to be
swapped again.

B. Photon pair measurement

We now give two examples how to perform a photon pair
measurement of the mutually unbiased basis �29�. The first
method is suitable for polarization encoded photons, the sec-
ond one for dual rail encoded photons. If the qubits have
initially been time bin encoded, their encoding should be
transformed first using standard linear optics techniques.

Polarization encoding. It is well known that sending two
polarization encoded photons through the different input
ports of a 50:50 beam splitter together with polarization sen-
sitive measurements in the �h� / �v� basis in the output ports
would result in a measurement of the states 1 / ��2�
���hv�± �vh��, �hh� and �vv�. To measure the states �27�, we
therefore propose to proceed as shown in Fig. 4�a� �43� and
to perform the mapping

U1 = �h�	a1� + �v�	a2� ,

U2 = �h�	b1� + �v�	b2� �33�

on the photon coming from source i. Using Eq. �21�, we see
that this corresponds to the single qubit rotations

U1 =
1
�2

��h��	h� + 	v�� + �v��	h� − 	v��� ,

U2 =
1
�2

��h��	h� + 	v�� − i�v��	h� − 	v��� . �34�

After leaving the beam splitter, the photons should be de-
tected in the �h� / �v� basis. A detection of two h and two v
polarized photons indicates a measurement of ��1� and ��2�,
respectively. Finding two photons of different polarization in
the same or in different detectors corresponds to a detection
of ��3� or ��4�.

Dual-rail encoding. Alternatively, one can redirect the
generated photons to the different input ports of a 4�4 Bell

FIG. 3. �Color online� Schematic view of a single photon �a� polarization encoder, �b� time-bin encoder, and level configuration of the
source containing the qubit.

FIG. 4. �Color online� Linear optics networks for the realization
of a measurement of the basis states �13� after encoding the photo-
nic qubits in the polarization degrees of two photons �a� or into four
different spatial photon modes �b� involving either a beam splitter
or a 4�4 Bell multiport beam splitter.
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multiport beam splitter as shown in Fig. 4�b�. If an
† and bn

†

denotes the creation operator for a photon in input and output
port n, respectively, the effect of the multiport can be sum-
marized as �67�

an
† → �

m

Umnbm
† �35�

with

Umn = 1
2 exp�i��n − 1��m − 1�� . �36�

A Bell multiport redirects each incoming photon with equal
probability to any of the possible output ports, thereby eras-
ing the which way information of the incoming photons. One
way to measure in the mutually unbiased basis �29� is to
direct the �x0� photon from source 1 to input port 1, the �x1�
photon from source 1 to input port 3, and to direct the �y0�
photon and the �y1� photon from source 2 to input port 2 and
4, respectively. If �vac� denotes the state with no photons in
the setup, this results in the conversion

�x0y0� → a1
†a2

†�vac�, �x0y1� → a1
†a4

†�vac� ,

�x1y0� → a2
†a3

†�vac�, �x1y1� → a3
†a4

†�vac� . �37�

This conversion should be realized such that the photons
enter the multiport at the same time. Using Eq. �35� one can
show that the network transfers the basis states �29� accord-
ing to

��1� → 1
2 �b1

†2 − b3
†2��vac� ,

��2� → − 1
2 �b2

†2 − b4
†2��vac� ,

��3� →
1
�2

�b1
†b4

† − b2
†b3

†��vac� ,

��4� → −
1
�2

�b1
†b2

† − b3
†b4

†��vac� . �38�

Finally, detectors measure the presence of photons in each of
the possible output ports. The detection of two photons in the
same output port, namely in 1 or 3 and in 2 or 4, corresponds
to a measurement of the state ��1� and ��2�, respectively.
The detection of a photon in ports 1 and 4 or in 2 and 3
indicates a measurement of the state ��3�, while a photon in
the ports 1 and 2 or in 3 and 4 indicates the state ��4�.

Any unknown fixed �or slowly varying with respect to the
coherence length of the photon pulse� phase factor intro-
duced along the photon paths contributes at most to a global
phase factor to the input state �7�, which is also a feature of
the schemes outlined in Refs. �36,38,39,43�. The implemen-
tation of repeat-until-success quantum computing therefore
does not require interferometric stability. It requires only
overlapping of the photons within their coherence length
within the linear optics setup.

V. SCALABLE QUANTUM COMPUTATION IN THE
PRESENCE OF INEFFICIENT PHOTON GENERATION

AND DETECTION

In this section, we discuss the possibility of implementing
scalable quantum computation using the repeat-until-success
quantum gate described in the previous sections. The imple-
mentation of this gate requires the generation of single pho-
tons on demand and linear optical elements together with
absorbing quantum measurements. In the limit of perfect
photon emission, collection, and detection efficiency, two-
qubit CZ gates can be performed deterministically, as de-
scribed above. In real systems, however, photon emission,
collection, and detection is not perfect �68�. In existing ex-
periments, all of these processes have significant inefficien-
cies, which means that there is a finite probability that two
photons will not be observed in the photon measurement.
The failure to observe two photons in an attempted CZ op-
eration means that the static qubits are left in an unknown
state, which constitutes a correlated two-qubit error. If such
losses are sufficiently small �e.g., less than 
10−2�, the re-
sulting gate failures can be dealt with using existing fault
tolerance techniques �69,70�. Recently, much higher fault tol-
erance levels of up to 50% were found in linear optical quan-
tum computing �71,72�.

More concretely, the highest reported photon detection ef-
ficiency for single photon detection with photon number
resolution is about 88% �53,73�. A recent experiment by
McKeever et al. �49� involving an atom cavity system for the
generation of single photons on demand yields a photon gen-
eration efficiency of nearly 70%, limited only by passive
cavity loss. The lifetime of the atom in the cavity was 0.14 s,
allowing for as many as 1.4�104 photon generation events.
Moreover, Legero et al. �74� demonstrated perfect time re-
solved interference with two photons of different frequen-
cies. Time resolved detection acts as a temporal filter to erase
the which way information that is important to any scheme
involving photon interference. This suggests that strictly
identical single photon sources are not required for attaining
high fidelities in the state preparation. The cost of this high
fidelity is a lower probability of success.

Fortunately, scalable quantum computing is possible, even
in the presence of large errors, as long as no errors imply a
very high fidelity and the occurrence of an error is heralded.
If fewer than two photons are detected, we know that the
attempted CZ operation has failed. Only when the detectors
have a substantial amount of dark counts, we cannot rely on
this error detection mechanism. However, commercially
available silicon avalanche photodetectors are available with
a detection efficiency of 65%, and a dark count rate of �dc
�25 s−1 �75�. A photon regeneration rate of 105 s−1 gives a
clock time of 10−5 s. The total dark count probability is then
pdc�10−4 per clock cycle, which is small enough to be dealt
with using existing error correction techniques. Moreover, if
one could experiment with detectors like the one reported by
Rosenberg et al. �53�, dark count rate effects would be neg-
ligible.

In the case of an error, the state of the static qubits can be
determined by subsequently performing measurements on
the sources, which allows the sources to be reprepared in a
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known state. In earlier work, we have shown that scalable
quantum computation can be performed in the presence of
significant heralded error rates, by first using a nondetermin-
istic entangling operation to create cluster states of many
qubits �44�, and subsequently implementing scalable quan-
tum computation via the “one-way quantum computer” �13�.
Given cluster states of many qubits, the one-way quantum
computer can be implemented by single qubit measurements
alone. This technique permits fully scalable quantum compu-
tation, albeit with a fixed overhead per two-qubit gate in the
algorithm, which we calculate below. We briefly review how
one-way quantum computing can proceed within our
scheme, and then provide an estimate of the overhead costs
involved.

A. One-way quantum computation

One-way quantum computation �13� proceeds by first cre-
ating a graph state of many qubits, and subsequently per-
forming single qubit measurements on the graph state
�76–78�. Graph states may be represented as a graph com-
prising set of qubit “nodes” connected by “edges” which
may be understood as “bonds” between the qubits. The quan-
tum state corresponding to such a graph may be defined �and
also implemented� by the following procedure: �i� prepare
each qubit in the state �+ �= ��0�+ �1�� /�2, and then �ii� for
each bond in the corresponding graph, apply a deterministic
CZ operation �see Eq. �24�� between the relevant qubits. In
this work, we will restrict our attention to the rectangular
lattice graph states of the form shown in Fig. 5 �hereafter
referred to simply as cluster states�, which are sufficient for
simulating arbitrary logic networks, and hence universal
quantum computations �15�. It is worth noting, however, that
straightforward generalizations of the procedure described
below allow us to scalably generate arbitrary graph states.
This may be useful in that it might result in reduced costs for
implementing certain algorithms.

In these clusters, each horizontal row of physical qubits
represents a single logical qubit in the logic network being
simulated. Two qubit operations are implemented by the ver-
tical bonds acting between rows. We also permit bonds be-
tween nonadjacent rows, which permits highly nonlocal two

qubit gates to be implemented. Note also that the location of
the qubits within the cluster is notional, and need not corre-
spond to the physical location of the static qubit �the map-
ping between the notional qubit positions within the cluster
and the actual physical location of the qubits can be stored in
a classical computer�. After making the state, quantum com-
putation proceeds by performing a sequence of single qubit
measurements on the static qubits, with each measurement
performed in a particular basis so as to implement a given
sequence of one- and two-qubit gates �13,15�. At each time
step, a whole column of physical qubits in the cluster is
measured. The measurements are performed in order, starting
with the column at the left side of the cluster, and proceeding
rightwards across the cluster. In general, the basis of the
measurements made at a given time step will depend on the
outcomes of earlier measurements. Once a physical qubit has
been measured, that qubit is disentangled from the cluster
state and so may be reinitialized in a particular state and
subsequently used later in the computation.

We assume that single-shot single qubit measurements
and single qubit unitary operations on the static qubits can be
implemented using standard techniques. Implementing one-
way quantum computation in our scheme therefore reduces
to the problem of scalably generating cluster states using the
heralded, nondeterministic CZ operation. We outline the gen-
eral procedure here, and give a more detailed description in
the subsequent section.

In our scheme, cluster states can be generated by attempt-
ing to bond qubits using the nondeterministic CZ operation.
This operation has three possible outcomes: “success,” “in-
surance,” or “failure.” In the case of observing two photons,
one of the gates of Eq. �30� is implemented, and subsequent
application of appropriate single qubit unitaries implements
either the CZ operation �denoting a success�, or the identity
operation �denoting insurance�. In the case of insurance, the
CZ operation can simply be reattempted. Observing fewer
than two photons denotes a failure. In this case, the static
qubits are left in an unknown state. However, this damage
can be repaired as follows. Firstly, each of the two qubits
involved in the failed gate can be measured in the computa-
tional basis to determine the nature of the error. If either
qubit was already part of a cluster state, the bonds to its
neighbors within the cluster are also destroyed. However, the
remainder of the cluster state can be recovered by applying
appropriate single qubit unitary operations to these neighbor-
ing qubits, conditional on the outcome of the measurement
on the qubit involved in the failed CZ gate. Therefore, the
cluster state can grow, shrink, or remain the same size, de-
pending on whether the CZ operation was successful, failed,
or failed with insurance. The key to scalably generating clus-
ter states is to attempt CZ operations between qubits in a
sequence order such that the cluster state grows on average.
We give such a sequence in Sec. V B.

We conclude this section by noting that it is not necessary
to build the whole cluster required for simulating a particular
algorithm before commencing the single qubit measurement
part of the computation. It is possible to build a partial clus-
ter, and then to simultaneously perform single qubit measure-
ments on one part of the cluster, while adding new qubits to
another region in the cluster. In this approach to one-way

FIG. 5. A rectangular lattice cluster state. Each circle represents
a physical qubit, and each line represents a bond between qubits.
These states are sufficient for simulating arbitrary logic networks
�15�, with each horizontal row representing a single logical qubit,
and each vertical connection representing a two-qubit gate. Note we
also permit bonds between nonadjacent rows and columns �not
shown�, which can simulate non-nearest-neighbor two-qubit
operations.
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quantum computing, one can think of the cluster as being
split into three regions, as shown in Fig. 6. The active region,
to the left of the cluster, contains the part of the cluster where
the logic gate networks are being simulated via single qubit
measurements. At the right of the cluster, the connection
region comprises of several horizontal dangling linear chains
which extend from the right edge of the main cluster, each
corresponding to a logical qubit. In this region, nondetermin-
istic CZ operations are applied in order to add further cluster
sections to the main section. These additional sections are
manufactured separately, as described in Sec. V B. Between
the active region and the connection region, the buffer region
comprises a quiescent region which suffices to protect the
active region in the event of a long sequence of failed CZ
operations; this would lead to the right edge of the cluster
running back into the active region, damaging the logical
computation. The depth of the buffer region should be cho-
sen such that the probability of erasing a logical qubit is
sufficiently small that it can be handled with existing fault
tolerance techniques �69,70�.

There are several advantages to this approach. Firstly,
fewer physical qubits are needed, because qubits that have
already been measured at the left edge of the cluster can be
recycled and added to the right hand side of the cluster. Sec-
ondly, preparing the whole cluster initially means that some
of the qubits will spend a lot of time in an “idle” state before
they are involved in the computation; any errors accumulated
in these idle qubits due to decoherence will degrade the fi-
delity of the computation �13�. This is crucial if fault tolerant
quantum computation is to be implemented within the cluster
model, as such schemes require a source of fresh ancilla
qubits throughout the algorithm. Thirdly, the overhead costs
for this approach can be reduced, because it is not necessary
to prepare the whole cluster with a total success probability
close to one; the probability for erasing a given logical qubit
need only be made smaller than the error threshold required
for fault tolerance.

B. Overhead costs

A number of authors have considered efficient cluster
state generation using nondeterministic, but heralded, entan-
gling operations �EOs� �14–16,44,79–82�. References

�14–16� calculated explicit costs for making cluster states of
optical qubits in the ideal case �i.e., neglecting photon loss�.
Subsequently, Barrett and Kok �44� showed that, in the case
of hybrid matter optical systems �such as those considered in
this work�, arbitrarily small EO success probabilities could
be tolerated. They provided a “divide and conquer” algo-
rithm for building linear clusters, which has moderate costs
even for small success probability. An efficient algorithm for
building two-dimensional clusters, capable of simulating ar-
bitrary logic networks was also given in �44�. More recently,
in Ref. �79�, a similar algorithm for building linear clusters
was proposed, which made more use of recycling, and hence
has a lower overhead cost. Reference �79� also gives an al-
ternative algorithm for making two-dimensional clusters, and
explicitly calculates the associated overhead costs. In Ref.
�80�, some elegant cost reducing improvements to the
scheme proposed in Ref. �44� were suggested, utilizing the
redundantly encoded qubits inherent in the original scheme.

In this work, we will combine elements of the approaches
taken in Refs. �16,44,79� to provide a simple upper bound for
the scaling costs for building cluster states using our scheme.
This estimate is based on an explicit procedure, and we do
not claim that it is optimal; an improved algorithm may yield
substantially reduced costs. Nevertheless, the procedure
given here allows a straightforward calculation of the over-
head costs. Despite its apparent similarity to Refs. �44,79�,
there is a crucial difference; in the scheme under consider-
ation in this paper, there is the possibility of obtaining the
insurance outcome. In general, this leads to a reduction in
costs relative to schemes in which there is no insurance out-
come.

In the presence of imperfect photon emission, detection,
and collection, the performance of the CZ operation can be
characterized by three probabilities.

�a� The probability of successfully implementing the CZ
operation on the input qubits �up to local operations�, ps.

�b� The probability of obtaining the insurance outcome in
which known local operations are applied to the qubits, pi.

�c� The probability of failure due to failing to emit, col-
lect, or detect one or more photons during the remote gate
operation, pf.

These probabilities are determined by the physics of the
sources and detectors.

Calculating the total cost of growing cluster states can be
simplified by noting that, in the case of obtaining the insur-
ance outcome, after applying the necessary single qubit cor-
rections, one simply attempts the gate operation again. This
process is repeated until a definite outcome �success or fail-
ure� is obtained. Thus, we can define total success and failure
probabilities, Ps and Pf, of the corresponding definite out-
comes after an �arbitrarily long� sequence of insurance out-
comes. These probabilities are given by Ps=� j=0

� pi
jps

= ps / �1− pi� and Pf =� j=0
� pi

jpf = pf / �1− pi�. The average num-
ber of attempted CZ operations required before we obtain a
definite outcome is Nav=1/ �1− pi�.

The overhead cost for making cluster states is then found
using similar calculations to those presented in Refs. �44,79�.
We first calculate the cost �i.e., the number of attempted CZ

FIG. 6. Dynamically growing clusters during a computation.
The cluster contains three regions: the active region �M� at the left
of the cluster, in which the logic gate networks are being simulated
via single qubit measurements; the buffer region; and the connec-
tion region, where new cluster fragments are added to the right edge
of the main cluster. The connecting cluster chains have a buffer
length La to accommodate the probabilistic entangling operation.
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operations per qubit in the final cluster� of generating linear
clusters. If a CZ gate is repeatedly applied between the end
qubits of two linear chains, each of length Lk, either the gate
is �ultimately� successful, in which case the total length of
the new cluster is 2Lk, or the gate �ultimately� fails, in which
case, the length of the original clusters shrinks by one qubit
each. Repeatedly applying this procedure until a successful
outcome is obtained �or until both original clusters are de-
stroyed� �79� gives the expected length Lk+1=�i=0

Lk 2�Lk− i�
PsPf

i �2Lk−2pf / ps. Denoting the average number of at-
tempts to create a chain of length Lk by Nk, we also have
Nk+1=2Nk+1/ ps. Solving these recursion relations gives a
total cost

N�L� =
�N0 +

1

ps
��L −

2pf

ps
�

�L0 −
2pf

ps
� −

1

ps
, �39�

where N0 denotes the cost of growing a short cluster
of length L0. Note that for the average cluster length to
grow on each round of the protocol, we require L1�L0,
which implies that the length of the short chains should sat-
isfy L0�2pf / ps.

Chains of fixed length L0 can be grown independently
using the probabilistic CZ operation, by joining subchains
together. Growing these short chains adds a constant over-
head cost to the cluster generation process. We use a divide
and conquer approach to making these short chains �44,79�,
in which, on each round of the protocol, we attempt to join
equal length pairs of linear clusters using the probabilistic
CZ operation. If we obtain the insurance outcome on any
such attempt, we try the operation again, whereas if we fail,
we assume �for ease of calculation� that the short chains are
discarded. On the kth round of this protocol, the length of the
chains is lk=2k, and the number of attempted CZ operations
is given by the recursion relation nk=2nk−1 / Ps+Nav/ Ps.
Solving these relations gives

N0�L0� = Nav �
i=1

log2 L0 2i−1

Ps
i . �40�

Combining Eq. �39� and Eq. �40�, one can calculate the
total cost of growing linear clusters for given values of pf, ps,
and pi. For instance, taking pf =0.6, pi= ps=0.2, we require
L0�6. Taking L0=23=8, the total cost for making a linear
cluster of length L is found to be N�L�=185L−1115 at-
tempted CZ operations. A moderate increase in success prob-
ability can dramatically decrease the cost. Taking pf =0.4,
pi= ps=0.3, we require L0�2.67, and taking L0=22=4, we
find the total cost to be N�L�=162

3L−477
9 . Note that the

negative constant term in these expressions is an artifact of
joining small numbers of chains together to make an isolated
chain of length L. This is an edge effect which should be
neglected when considering the asymptotic cost of making
long chains.

Linear clusters are not sufficient for simulating arbitrary
logic networks �83�, and therefore it is necessary to generate
more general graph states. A variety of techniques for mak-

ing such states using probabilistic entangling operations have
been proposed, which include linking linear clusters using
independently prepared “I” shaped clusters �44�, using mi-
croclusters �15�, using redundantly encoded qubits �16�, or
by making use of “�” shaped clusters �79�. Here, we pro-
pose a relatively efficient method for creating vertical bonds
between linear cluster chains.

We employ a technique based on that introduced by
Browne and Rudolph �16�, which involves four steps as
shown in Fig. 7.

�a� First, we assume that we have sufficiently long linear
cluster chains. These can be produced efficiently in the man-
ner outlined above. In order to establish the amount of re-
sources needed to create a vertical bond, we will count the
number of qubits that are utilized on average in this process,
as well as the average number of entangling operations.

�b� Second, we identify the two qubits that we wish to
entangle with a vertical bond �in Fig. 7 the two left-most
qubits�. The qubits directly on the right of these qubits are
then measured in the �x basis. A Hadamard operation on the
third qubit in each chain returns the overal state to a graph
state.

�c� This will result in dangling bonds or cherries �84�
hanging from the two qubits that are to be connected. This is
a form of redundant encoding, and it allows us to apply the
entangling operation to the two cherries. In case of a failure,
the entangling operation will not break the linear cluster
chains. It will destroy only the cherries and as a result both
chains are shortened by two qubits. Steps �b� and �c� can then
be repeated.

�d� When the entangling operation succeeds, we have
forged a vertical bond between the two qubits chosen in step
�a�. The vertical link is itself a chain of two qubits. These are
typically not wanted, so we can remove one of them with a
�x measurement creating another cherry in the other qubit in
the chain. This redundancy can be pruned, but may also be
useful for creating additional bonds, or may even be useful
for error correction.

FIG. 7. Creating vertical bonds. �a� We start out with two suffi-
ciently long cluster chains and we wish to create a vertical bond
between the two qubits on the left. �b� We apply a �x measurement
to the two adjacent qubits and a Hadamard operation H on the next.
�c� This will result in a redundant encoding of the qubits we wish to
bond together. �d� Applying the entangling operation to the dangling
bonds or “cherries” will create the vertical bond. Note that we also
removed the qubits in the vertical bond by applying another �x

measurement resulting in another redundant encoding. If this pro-
cedure fails we are left with a shorter chain and we can try to create
a vertical bond again.
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We will now estimate the cost of this procedure. Since
two qubits are burnt in each step, and we need to repeat the
process Ps

−1 times, the average length of each chain that is
consumed in the bonding process is

M = 2Ps
−1 + 1 =

2�1 − pi�
ps

+ 1, �41�

where the extra +1 counts the qubits that will establish the
vertical link. The number of entangling operations needed to
make a vertical bond is then

Nbond = 2N�M� + Ps
−1 = 2N�M� +

�1 − pi�
ps

, �42�

where the extra Ps
−1 takes into account the number of entan-

gling operations that are needed to link the cherries together
into a vertical bond. In Table I we calculated the number of
entangling operations that are needed to forge a vertical bond
given several specific values for the success, failure, and in-
surance probabilities.

VI. CONCLUSIONS

We analyzed a hybrid architecture for quantum computing
using stationary and flying qubits, which is based on our
earlier work �43,44�, in detail. It was shown that this ap-
proach solves some of the most pressing problems that arise
in nonhybrid architectures. Our system is scalable, even with
nonideal components, and more importantly, it uses no direct
qubit-qubit interactions. This means that the qubits will be
subject to less decoherence and fewer control errors. When
realistic photodetectors are used, photon loss will affect only
the efficiency of the scheme. Furthermore, our system relies

on components that have been demonstrated in experiment,
and is largely implementation independent. Despite the
no-go theorem for optical Bell-state measurements, it is in
principle possible to implement a deterministic gate between
distant qubits.

However, when losses are taken into account, the gate
becomes necessarily probabilistic. In order to achieve robust-
ness against general decoherence and to guarantee high fi-
delities, we showed how to construct cluster or graph states
using the two-qubit gate. Our entangling operation, which
produces the bonds in the graph states, is not limited to
physically adjacent matter qubits. As a consequence, no ex-
tensive swapping operations need to be taken into account in
the production of nontrivial graph states. This architecture
for quantum computation is inherently distributed, and hence
can be used for integrated quantum computation and com-
munication purposes.
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