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We study the differences between the processes of decoherence induced by chaotic and regular environ-
ments. For this we analyze a family of simple models that contain both regular and chaotic environments. In
all cases the system of interest is a “quantum walker,” i.e., a quantum particle that can move on a lattice with
a finite number of sites. The walker interacts with an environment which has a D-dimensional Hilbert space.
The results we obtain suggest that regular and chaotic environments are not distinguishable from each other in
a �short� time scale t*, which scales with the dimensionality of the environment as t*� log2�D�. However,
chaotic environments continue to be effective over exponentially longer time scales while regular environments
tend to reach saturation much sooner. We present both numerical and analytical results supporting this con-
clusion. The family of chaotic evolutions we consider includes the so-called quantum multibaker map as a
particular case.
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I. INTRODUCTION

The study of the transition from quantum to classical
physics began with the rise of quantum mechanics itself �1�.
In recent years it became clear that the process of decoher-
ence plays an essential role in understanding this transition
�2�. According to this modern view, classicality is an emer-
gent property that is induced on subsystems due to the inter-
action with their environment. Not only is decoherence im-
portant from a fundamental point of view but also its
understanding seems to be crucial to develop new quantum
technologies such as quantum computation �3�. The role of
the environment is essential in the process of decoherence. In
fact, this process can be understood as the consequence of
the dynamical creation of quantum correlations �entangle-
ment� between the system and its environment. Due to this
process, all quantum information initially present in the state
of the system is lost in the correlations with the environment,
which effectively measures the state of the system. Due to
this process, the vast majority of the quantum states in the
Hilbert space of the system become highly unstable. Only
the small subset of states that are relatively immune to the
interaction with the environment �the so-called pointer
states� remain relatively stable.

In studies of decoherence the environment is usually mod-
eled in a simple way using a phenomenological approach. In
fact, the best-known such model is the bosonic bath, where
the environment consists of an infinite number of harmonic
oscillators �4–6�. Although it is well known that this model
is not universally applicable �7� it captures many of the es-
sential ingredients of the decoherence process and it is quite
adequate to describe the interaction between quantum sys-
tems and large reservoirs which are near some equilibrium
state. Spin baths have also been studied and display some
distinctive features �8–10�.

Recently, interest in the study of the effect of the intrinsic
complexity of the environment on decoherence arose. In fact,

there is some evidence that chaotic environments may induce
decoherence more effectively than regular ones �11�. A par-
ticular manifestation of this higher effectiveness may be the
dependence of the decoherence time scale on the system-
environment coupling strength �: regular environments in-
duce a decoherence rate which is roughly proportional to �2

while unstable �11� or chaotic �9� environments may display
a much weaker dependence on �. On the other hand, issues
such as the heat capacity of a chaotic system as a reservoir
have been addressed �12� and also point at a significant dif-
ference betweeen the way in which chaotic and regular sys-
tems can act as effective reservoirs.

In this paper we will present a study of the evolution of a
quantum system coupled to an environment which will be
chosen from a family containing both chaotic and regular
representatives. The model we will analyze has recently at-
tracted some attention in the context of studies of quantum
information processing. Thus, we will consider the evolution
of a quantum walker �a quantum particle moving on a finite
lattice�. The quantum walker carries a quantum coin which
usually consists of a spin-1 /2 particle. The direction of the
motion of the walker is conditioned on the state of the quan-
tum spin. Here, we will consider that the quantum coin is
part of a larger quantum system with which it interacts by
means of a unitary operator with either chaotic or regular
properties �see below�. The usual quantum walk has been
studied recently as a potentially useful quantum subroutine
�13� and the impact of the process of decoherence has also
been discussed using a variety of tools �14,15�.

We will use a family of unitary operators to define the
evolution of the environment. This family was introduced
some time ago for a system of qubits �16� and contains a
fully integrable member �in such case each qubit evolves
independently of the others, each of them acting as indepen-
dent coins �17�� and other unitary operators which can be
seen as the quantization of chaotic systems. The family in-
cludes the conventional “quantum baker’s map” which is
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perhaps the simplest and most studied chaotic unitary map
�18,19�. In such case, the complete system we analyze is a
variant of the so-called quantum multibaker chain, which
was analyzed before in a different context �20�.

In our paper we will analyze the behavior of the system
�the walker� and show how the interaction with the environ-
ment induces classical behavior on it. We will point out some
differences between the effects induced by the environment
when its dynamics is chaotic and regular. Our model has a
drawback: It does not contain a parameter controlling the
strength of the interaction between the system and the envi-
ronment. Thus, we cannot detect effects such as the ones
analyzed in �11�. However, our model will certainly help us
to display striking differences between regular and chaotic
regimes as a function of the dimensionality �D� of the Hil-
bert space of the environment. As we will see, regular and
chaotic environments show some clear diferences in their
behavior after relatively short times.

The paper is organized as follows. In Sec. II we introduce
the essential ingredients of the model we study. We describe
the simplest quantum walk on the line and we discuss how it
can be coupled to a variety of environments whose evolution
belongs to the family of the quantum baker maps. In Sec. III
we show numerical results for the evolution of the system.
We analyze first the entropy induced by the interaction with
the environment, which is the magnitude that displays more
clearly the difference between the chaotic and regular maps.
We also analyze the variance of the quantum walker and the
distance between the phase space representation of the quan-
tum walker and their classical counterparts. We present our
conclusions in Sec. IV.

II. THE SYSTEM AND THE ENVIRONMENT

A. The system: A quantum walker on a ring

We will consider a quantum walker that moves on a ring.
The evolution will be defined by means of a sequence of
unitary operations �discrete time�. Let HP be the Hilbert
space of the walker, which has a finite number of localized
states �j� forming a basis that can be denoted as ��j� ; j
=0, . . . ,M −1�. The case of an infinite line �i.e., M→�� is
interesting and, for initially localized states of the walker,
can be obtained from our results for times that do not exceed
M /2. If the walker carries a quantum coin consisting of a
spin-1 /2 particle, the total Hilbert space is H=HP � HC
where HC is the space of states of the spin which is spanned
by the two states ��0�,�1��.

The evolution of the quantum walker is defined as the
successive application of a unitary transformation which is
itself built in two steps: First, we apply a unitary operator

�ÎP � ĈC�, which acts nontrivially on the coin space �being
the analog of the classical coin flip�. Then we apply an op-
erator that translates the state of the walker to the left or to
the right depending on the state of the quantum coin. So, the
total evolution in one time step is defined as

���t + 1�� = �Û � �0�	0� + Û†
� �1�	1���Î � Ĉ����t�� �1�

where the translation operator Û acts on the space of the

walker �as Û�j�= �j+1��. For the circle Û is diagonal in a

basis which is obtained from the position states �j� by means
of the usual discrete Fourier transform. This is the momen-
tum basis defined as �k�= �1/
M�� j=0

M−1 exp�−i2�jk /M��j�. It

can be easily shown that Û�k�=e−i�2�/M�k�k�. The usual choice
for the operator CC that defines the coin flip is the so-called
Hadamard transformation H, whose matrix in the ��0�,�1��
bases is

H =
1

2

�1 1

1 − 1
 . �2�

In this work we will enlarge the coin space which will
consist of N qubits instead of a single one. In this case the
D=2N-dimensional Hilbert space of the bigger coin will be
denoted as HB and the total Hilbert space of the combined
walker-coin system is H=HP � HB. At any single instant one
qubit �which we denote as the “most significant qubit” or
MSQ� will determine the direction of the motion of the
walker in the same way as in the ordinary quantum walk.
However, we will consider the possibility that the evolution
of the complex D-dimensional coin contains interactions be-
tween the different qubits. Thus, we can think this model as
consisting of an ordinary quantum walk with a spin-1 /2 coin
which interacts with extra degrees of freedom �in a way that
will be specified below�. A simple quantum circuit describing
the evolution is shown in Fig. 1. The operator BN,n defines
the evolution of the complex coin and will be described in
the next subsection.

More formally, the evolution of the complete system is

��t� = M̂t��0�M̂†t �3�

where M̂ = �Û � P̂0 MSQ+ Û† � P̂1 MSQ��Î � B̂N,n�. The opera-
tors P0 MSQ and P1 MSQ are respectively the projectors onto
the states �0� and �1� of the space of the most significant
qubit. As mentioned above, the operator defining the evolu-
tion on the internal space of the complex �multiqubit� coin is

given by B̂N,n which is described below.
To study the temporal evolution generated by the operator

M̂ it is convenient to use the momentum basis for the quan-

tum walker. Thus, as the translation operator Û is diagonal in
such basis we only need to analyze the effect of the operator
Mk, which being defined as 	k�M�k��=�k,k�Mk, acts in the
Hilbert space of the complex coin and has the following
matrix form:

FIG. 1. Circuit representation of the quantum walk interacting
with families of quantum baker maps.
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M̂k = �e−i�k 0

0 ei�k
B̂N,n �4�

where the first term of the right side is a block-diagonal
D	D matrix and �k=2�k /M.

B. The environment: A family of quantum baker’s maps

As we mentioned above, our complex coin consists of a
set of N qubits. In the D-dimensional Hilbert space we will
consider the temporal evolution induced by a family of evo-
lution operators which were introduced and studied before
�16,21�. To define these operators it is convenient first to

introduce the partial Fourier transform Ĝn as the operator

Ĝn � Î2n � F̂2N−n

,� , n = 0, . . . ,N , �5�

where Î2n is the identity operator on the first n qubits, and

F̂2N−n

,� is the Fourier transform on the remaining qubits. Ma-

trix elements of this operator are defined �in terms of the
so-called Floquet angles 
 and �� as

	k�F̂D

,��j� =

1

D

exp�− i
2�

D
�j + 
��k + �� . �6�

We define a family of evolution operators which are pa-
rametrized by n �the number of qubits that are not affected
by the partial Fourier transform� and also by the Floquet
angles 
 and �. Floquet angles define the quasiperidoic
boundary conditions of the map and different choices of
these parameters were studied �18–20�. To simplify the no-
tation the dependence on these two parameters will be im-

plicit from here on. The family consists of the operators B̂N,n
defined as �see �16��

B̂N,n � Ĝn−1
−1 ŜnĜn �7�

where the shift operator Ŝn acts only on the first n qubits

and is such that Ŝn�x1��x2�¯ �xn��xn+1�¯ �xN�
= �x2�¯ �xn��x1��xn+1�¯ �xN�.

There is a simpler expression for these operators that can

be obtained using the fact that the shift Ŝ commutes with Ĝn.

Then, B̂N,n can be written as

B̂N,n = �Î2n−1 � B̂N−n+1,1� � Ŝn. �8�

Thus, the action of B̂N,n is equivalent to a shift of the n

leftmost qubits followed by application of the map B̂N−n+1,1,
which acts only on the N−n+1 least significant qubits. The

map B̂N−n+1,1 is well known in the context of the study of

quantum chaos. In fact, as the shift Ŝ1 is the identity, we have

B̂N,1= F̂D
−1 � �Î2 � F̂D/2�. Indeed, this map was introduced some

time ago by Balasz, Voros, and Saraceno as a quantization of
the classical baker’s map �18,19�. For this reason, it will be
denoted as BBVS. The above equivalence is shown in circuit
representation in Fig. 2.

On the other hand, it is easy to show that B̂N,N, the ex-
treme member of the family �obtained when n=N� is a map
constructed only with swaps and single-qubit Fourier trans-
forms. Some properties of this family of operators �such as
their entangling power� were studied in �21�. It is interesting
to point out that these maps can also be viewed as members
of an even larger family where each member is a product of
only two quantized iterations of the classical baker map �22�.
The spectral properties of the maps are interesting. In fact, as
will be discussed in detail elsewhere �22� all the members of
the family have rather “chaotic” spectra while the only truly

regular member is the extreme case B̂N,N where every qubit
evolves independently of the rest.

It is worth commenting on some aspects of the relation

between the map B̂N,1 and the quantum version of the clas-
sically chaotic baker’s map. In fact, the quantization of the
baker’s map can be done on an even-dimensional Hilbert
space taking advantadge of some very simple features of its
classical counterpart. Thus, the classical baker’s transforma-
tion acts on a phase space which is the unit square acting on
position and momentum coordinates according to

qi+1 = 2qi − �2qi� , �9�

pi+1 = �pi + �2qi��/2, �10�

where �q� denotes the integer part of q. This map is an ex-
ample of an intuitive geometrical transformation which
stretches the square by a factor of two in the q direction,
squeezes by a factor of 1 /2 in the p direction, and then
stacks the right half onto the left. Another advantage of this
map is that it has a simple symbolic dynamics using the
binary Bernoulli shift. Writing both q and p in binary as q
=0.�0�1 . . . =�k=0

� �k2
−k−1 and p=0.�−1�−2 . . . =�k=1

� �−k2
−k��i

�0,1�, every phase space point can be represented by a
bi-infinite symbolic string as

�p,q� = . . . �−2�−1 · �0�1�2�3 . . . . �11�

Then, the action of the baker’s map upon symbols turns out
to be

�p,q� → �p�,q�� = . . . �−2�−1�0 · �1�2�3 . . . . �12�

Thus, the baker’s map is a Bernoulli shift �notice that the
most significant bit of the new momentum coordinate is in-

FIG. 2. Circuit representation of the operator

B̂N,n in terms of the Balasz, Voros, and Saraceno
baker’s map.
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herited from the most significant bit of position�. Using this
property, unitary operators that are quantizations of this clas-
sical map were defined �18,19�. The basic idea is to use the
unitary operator that maps position bases onto the momen-
tum bases and let one qubit go through before applying the
inverse transformation. Thus, the quantum version of the

baker’s map is B̂BVS= F̂D
−1 � �Î2 � F̂D/2�.

It is clear that the baker’s map can be defined whenever
the dimension of the Hilbert space is even. Moreover, it is
well known that although the unitary operator has the spec-
tral properties characterizing chaotic maps, the case of D
=2N has some peculiar features �where quasidegeneracies oc-
cur because of nongeneric number theoretical conditions�. In
the coming section we will analyze the properties of an en-
vironment with a D-dimensional Hilbert space in which one
of the above operators generates the temporal evolution. In
some cases we will also compare our results with an envi-
ronment with an even-dimensional Hilbert space �which is
not a power of 2 but is close to one such power�.

III. RESULTS: REGULAR AND CHAOTIC
ENVIRONMENTS

We will assume that the initial state of the combined
walker-coin system is a tensor product of a localized state for
the walker �which from now on will be denoted simply as
“the particle”� and a pure state of the complex coin: ��0�
= �0� � �0�=�1

M�1/
M��k� � �0�. We study the reduced
density matrix of the particle obtained by tracing out over the
coin subspace. The evolution of the probability distibution of
the particle is

p�x,t� =
1

M
�
k,k�

exp�− i
2�

M
x�k − k��	0�M̂k

t†M̂t
k�

�0� .

�13�

In the case of the classical random walk, p�x , t� has the form
of a binomial distribution with a width which spreads as 
t.

A. Entropy production

As the particle and its environment become entangled
during the temporal evolution, the reduced density matrix of
the particle losses its purity. A measure of the entanglement
between the two subsystems �particle and coin� is the von
Neumann entropy �SV� computed from the reduced density
operators. For simplicity, we will use instead the linear en-
tropy defined as SL=−log2�Tr��P

2 �� which is easier to calcu-
late and provides a lower bound to SV. SL varies between
SL=0 for pure states and SL=log2 D for totally mixed states
�where D is the dimension of the Hilbert space�. It is worth
mentioning that due to the fact that we choose the total state
to be pure, the entropy of both subsystems is identical and is
therefore limited by the minimum Hilbert space dimension
�which we assume to be given by D as we are interested in
considering the infinite-line limit�.

The entropy growth measures the transfer of quantum in-
formation from the initial state of the system onto the quan-
tum correlations with its environment. As mentioned above,

at any given instant, the entropy measures the number of
orthogonal states which are explored in the course of the
evolution of both the system and the environment. For this
reason, we expect to observe a difference on the entropy
production power of chaotic and regular environments. The
argument leading to this conclusion may be understood as
follows: Two different localized states of the system can be
viewed as generating two different effective evolutions for
the environment. If the evolution is generated by a chaotic
unitary map, it is known to exhibit extreme sensitivity to
perturbations �23,24�. Then, two different localized states of
the particle will tend to correlate rapidly with approximately
orthogonal states of the environment. Then, the entropy will
grow until all available orthogonal directions in Hilbert
space are explored. Therefore, for chaotic environments one
expects the entropy to saturate at levels which are of the
order of log2�D�. For regular environments one expects to be
in the opposite regime: the evolution will tend to explore a
number of dimensions which should be much smaller than in
the chaotic case.

The time dependence of the linear entropy SL is displayed
in Fig. 3 for some representative members of the family of
environmental evolutions B7,n �we show the results corre-
sponding to 
=�=0.5, but the behavior is qualitatively simi-
lar for other Floquet angles�.

It is clear that a very different behavior is observed for the
regular member of the family �the map BN,N�. In such case
the entropy production saturates at a level which is of the
order of S0=log2�log2�D�� �as D=128 this value is close to
S0�2.8; see below�. This behavior is also seen to be inde-
pendent of the initial condition. As mentioned above, this can
be understood as a consequence of the small generation of
entanglement between the qubits of the environment. On the
other hand, all the other members of the baker’s family BN,n
for n=1, . . . ,N−1 have a similar behavior. The entropy con-
tinues growing approaching an asymptotic value which is of
the order of a fraction of log2�D�. Entropy continues growing

FIG. 3. Linear entropy as a function of time for an enviroment
of seven qubits evolving with some typical unitary operators of the
family B7,n. Floquet angles are fixed at 
=�=0.5. The initial state
of the particle is localized in position and the initial state of the
environment was chosen as �1/
2���0�+ i�1�� for each qubit. Results
are shown for a similar initial state for an environment with a D
=130-dimensional Hilbert space evolving with the baker’s map.
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for times which scale proportionally to D, the Hilbert space
dimensionality. It is worth mentioning that within the family
of maps BN,n the ones that achieve maximal entropy growth
correspond to intermediate values of n, in agreement with the
results obtained in �21�. The fact that the maximal value of
log2�D� is not attained can be attributed to the quasidegen-
eracies present in the spectrum of the baker’s map for dimen-
sions which are a power of 2. In fact, in Fig. 3 we also show
the entropy production from a chaotic environment whose
Hilbert space dimension is D=130 �which is an even number
close to a power of two�. It is clear that the entropy for this
map is larger than the rest. This supports the argument stat-
ing that an environment that is more chaotic is able to gen-
erate more entropy. It is also consistent with the claims of
�21� concerning the fact that spatial symmetries in the quan-
tum baker’s map are responsible for deviations from the pre-
dictions of random matrix theory.

The behavior of the regular environment B̂N,N can be ex-
amined using analytic tools. In fact, we can show that after
the Ehrenfest time log2�D� the linear entropy SL oscillates
around the saturation value S0 with period which is identical
to the number of qubits N. In fact, we can obtain a universal
curve for the normalized linear entropy �SL /S0� as a function
of the rescaled time t /N. This is shown in Fig. 4.

It is also possible to obtain a good estimate for the satu-
ration value of the linear entropy. This is shown in Fig. 5
where the behavior of S0 �the saturation value of SL� as a
function of the number of qubits N is displayed. This satura-
tion value is bounded by log2�N� �which in turn implies that
the linear entropy for regular environment is bounded by
log2�log2�D��. In the above discussion we referred to the
many-coin map as a regular system. The reason for our use
of this terminology is the following: As the coins do not
interact the spectrum of the evolution operator is highly de-
generate. It is worth mentioning that this is the only sense in
which this can be viewed as an integrable system since it
does not have a classical analog.

Our walker-environment system is bipartite and evolves
unitarily from a pure state. Therefore there is no difference

with respect to entropy growth if we trace out the walker and
consider the quantum map as our system of interest �3�.

B. Quantum and classical behavior of the spread
of the wave packet

The study of the variance of the particle’s position, which
can be defined as �2= 	x2�− 	x�2 can be useful to signal the
transition from a classical to a quantum regime. From the
above study of the entropy we expect that both chaotic and
regular systems should be quite efficient to enforce classical
behavior for times which are of the order of log2�D� �the
Ehrenfest time�. For larger times one expects a regular envi-
ronment to lose its ability to induce classicality. Thus, for
larger times one expects the particle to spread according to
the quantum predictions while for shorter times it should
behave classically �although at first sight this may sound
counterintuitive, for this system one really expects to see a
classical-to-quantum transition!�. For the classical random
walk, it is well known that the variance grows diffusively
�i.e., linearly with time�. In turn, for the ordinary quantum
walk �with no decoherence mechanism� the variance grows
quadratically with time. In Fig. 6 we show the standard de-
viation ��� as a function of time for some representative
members of the B7,n family �again, we display results for 

=�=0.5 and for an initial state of the complex coin which is
a tensor product of �1/
2���0�+ i�1�� for each qubit�.

As expected, the standard deviation �SD� grows diffu-
sively for short periods of time both for regular and chaotic
environments. This is seen in the inset of Fig. 6 where no
noticeable difference between chaotic and regular environ-
ments arise before the Ehrenfest time. For larger times the
evolution is more complex. For the regular environment the
growth is clearly linear signaling a transition from classical
to quantum, as expected. The behavior for chaotic evolutions
is harder to visualize. At first glance the behavior of the SD
seems to be linear with time. However, there is a clear sepa-
ration between the slope of the line which is attained for the
regular case and for the chaotic one being substantially

FIG. 4. Linear entropy normalized vs t /N for many coin walks,
BN,N and 
=�=0, up to N=8. The particle was localized in position
and the initial state of the enviroment is �1/
2���0�+ i�1�� for each
qubit.

FIG. 5. Saturation value of linear entropy for many coin walks
vs number of coins. The initial state for each coin is ��0�= �0� ���,
��0�= �1/
2���0�+ei3�/4�1�� ���, ��0�= �1/
2���0�+ i�1�� ��� with

=�=0. As argued in the text, the log2�log2�D�� �with N
=log2�D�� curve establishes an upper bound for the saturation.
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smaller for the latter. Moreover we observe that by enlarging
the dimensionality of the environment the slope of the SD
for the chaotic environment decreases �while it remains con-
stant for the regular case�. The behavior of the slope �the
time derivative of the SD� is displayed in Fig. 7. The con-
clusion is that for large chaotic environments the time de-
rivative of the variance tends to very small values as D in-
creases. Therefore, the growth of the variance will be slower
than linear, which is a manifestation of their larger efficiency
as compared with regular ones.

The behavior of the variance for the regular map can be
understood by generalizing some of the results obtained in
�17� to include arbitrary Floquet angles in the Fourier trans-
form. Then, one can show that the long time behavior of the
variance is �for �0� position as initial state with 
=�=0�

�2�t� =
3 − 2
2 + 1/N

4
2
t2 + O�t� + �oscillatory terms�

�14�

where N is the number of coins. One can show that changing
Floquet angles is equivalent to changing the initial coin state
�28�. Using this we obtained results which show that for long
times the time derivative of the variance approaches a con-
stant value for large number of qubits.

C. Approach to classical phase-space distributions

Another interesting aspect of the quantum-to-classical
transition is the study of the way in which quantum phase-
space quasidistributions �like Wigner functions �25�� ap-
proach their classical counterparts �26�. To study this we use
the discrete version of the Wigner function �27�. For a sys-
tem with an M-dimmensional Hilbert space the discrete
Wigner function can be defined in a phase-space grid of
2M 	2M points. Thus, the Wigner function is the expecta-
tion value of the so-called phase-space point operators which
are defined as A�q , p�=UqRV−p exp�i�pq /M�. Here U and
V are the cyclic shift operator in position and momentum
respectively �U�n�= �n+1� and V�k�= �k+1��, and R is the
reflection operator �which in the position basis act as R�n�
= �−n��. Phase-space operators are unitary, Hermitian, and
form a complete orthogonal basis of the space operators. As
mentioned above, the Wigner function is defined as
W�q , p�=Tr��A�q , p�� /M. This function not only provides a
complete description of the quantum state but also can be
used to compute marginal probability distributions by adding
its values along arbitrary phase space lines �see �27��. To
study how fast the quantum state approaches a classical dis-
tribution we define a distance between two such distributions
as �1,2��q,p�W1�q , p�−W2�q , p��2. We analyze the distance
between the Wigner function at any given instant and the
classical distribution corresponding to the classical random
walk. The behavior of this measure is displayed in Fig. 8 for
some representative members of the B7,n family. It can be
seen that the regular map �B7,7� significatively differs with
respect to the chaotic maps. Again the most decoherence is

FIG. 6. Standard deviation as a function of time for the envi-
ronment of 7 qubits �B7,n with n=1, . . . ,7� and 
=�=0.5 in loga-
rithmic scale. The particle was localized in position and the initial
state of the enviroment is ��0�= �1/
2���0�+ i�1�� for each qubit.

FIG. 7. The time derivative of the standard deviation � for long
times as a function of the number of qubits in the environment. For
regular dynamics the slope approaches a constant while for chaotic
ones it decays. Thus, the position variance grows slower than linear
for long periods of time, which is evidence in favor of the higher
efficiency of chaotic environments.

FIG. 8. Evolution of phase-space distance ��� for B7,n with n
=1, . . . ,7 and 
=�=0.5. The particle was localized in position and
the initial state of the enviroment is �1/
2���0�+ i�1�� for each qubit.
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attained by the chaotic environment. While interacting with
the regular environment, the quantum state of the system
loses track of the classical state after a short time. These
results are in agreement with the ones obtained for the en-
tropy and the position variance.

IV. CONCLUSIONS

We studied a model where the decoherence induced on a
system by its interaction with an environment can be ana-
lyzed both for an environment endowed with a regular or a
chaotic evolution. As the Hilbert space of the environment

has a finite dimension D, the system cannot display a truly
dissipative behavior. In fact, after a finite time the environ-
ment ceases to be effective. For this reason, after this time
quantum effects on the system can be recovered. Our results
provide a strong evidence showing that a chaotic environ-
ment can be efficient over much longer time scales than
regular ones. In fact, the time over which a chaotic environ-
ment is effective seems to scale as a power of the Hilbert
space dimension D. On the other hand, a regular environ-
ment is effective only for a much shorter time scale, which is
of the order of the Ehrenfest time log2�D�. For such short
time scales both environments are truly indistinguishable
from each other.
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