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This article identifies a series of properties common to all theories that do not allow for superluminal
signaling and predict the violation of Bell inequalities. Intrinsic randomness, uncertainty due to the incompat-
ibility of two observables, monogamy of correlations, impossibility of perfect cloning, privacy of correlations,
bounds in the shareability of some states; all these phenomena are solely a consequence of the no-signaling
principle and nonlocality. In particular, it is shown that for any distribution, the properties of �i� nonlocal, �ii�
no arbitrarily shareable, and �iii� positive secrecy content are equivalent.
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I. INTRODUCTION

There are two experimental facts that, when considered
together, significantly restrict any possible physical theory
that aims to account for them. The first one is the constancy
of the speed of light in any reference frame. This implies that
no signal carrying information can propagate faster than
light. More generally, we refer to the impossibility of send-
ing information arbitrarily fast as the no-signaling principle.
The second fact is the existence of correlations between
spacelike separated events that violate Bell inequalities �1,2�.
This means that such correlations cannot be explained by
strategies arranged in the past. Models accounting for such
correlations can be constructed by assuming some signaling
between the correlated events. But this seems to contradict
the first experimental fact. This is the reason why such cor-
relations are called nonlocal. Despite this, physical theories
exist that predict the violation of Bell inequalities and are
nonsignaling, an example being quantum mechanics �QM�.

QM is not the unique theory consistent with the two men-
tioned experimental facts. It is well known that nonsignaling
correlations exist that are more nonlocal than the ones pre-
dicted by QM. Indeed, Popescu and Rohrlich proved that
there are nonsignaling correlations giving a Bell inequality
violation larger than the quantum-mechanical prediction �3�.
This suggests the possible existence of theories, different
from QM, that allow for Bell inequality violation without
contradicting the no-signaling principle. Although there is no
experimental reason to reject QM, it is highly desirable to
know the nature of these alternative theories in order to
“study quantum physics from the outside.” In this article, we
aim at providing a unified picture for the static part �we do
not consider dynamics� of all such theories, identifying a
series of features common to all of them.

Analyzing these common properties can be very useful in
gaining a better understanding of QM. It is often said that the
postulates of QM do not have a clear physical meaning, es-
pecially when compared with the postulates of other theories,
such as relativity or thermodynamics. The postulates of QM
imply no signaling �if we assume locality of interactions� and
nonlocality. It was proposed by Popescu and Rohrlich to con-
sider no signaling and the existence of nonlocal correlations

as proper physical principles. Could these two principles,
together with other independent postulates, imply QM? How
would these other postulates look? For such an enterprise, it
is very important to learn all the consequences that follow
from these two principles without any extra assumption.

From an information-theoretical point of view, it is also
worth looking at a framework more general than QM, as
illustrated by several recent works analyzing the use of non-
local correlations as an information-theoretical resource
�4–6�. This is of particular interest in the case of secret com-
munication: there, the security of a protocol relies on some
assumptions on the eavesdropper capabilities. Usually, it is
assumed that her computational power is bounded, or that
her action is constrained by QM laws. It is then desirable to
weaken the strength of these assumptions as much as pos-
sible. In this sense, a secret key distribution was recently
proposed in Ref. �7� and its security proved solely using the
no-signaling principle. In this article, we extend the connec-
tion between nonlocality and secrecy at the level of an
equivalence. Notice that the fact that a probability distribu-
tion contains secrecy does not imply that it can be distilled
into a secret key �see below�.

Summary and results. The article is organized as follows.
In Sec. II nonsignaling correlations are introduced, local and
nonlocal ones are distinguished. Special emphasis is made on
a particular family of distributions that we call isotropic,
which will prove very useful in later reasonings.

In Sec. III, different aspects of monogamy in nonlocal
correlations are presented. In particular, the complete equiva-
lence between locality and infinite shareability is proven
�Sec. III A�. In Sec. III B, through some examples, we survey
the complex structure of the monogamy relations.

In Sec. IV we prove that any nonsignaling theory that
predicts the violation of a Bell inequality has a no-cloning
theorem. Some additional analysis is made for the case of
QM.

In Sec. V we prove that nonsignaling correlations contain
secrecy �in the sense of cost� if and only if they are nonlocal.
In Sec. VI we review the fact that all nonlocal correlations
must have nondeterministic outcomes. And, in Sec. VI A we
show that the more incompatible two observables are, the
more uncertain their outcomes.
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Finally, we conclude with some final remarks, exposing
some open question. Some additional material and proofs is
contained in the appendixes.

II. DEFINITIONS AND GENERAL FRAME

Consider n parties—Alice, Bob, Clare,…—each possess-
ing a physical system, which can be measured with different
observables. Denote by xk the observable chosen by party k,
and by ak the corresponding measurement outcome. The
joint probability distribution for the outcomes, conditioned
on the observables chosen by the n parties is

P�a1, . . . ,an�x1, . . . ,xn� . �1�

One can formulate this scenario in an equivalent and
slightly more abstract way. Imagine that each of the n parties
has a physical device with an input and an output. Just after
the kth party inputs xk, the device outputs ak, and it cannot be
used anymore. Throughout this article, we assume that inputs
and outputs take values from finite, but arbitrarily large, al-
phabets xk� �0,1 , . . . ,Xk−1� and ak� �0,1 , . . . ,Ak−1�. No-
tice that, without loss of generality, we assume that all ob-
servables belonging to one party have the same number of
outcomes.

It is useful to look at these conditioned probability distri-
butions �1� as points in a large dimensional space. The set of
all these points �1� is a convex polytope. Unless no other
constraints are imposed, �1� can be any vector of positive
numbers, satisfying the normalization conditions

�
a1,. . .an

P�a1, . . . ,an�x1, . . . ,xn� = 1 �2�

for all input values x1 , . . . ,xn.

A. Nonsignaling correlations

The n-partite distribution P�a1 , . . . ,an �x1 , . . . ,xn� is non-
signaling, when the marginal distribution for each subset of
parties �ak1

, . . . ,akm
� only depends on its corresponding in-

puts

P�ak1
, . . . ,akm

�x1, . . . ,xn� = P�ak1
, . . . ,akm

�xk1
, . . . ,xkm

� .

�3�

It turns out that very few of these conditions are linearly
independent. It was proved in Ref. �4� that all conditions of
the form �3� can be derived from the following.

Condition. For each k� �1, . . . ,n� the marginal distribu-
tion obtained when tracing out ak is independent of xk:

�
ak

P�a1, . . . ,ak, . . . ,an�x1, . . . ,xk, . . . ,xn�

= �
ak

P�a1, . . . ,ak, . . . ,an�x1, . . . ,xk�, . . . ,xn� , �4�

for all values of a1 , . . . ,ak−1 ,ak+1 , . . . ,am and
x1 , . . . ,xk−1 ,xk ,xk� ,xk+1 , . . . ,xn.

These linear constraints characterize an affine set. The
intersection of this set with the polytope of distributions �1�

gives another convex polytope. Throughout this article,
whenever we refer to distributions, correlations, states or
points, we always assume they belong to the nonsignaling
polytope.

B. Local correlations

Local correlations are the ones that can be generated if the
parties share classical information, or equivalently, the ones
that can be written as

P�a1, . . . ,an�x1, . . . ,xn� = �
e

P�e�P�a1�x1,e� ¯ P�an�xn,e� .

�5�

This subset of correlations is a convex polytope delimited by
two kinds of facets. The first kind warrants that all the com-
ponents of Eq. �5� are positive, and thus, they are also facets
of the nonsignaling polytope. The second kind of facets can
be violated by nonlocal correlations, and are called Bell in-
equalities. For a complete introduction to Bell inequalities,
polytopes, and related topics see Ref. �8�. Throughout this
article we assume that all Bell inequalities have been normal-
ized �with a transformation of the form B→�B+�, where �
and � are real numbers�, such that the local bound is
B�Plocal��0, and the maximal violation compatible with no
signaling is B�Pmax�=1.

As said above, local correlations can be generated with
shared randomness and local operations. In expression �5�,
the random variable e stands for the information shared
among the parties, sometimes called local hidden variable.
Depending on its value, the kth party locally generates
P�ak �xk ,e�. The distributions that cannot be written similar
to Eq. �5� are called nonlocal.

C. Quantum correlations

We call quantum those correlations that can be generated
if the parties share quantum information �entanglement�, or
equivalently, those correlations that can be written as

P�a1, . . . ,an�x1, . . . ,xn� = tr�Fa1

�x1�
� ¯ � Fan

�xn��� , �6�

where � is a quantum state, namely, a unit trace, semidefinite
positive matrix, and �F0

�xk� , . . . ,FAk−1
�xk� � define what is called a

positive operator valued measure �9�. That is, a set of posi-
tive operators �Fak

�xk�� satisfying �ak
Fak

�xk�=1 , ∀ xk.

D. Isotropic correlations

Let us define a particular family of bipartite distributions
with binary input/output. In the case where the marginal dis-
tributions for a and b are unbiased, all the information of
P�a ,b �x ,y� is contained in the four correlation functions

Cxy = + P�0,0�x,y� + P�1,1�x,y� − P�0,1�x,y� − P�1,0�x,y� ,

�7�

for xy=00,01,10,11. One can always fix C00,C01,C10�0
by performing local reversible transformations. Once we
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have a distribution in this canonical form, its nonlocality is
decided by the CHSH inequality �10�

BCHSH =
1

2
�C00 + C01 + C10 − C11� − 1, �8�

where we have written it in our standard form. We call iso-
tropic, denoted by Piso�a ,b �x ,y�, those correlations with un-
biased marginal distributions for a and b that satisfy

C00 = C01 = C10 = − C11 � 0. �9�

This family depends on a unique parameter C=C00, whose
relation to the CHSH violation is

BCHSH�Piso� = 2C − 1. �10�

In Fig. 1 we can see for which values of C the distribution
Piso belongs to the local and quantum set. When C=1, this
distribution is known as a PR box �3,4�, and is usually writ-
ten as

PPR�a,b�x,y� = 	1/2 if a + b mod 2 = xy ,

0 otherwise.
�11�

This distribution can be considered the paradigm of nonlocal,
nonsignaling correlations �see Ref. �11��. With this defini-
tion, we can express any Piso as the following mixture:

Piso = CPPR + �1 − C�PN
APN

B , �12�

where PN
A is the local noise distribution for Alice, indepen-

dently of the inputs. Thus, one can interpret C as the prob-
ability of sharing a PR box instead of local noise.

III. MONOGAMY OF NONLOCAL CORRELATIONS

While classical correlations can be shared among an in-
definite number of parties, it is well known that quantum
correlations cannot. This fact is often called monogamy of
entanglement �12�. In this section we prove that this is a
generic feature of all nonsignaling theories.

First, let us recall a result already mentioned in Ref. �4�.
All Bell inequalities for which the maximal violation consis-
tent with no signaling is attained by a unique distribution,
have monogamy constraints. Suppose that B is a Bell in-
equality with unique maximal violator Pmax. If Alice-Bob
maximally violate this inequality B�P�a ,b �x ,y��=1, then,
Alice and Clare are completely uncorrelated. To prove this,
first notice that because all Bell inequalities B�P� are linear
in P, Pmax must be an extreme of the Alice-Bob polytope.
Otherwise, the maximal violator would not be unique. Sec-

ond, using the definition of marginal distribution and the
no-signaling condition we have

Pmax�a,b�x,y� = �
c

P�a,b,c�x,y,z�

= �
c

P�a,b�x,y,z,c�P�c�x,y,z�

= �
c

P�a,b�x,y,z,c�P�c�z� , �13�

for all z. But, because Pmax�a ,b �x ,y� is extremal, any such
decompositions must consist of only one term. This implies
that Clare is uncorrelated with Alice and Bob.

Actually, one can prove that all the CGLMP inequalities
have a unique nonsignaling probability distribution achiev-
ing its algebraic maximum. This well-known set of inequali-
ties was first proposed in Ref. �13� for the case of two inputs
of d possible outputs. One can easily see that imposing no-
signaling and maximal violation of CGLMP inequality iden-
tifies a unique probability distribution P�a ,b �x ,y�. This
means that this set of Bell inequalities have the previous
monogamy condition.

A. m-shareability and locality

Shareability represents a natural property in the analysis
of the monogamy of correlations. A bipartite probability dis-
tribution P�a ,b �x ,y� is said to be m shareable with respect to
Bob, if there exists an �m+1�-partite distribution
P�a ,b1 , . . . ,bm �x ,y1 , . . . ,ym� being symmetric with respect
to �b1 ,y1�¯ �bm ,ym�, with marginals P�a ,bi �x ,yi� equal to
the original distribution P�a ,b �x ,y�. The following result
shows the relation between shareability and nonlocality.

Result 1. If P�a ,b �x ,y� is m-shareable with respect to
Bob, then it satisfies all Bell inequalities with m �or less�
different values for the input y.

Proof. To prove this statement we construct a local
model for P�a ,b �x ,y� when y is constrained to y=1, . . . ,m
�without loss of generality�. By assumption
P�a ,b1 , . . . ,bm �x ,y1 , . . . ,ym� with the abovementioned prop-
erties exists, then so the marginal P�b1 , . . . ,bm �y1 , . . . ,ym�
and the conditional P�a �x ,b1 , . . . ,bm ,y1 , . . . ,ym� do. In this
local model, the information shared by the parties, that is the
variable e in Eq. �5�, is the string e= �b1 , . . . ,bm�, when the
corresponding inputs are fixed to y1=1 , . . . ,ym=m. Thus, us-
ing the definition of conditional probabilities, we can decom-
pose P�a ,b �x ,y� in the following way:

P�a,b�x,y� = �
b1,. . .,bm

P�b1, . . . ,bm�y1 = 1, . . . ,ym = m�

� P�a�x,b1, . . . ,bm,y1 = 1, . . . ,ym = m� � �b,by
,

�14�

where in �b,by
the variables b and y are the ones appearing in

P�a ,b �x ,y�, and by is the yth component of the shared infor-
mation �b1 , . . . ,bm�. The three factors in each term of Eq.
�14� have to be interpreted as the P�e�, P�a �x ,e� and
P�b �y ,e� appearing in the decomposition �5�, respectively.

FIG. 1. Value of C for isotropic correlations �12�.
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Note that this result represents the extension of theorem 2
in Ref. �14�, derived for quantum states, to the more general
nonlocal scenario. It also implies that if a state is X and Y
shareable with respect to Alice and Bob, then it is local. In
particular, two-shareable states do not violate the CHSH or
CGMLP inequalities.

A converse of the previous result is also true: if a state is
local, then it is � shareable with respect to any party. To
show the last statement, we explicitly construct the extension
�to m Bobs� for the arbitrary local correlations written in Eq.
�5�:

P�a,b1, . . . ,bm�x,y1, . . . ,ym�

= �
e

P�e�P�a�x,e�P�b1�y1,e� ¯ P�bm�ym,e� , �15�

with each distribution P�bi �yi ,e� being equal to the P�b �y ,e�
that appears in Eq. �5�. We can merge the previous two state-
ments into the following one.

Result 2. Locality and � shareability are equivalent prop-
erties.

This result is analogous to what happens in QM: a bipar-
tite quantum state is � shareable if and only if it is separable
�15�.

B. Examples

In what follows, we show that the CHSH inequality pre-
sents an even stronger kind of monogamy.

Result 3. Consider a binary input and output tripartite dis-
tribution P�a ,b ,c �x ,y ,z�. If Alice and Bob’s marginal is
nonlocal, then Alice and Clare’s marginal must be local:

BCHSH�P�a,b�x,y�� 	 0 ⇒ BCHSH�P�a,c�x,z�� � 0.

Proof. We prove this statement by contradiction. Suppose
that there exists a tripartite distribution P�a ,b ,c �x ,y ,z� such
that both P�a ,b �x ,y� and P�a ,c �x ,z� are nonlocal. Then
Alice-Bob, and simultaneously Alice-Clare, can depolarize
their bipartite correlations and transform them into isotropic
ones, without decreasing the Bell violation. This procedure is
shown in Appendix A. Then, if Alice-Bob have larger C than
Alice-Clare, Bob decreases it until both are equal �this pro-
cedure is also explained in Appendix A�. An analogous thing
is done in the opposite situation. After this manipulation,
both marginals are isotropic and have the same value of C.
This implies that the two marginals are equal, and thus two
shareable. In Sec. III A we have seen that a two shareable
state with binary inputs is always local. This finishes the
construction of the contradiction.

In more general situations strict monogamy no longer
holds. Indeed, one can easily design a situation where Alice
shares a PR box with Bob, and another with Clare. This
corresponds to a case where Alice can choose between four
inputs and four outputs, while Bob and Clare are restricted to
the simplest case of Y =Z=B=C=2. Clearly, the correspond-
ing Alice-Bob and Alice-Clare distribution violate the CHSH
inequality. A nicer and more symmetric example, with only
two inputs for each party, is given by the following tripartite
distribution

PABC =
1

2
PPR�0,1�

AB PN�0,1�
C +

1

2
PPR�2,3�

AC PN�2,3�
B , �16�

where PPR��,�� is a PR box with outputs restricted to a ,b
� �� ,��, PN��,�� is a local noise distribution with outputs
restricted to a ,b� �� ,��, and the superindices label the par-
ties. In what follows, we prove that the Alice-Bob marginal

PAB =
1

2
PPR�0,1�

AB +
1

2
PN�2,3�

A PN�2,3�
B , �17�

is nonlocal. Assume the opposite: PAB can be expressed as a
mixture of local extreme points �5�. Because each local ex-
treme point has determined outcomes, we can split the local
mixture into a part with outcomes �2,3�, and a part with
outcomes �0,1�. The last would correspond to a local expan-
sion of PPR�0,1�

AB , but we know that such thing does not exist.
Now, using the symmetry of Eq. �16�, we conclude that its
marginals PAB and PAC are both nonlocal.

In the case X=Y =2 and A ,B arbitrary, there is a situation
where strong monogamy still holds: where the reduced states
of Alice-Bob and Alice-Clare consist both on isotropic cor-
relations with nonuniform noise �independent of the inputs�.
First, let us generalize the idea of isotropic distributions for
arbitrary output alphabets. The generalization of the PR box
is �4�

PPR�a,b�x,y� = 	1/A if a − b mod A = xy ,

0 otherwise.
�18�

In a natural way, we define

Piso
AB = CPPR

AB + �1 − C�Pind
A Pind

B , �19�

where Pind
A is an arbitrary local distribution for Alice, inde-

pendent of the inputs. It is clear that if Alice and Bob add to
their outputs a shared random number modulo A:

a → a + r mod A , �20�

b → b + r mod A , �21�

their distribution becomes

Piso
AB → CPPR

AB + �1 − C�PN
APN

B , �22�

where PN
A/B is the �local� uniform distribution independent of

the inputs x /y. As in the case A=B=2, if C is positive, one of
the parties can decrease its value by performing a local op-
eration. Using the same trick as before, one can prove that all
tripartite distributions where the marginals Alice-Bob and
Alice-Clare are both isotropic with nonuniform noise �19�,
show strong monogamy.

IV. NO CLONING

The quantum no-cloning theorem represents one of the
cornerstones of quantum information theory. It is usually ex-
plained as a consequence of the nonorthogonality of quan-
tum states and the linearity of quantum time evolution. The
relation between quantum cloning and no signaling has also
been studied by several authors. Indeed, if one assumes that
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�i� states are described by vectors in Hilbert spaces, �ii� prob-
abilities are obtained according to the usual trace rule, and
�iii� no-signaling, the optimal fidelity of a cloning machine
cannot be larger than the one allowed by quantum dynamics
�16�. In what follows, we formulate the problem indepen-
dently of QM and show the following.

Result 4. All nonsignaling theories predicting the violation
Bell inequalities have a no-cloning theorem.

A similar result was proved for the case of the CHSH
inequality by Werner, in Ref. �17�. Here we prove it for gen-
eral nonlocal theories, not necessarily violating the CHSH
inequality. Suppose that there exists a machine to which we
can input a physical system �in an arbitrary state�, and it
outputs two systems in exactly the same state as the original
one. We do not make any restriction on how the output sys-
tems are correlated, as long as its reduced state is identical to
the input one. We call such an engine a perfect cloning ma-
chine. Let us consider the following situation: Alice and Bob
share the nonlocal distribution P�a ,b �x ,y�, and perform the
following two spacelike separated events. On one site, Alice
chooses the input x0 and obtains the output a0. On the other
site, Bob performs m clones of its original system. For an
observer who sees first the event on Alice’s site, the descrip-
tion of Bob’s input system is P�b �y ,x0 ,a0�. For this ob-
server, Bob’s system is completely uncorrelated with the rest
of the universe, and the functioning of the perfect cloning
machine is unambiguous:

P�b�y,x0,a0� → P�b1, . . . ,bm�y1, . . . ,ym,x0,a0� . �23�

As mentioned above, we do not make any restriction to the
joint state of all clones P�b1 , . . . ,bm �y1 , . . . ,ym ,x0 ,a0� as
long as when tracing all systems but one the distribution
P�bi �yi ,x0 ,a0� is the same as the original one P�b �y ,x0 ,a0�.
Because we consider a perfect cloning machine there is no
distinction between pure and mixed states: all are perfectly
cloned. For an observer who first sees Bob’s operation, its
description of the physical situation is

P�a,b1, . . . ,bm�x,y1, . . . ,ym� . �24�

But, because all descriptions must give consistent predic-
tions, the descriptions from the point of view of the two
mentioned observers �23� and �24� must be the same, up to
conditioning on a. This implies that the original distribution
P�a ,b �x ,y� is m shareable. More concretely, because m is
arbitrary, we can say that P�a ,b �x ,y� is � shareable. Accord-
ing to the result of Sec. III A, the original distribution
P�a ,b �x ,y� must be local, in contradiction with the initial
assumption.

Phase covariant cloning machine. Once we have ruled
out the existence of a perfect cloning machine, it is interest-
ing to look for the optimal imperfect one. Suppose that its
action is

P�a,b�x,y� → P�a,b1,b2�x,y1,y2� , �25�

where, without loss of generality we can assume that the
final distribution is symmetric with respect to �b1 ,y1� and
�b2 ,y2�. By definition, the reduced distribution P�a ,bi �x ,yi�
is two shareable. This implies that it cannot violate any two-

input Bell inequality. In particular, if the initial distribution
P�a ,b �x ,y� has Y =2, the resulting clones are correlated with
Alice’s system in a local way.

Let us consider a particular case in the binary input-output
scenario. Consider that Alice and Bob share an isotropic dis-
tribution with parameter C. Bob clones his subsystem, and,
according to the previous paragraph, the resulting clones are
locally correlated with Alice’s subsystem. If we suppose that
the clones are isotropically correlated with Alice, the maxi-
mum value for their parameter is Ccln=1/2. Thus, the shrink-
ing factor associated to this cloning operation is

Ccln

C
=

1

2C
. �26�

Now, consider the isotropic correlations that arise when mea-
suring a singlet with the observables that maximize the
CHSH violation, that is Piso with C=1/
2. In this case, the
shrinking factor �26� coincides with the one of the phase
covariant quantum cloning machine 1/
2 �18�, that is QM
attains this maximum value for the cloning of nonlocal cor-
relations. In this sense, QM clones the quantum correlations
achieving the Cirelson bound in an optimal way.

V. NONLOCALITY AND PRIVACY

The monogamy of correlations and the impossibility of
perfect cloning seem immediately to be related to the con-
cept of privacy. If two honest parties know to share correla-
tions with some degree of monogamy, they can estimate and
possibly bound their correlations with a third dishonest party,
the eavesdropper. In this section we strengthen this intuitive
idea, proving that under the no-signaling assumption, a prob-
ability distribution contains secrecy if and only if it is non-
local. Recall that this does not mean that this probability
distribution can be transformed into a secret key.

For the sake of simplicity we consider the bipartite case.
In a cryptographic scenario, one usually considers two hon-
est parties �Alice and Bob� each possessing a random vari-
able A and B, and an eavesdropper �Eve� having E. The
correlations among the three random variables are described
by a probability distribution PABE. On the other hand, it is
meant by nonlocal correlations those probability distribu-
tions conditioned on some inputs P�a ,b �x ,y� that cannot be
written in the form of Eq. �5�. It is in principle not so evident
how to relate the two scenarios. For instance, how to add �i�
the third party in the nonlocal scenario or �ii� the missing
inputs for Alice and Bob in the cryptographic scenario.
Therefore, before proving the equivalence between privacy
and nonlocality one has to connect the two considered sce-
narios.

A. Secret correlations

A tripartite probability distribution �without inputs� PABE
among two honest parties and an eavesdropper contains se-
crecy when it cannot be generated by local operations and
public communication �LOPC�, i.e., its formation requires
the use of a private channel or secret bits �19�. On the other
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hand, PABE can be generated by LOPC, if there exists a sto-
chastic map E→E� such that

PAB�E� = PA�E�PB�E�. �27�

We say that PABE contains secrecy �19� when this is not
possible. We stress that this does not mean that many copies
of PABE can later be used to obtain a secret key by LOPC.
Indeed, there are probability distributions with positive se-
crecy content, which cannot be distilled into a secret key by
LOPC �20�.

Now, suppose Alice and Bob share a distribution
P�a ,b �x ,y�. They decide the inputs according to uniform
distributions p�x�=1/X and p�y�=1/Y �21�. Then, Alice’s
and Bob’s information is, respectively, A= �a ,x� and B
= �b ,y�. The random variables A and B are correlated accord-
ing to

PAB = P�a,b�x,y�
1

XY
. �28�

Can Alice and Bob bound Eve’s information on their out-
comes from their observed correlations? Can one prove that
all possible extension PABE of PAB, derived from P�a ,b �x ,y�
through Eq. �28�, contain secrecy? This is of course impos-
sible if no assumption on the possible extensions are made.
In general, Alice and Bob can never exclude that Eve has a
perfect copy of their outcomes, unless some constraints are
imposed. However, if it is assumed that no faster-than-light
communication is possible, not all possible extension of the
initial bipartite probability distribution are allowed. Let us
only consider extensions P�a ,b ,e �x ,y� compatible with no
signaling. Thus, to each P�a ,b �x ,y� we can associate a fam-
ily of tripartite distributions

PABE = P�a,b,e�x,y�
1

XY
, �29�

where E=e. We say that P�a ,b �x ,y� contains secrecy if all
its associated PABE contain secrecy.

B. All nonlocal correlations contain secrecy

The aim of this section is to show the link between the
nonlocal properties of P�a ,b �x ,y� and the secrecy content of
any possible extension PABE, defined through Eq. �29�. Be-
fore proceeding, note that an equivalent way of defining lo-
cal correlations is as follows: a probability distribution
P�a ,b �x ,y� is local �5� when there exists a �nonsignaling�
extension P�a ,b ,e �x ,y� such that

P�a,b�x,y,e� = P�a�x,e�P�b�y,e� . �30�

Now, assume one has a bipartite distribution P�a ,b �x ,y� for
which there exists an extension PABE with no secrecy con-
tent, that is

PAB�E = PA�EPB�E. �31�

Because processing the outcomes of a nonsignaling distribu-
tion gives another nonsignaling distribution, any transforma-
tion E→E� is included in the arbitrariness of the extension

P�a ,b ,e �x ,y�. By using the definition of conditional prob-
abilities, one can see that Eq. �31� is equivalent to Eq. �30�.
That is, PABE has no secrecy if and only if there exists an
extension of P�a ,b �x ,y� satisfying Eq. �30�, which is to say
that P�a ,b �x ,y� is local. This establishes the following
equivalence.

Result 5. A distribution contains secrecy if and only if it is
nonlocal.

This result is completely analogous to the quantum case,
where it is known that a bipartite state contains secrecy if
and only if it is entangled �22�. Of course, in this case eaves-
droppers must be limited by QM.

It was already proven in Ref. �7� that all local correlations
�5� can be distributed by LOPC. The public message that one
of the parties, say Alice, should send to the rest in order to
create the correlations, is precisely the �hidden� variable e
that appears in Eq. �5�. Therefore, if Alice and Bob’s prob-
ability distribution is local, they cannot exclude that the glo-
bal probability distribution including Eve does not contain
any secrecy.

The following natural question is to identify those nonlo-
cal correlations distillable to a secret key and whether they
can be distributed using quantum states �23�. This will define
those quantum correlations secure against an eavesdropper
only limited by the no-signaling principle �7�.

VI. NONLOCALITY AND RANDOMNESS

We first start by showing that all nonlocal correlations
have random outcomes �see also Ref. �3��. Consider a deter-
ministic bipartite distribution PDET�a ,b �x ,y�. That is, a and
b are deterministic functions of �x ,y� �a= f�x ,y� and b
=g�x ,y��. Using this and no signaling, we can get the fol-
lowing equalities:

Pdet�a,b�x,y� = ��a,b�,�f�x,y�,g�x,y�� = �a,f�x,y��b,g�x,y�

= P�a�x,y�P�b�x,y� = P�a�x�P�b�y� . �32�

The last line is a distribution of the form �5�. Therefore, all
deterministic distributions are local. Or in other words, all
nonlocal states have uncertain outcomes. This fact can be
straightforwardly extended to the n-party case.

Summarizing, in any nonsignaling theory with nonlocal
correlations there are two kinds of randomness. The first one
reflects our ignorance and corresponds to those probability
distributions that can be written as the convex combination
of extreme points. But, as in QM, there is also an intrinsic
randomness even for extreme points, or pure states. The PR
box �11� is an example of a pure state with uncertain out-
comes.

Incompatible observables and uncertainty. Within QM it
is said that two observables �O0 ,O1� are compatible if there
exists a more complete one O of which both are functions
�O0 ,O1�= f�O�. Consider P�a ,b �x ,y�, we say that the two
observables in Bob’s site b0 and b1 �corresponding to the
inputs y=0,1� are compatible, if there exists a joint distribu-
tion for both P��a ,b0 ,b1 �x�. That is

�
b0

P��a,b0,b1�x� = P�a,b1�x,y = 1� , �33�
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�
b1

P��a,b0,b1�x� = P�a,b0�x,y = 0� . �34�

Or in other words, P�a ,b �x ,y� is two shareable with respect
to Bob if we restrict to y=0,1.

When the observables �b0 ,b1� are not compatible, a pos-
sible way of quantifying the degree of incompatibility is

inc�b0,b1� = min�
 	 0:P�a,b�x,y�

= 
Pinc�a,b�x,y� + �1 − 
�Pcom�a,b�x,y�� ,

�35�

where Pcom�a ,b �x ,y� is a distribution where b0 and b1 are
compatible and Pinc�a ,b �x ,y� is an arbitrary one. It is clear
that the range of inc�b0 ,b1� is �0,1�, and inc�b0 ,b1�=0 if and
only if b0 and b1 are compatible. In Appendix B it is proven
that in the binary input-output case, this minimization yields
the CHSH violation

inc�b0,b1� = BCHSH�P�a,b�x,y�� . �36�

In the case of binary outputs or inputs, we are able to
establish a direct relation between inc�b0 ,b1� and the uncer-
tainty of b0 and b1:

Result 6. In the binary output case �A=B=2� the follow-
ing constraints hold:

H�b0� � h�1

2
inc�b0,b1�� , �37�

H�b1� � h�1

2
inc�b0,b1�� , �38�

where H�b� is the entropy of the output b and h�x� is the
binary entropy of x �24�. These inequalities also hold for
arbitrary output and binary input �X=Y =2�.

The proof of this result is in Appendix B. Although this
has the flavor of the Heisenberg uncertainty relations, it dif-
fers in the fact that here we do not have a trade off between
the uncertainty of each observable. In particular, if b0 is de-
terministic, inequality �37� implies inc�b0 ,b1�=0, and hence,
nothing prevents b1 from being deterministic too. It is also
remarkable that a deterministic observable is compatible
with any other.

VII. CONCLUSIONS

In this work, we have identified a series of features com-
mon to all physical theories that do not allow for instanta-
neous transmission of information, and predict the violation
of Bell inequalities. As shown, these two assumptions are
sufficient to prove the following.

Constraints on how nonlocality is distributed among the
correlations of different pairs of particles in multipartite sce-
narios.

Impossibility of perfect cloning of states.
Strict equivalence of the following properties: nonlocality,

bounded shareability, positive secrecy content.
A relation for the incompatibility of two observables and

the uncertainty of their outcomes.

Hence, some properties traditionally attributed to QM are
generic within this family of physical theories. For example,
the fact that two observables cannot be simultaneously mea-
sured on the same system �incompatibility�, becomes neces-
sary to explain the correlations observed in some experi-
ments �violation of CHSH �2��, independently of the fact that
we use models based on noncommuting operators to explain
such experiments �see also Ref. �17��. Moreover, a no-
cloning theorem can be derived without invoking any nonor-
thogonality of states.

This indicates how constraining is the demand that a
theory compatible with special relativity predicts the viola-
tion of Bell inequalities. One could actually say that there is
not much room left out of QM.

From a more fundamental point of view, this work pro-
poses a different approach to the study of quantum proper-
ties. In general, QM has been studied in comparison with
classical mechanics, that is, starting from a more restrictive
theory. Here, the idea is to start from a more general family
of theories, and to study “quantum” properties common to all
of them. It is then an open research project to identify those
additional postulates that allow one to recover the whole
quantum structure.
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APPENDIX A: DEPOLARIZATION AND SHRINKING

In this appendix it is shown that, in the case X=Y =A
=B=2, any distribution can be transformed into an isotropic
one maintaining the CHSH violation �8� invariant. We call
this process “depolarization.” We also show that the param-
eter C of an isotropic distribution can be decreased with local
operations. We call this operation “shrinking.”

Depolarization. This transformation can be implemented
by using three bits of shared randomness and local opera-
tions, in the following two steps.

First step, Alice and Bob perform with probability 1 /2
one of the following two operations: �1� nothing and �2� flip
a and b. This makes the correlations locally unbiased.

Second step, with probability 1 /4 both parties perform
one of the following four operations. �1� nothing, �2� flip ax=1
and y, �3� flip x and by=1, and �4� flip x, ax=0, y, and bb=1,
where flipping ax=1 means that a is only flipped when x=1,
that is a→a+x mod 2. After the second step, the resulting
correlations satisfy Eq. �9�. It can be seen that both steps
keep invariant the violation of the CHSH inequality.

Shrinking. A useful observation is that when C	0, the
value of BCHSH can always be decreased by performing an
operation in one site. This is accomplished when one party,
say Bob, outputs b with probability 1−�, and an unbiased
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random bit with probability �. This operation implements the
transformation C→ �1−��C.

APPENDIX B: PROOFS OF SEC. VI

Result. In the case A=B=X=Y =2 the degree of incom-
patibility of two observables is

inc�b0,b1� = BCHSH�P� . �B1�

Proof. In the binary input case, the fact that Pcom in Eq.
�35� is two shareable implies that it is local. Hence, if P
=
Pinc+ �1−
�Pcom we have that

BCHSH�P� � 
BCHSH�Pinc� � 
 . �B2�

One can always express an arbitrary nonlocal distribution P
�with binary input and output� as a mixture of a PR box and
a local distribution saturating the CHSH inequality. If we do
so, and assign Pinc= PPR and BCHSH�Pcom�=0, the minimum
value 
=BCHSH�P� is actually achieved.

Result 6. In the binary output case �A=B=2� the follow-
ing constraints hold:

H�b0� � h�1

2
inc�b0,b1�� , �B3�

H�b1� � h�1

2
inc�b0,b1�� , �B4�

where H�b� is the entropy of the output b and h�x� is the
binary entropy of x �24�. These inequalities also hold for
arbitrary output and binary input �X=Y =2�.

Proof. Let us prove the above inequalities �B3�, �B4� for
the binary output case. It is shown in this case �11� that,
for all extreme points, the one party marginals are determin-
istic or unbiased: �P�b=0 �y� , P�b=1 �y��� ��0,1� , �1,0� ,
�1/2 ,1 /2��. In the next we see that, if one observable, say
y=0, is deterministic �P�b0 �0�=0,1� then it is compatible

with all the rest. To see this suppose that the outcome of b0 is
always b0=�, then, for any y, the joint distribution
P�a ,b0 ,by �x ,y�= P�a ,by �x ,y��b0,� exists. Then, b0 and by

are compatible by definition. Now, let us decompose Pinc as
a mixture of extreme points. This mixture must not contain
extreme points having the marginal of b0 or the marginal of
b1 deterministic. Otherwise, one could move this extreme
point to the mixture of compatible ones Pcom, decreasing the
value of 
. Thus, the marginals for b0 and b1 taken from Pinc
are always unbiased. Therefore, inc�b0 ,b1� is the probability
of getting with certainty an unbiased outcome. The situation
where b0 and b1 have minimal entropy is when Pcom is de-
terministic. Suppose that Pcom�b=0 �y=0�=1, then recalling
Eq. �35�

P�b = 1�y = 0� = inc�b0,b1�Pinc�b = 1�y = 0� =
1

2
inc�b0,b1� ,

�B5�

and thus the entropy of b0 is H�b0�=h�inc�b0 ,b1� /2�. The
same holds for b1. In general, when Pcom is not deterministic,
the entropies will be larger than the bounds �B3�, �B4�.

Let us prove that the bounds �B3�, �B4� also hold in the
case where inputs are binary, and the outputs belong to larger
alphabets. In that case, all extreme points have been classi-
fied in Ref. �4�. There, it is shown that all extreme points
have local marginals where all outcomes with nonzero prob-
ability are equiprobable. As discussed before, if we write Pinc
as a mixture of extreme points, the marginals for b0 and b1
given by these extreme points must have at least two out-
comes with nonzero probability. Otherwise the two observ-
ables are compatible and we can attach the extreme point to
Pinc, decreasing 
. The situation where b0 and b1 have mini-
mal entropy is when Pcom is deterministic, and Pinc has only
two outcomes with nonzero probability for b0 and b1. In such
case, the inequalities �B3�, �B4� are saturated. When Pinc has
more than two outcomes with nonzero probability for b0 and
b1, the entropies will be larger.
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