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In order to quantify quantum entanglement in two-impurity Kondo systems, we calculate the concurrence,
negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be deter-
mined by two competing many-body effects, namely the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida
�RKKY� interaction, I. Due to the spin-rotational invariance of the ground state, the concurrence and negativity
are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a
critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for
entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point
in the two-impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the
impurity spins. Entanglement will only be created �and quantum information processing �QIP� will only be
possible� if the RKKY interaction exchange energy, I, is at least several times larger than the Kondo tempera-
ture, TK. Quantitative criteria for QIP are given in terms of the impurity spin-spin correlation.
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I. INTRODUCTION

The potential of quantum information processing and
quantum communication has led to numerous proposals of
specific material systems for the creation and manipulation
of entanglement in solid-state qubits �1–6�. Condensed-
matter systems have several appealing features: �i� natural
qubits such as single spin-1

2 , �ii� the dream of scalability
found in the solid-state technology that is the basis of clas-
sical computers, and �iii� the presence of strong interactions
between qubits, such as spin exchange, which can create en-
tanglement. Furthermore, even when there is no direct inter-
action between qubits, the interaction of the individual qubits
with their environment can lead to an indirect interaction
between qubits �7�. A concrete example of such an indirect
interaction is the Ruderman-Kittel-Kasuya-Yosida �RKKY�
interaction �8� between two localized spins interacting with
the itinerant spins in a metal. This has led to several recent
proposals to use the RKKY interaction to produce and ma-
nipulate entanglement in solid-state qubits �9–13�.

In considering these proposals for solid-state quantum in-
formation processing, it is important to bear in mind some
results from quantum information theory concerning the en-
tanglement in mixed states. Even though entangled states
result from interactions and exhibit certain correlations �e.g.,
antiferromagnetic interactions can produce singlet states
which exhibit antiferromagnetic correlations�, such interac-
tions and correlations are necessary but not sufficient for the
presence of entanglement. In particular, Werner �14� defined
a subclass of mixed states of pairs of qudits that had two
particularly interesting subfamilies. One family of states had
“classical” correlations in the sense that the two-qudit den-
sity matrix could be written as a convex combination of
product �i.e., unentangled� states. Such states can be modeled

by a hidden-variable theory and satisfy Bell’s inequalities. A
second distinct subfamily was entangled but could be mod-
eled by a hidden-variable theory. In this paper, we consider
the implications of this for the specific case of the two-
impurity Kondo model, which describes the interaction of
two localized spin-1

2 ’s �qubits� via the Heisenberg exchange
interaction with the itinerant electrons in a metal. We inves-
tigate how the competition between the Kondo effect �15�
and the RKKY interaction determines the parameter regime
for which entanglement of the two qubits can occur. Al-
though we focus on this specific system, many of the results
and concepts considered can be readily adapted to other
solid-state qubit systems. For example, this is another ex-
ample of how the entanglement in the whole system is
“shared” �16�: the extent to which two qubits can be en-
tangled with each other is limited by how entangled the in-
dividual qubits are with the environment.

Manipulation of many-body quantum states in solid-state
physics has come to reality. For example, the Kondo effect
�17� and superconducting qubits �18� have been realized ex-
perimentally in a controllable manner. For a quantum dot
�QD� fabricated in a semiconductor two-dimensional elec-
tron gas �2DEG� system, system parameters can be varied in
a tunable manner �19� to explore various many-body effects
in previously inaccessible regimes. Electron transport
through QD’s in the unitary limit has manifested that the
ground state is a many-body Kondo singlet �20� as a result of
the Kondo resonance �21,22�. This means that the localized
magnetic moment is entangled with the itinerant electrons.
Further, it has recently been proposed that a tunable RKKY
interaction could be used to entangle two spatially separated
spins and perform quantum information processing �QIP�
electrically �9,10� or optically �11� in coupled QDs or with
endohedral fullerenes inside carbon nanotubes �12�. Varying
the RKKY interaction, to induce the effect of transitions be-
tween different ground states has been theoretically investi-
gated �23,24�. Furthermore, quantifying entanglement in
quantum many-body systems has recently been investigated
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�25–38�. Motivated by a recent experiment of nonlocal spin
control in a coupled-QD system �10�, it is important to un-
derstand how two spatially separated spins are entangled by
tunable quantum many-body effects. We quantify quantum
entanglement in two-impurity Kondo systems. A general ex-
pression for the reduced density matrix for the two-impurity
spins is given in terms of the spin-spin correlation. It is
found that to be entangled, the two-impurity spins need a
minimum nonzero antiferromagnetic �AFM� correlation de-
termined by the competition between the Kondo effect and
the RKKY interaction. We point out that at the unstable fixed
point �39� in the two-impurity Kondo problem, the AFM
correlation has this critical value.

II. THE TWO-IMPURITY KONDO MODEL

The two-impurity Kondo model describes two localized
spins interacting with itinerant conduction electrons. One
may then suppose that the total system has three subsystems,
consisting of the two localized spins �A and B� and the con-
duction electrons �C� as the environment �see Fig. 1�. The
Hamiltonian describing the two-impurity Kondo model is

H = HC − J�SA · sc�A� + SB · sc�B�� , �1�

where HC=�k��kck�
† ck� denotes the Hamiltonian for the con-

duction electrons. J is the spin-exchange coupling between
the impurity spins SA�B� and the conduction-electron spin
densities, sc�R�= �1/2Ne��kck�

† ����ck��� exp�i�k−k�� ·R�, at
the impurity sites A and B, where Ne is the number of dif-
ferent k vectors. The relevant energy scale governing a
single spin impurity model is the Kondo temperature �15�,
TK�D�J�F exp�−1/J�F�, with the conduction-band width,
D, and the single-particle density of states at the Fermi en-
ergy �F. The conduction electron spins mediate a spin-
exchange interaction between the two spatially separated im-
purity spins, the RKKY interaction, even though it does not
explicitly appear in Eq. �1� of the Hamiltonian. To second
order in J, the RKKY interaction between two impurity spins
can be described by the Hamiltonian

HRKKY = I�R�SA · SB, �2�

where I�R� characterizes the effective spin-exchange interac-
tion between the two-impurity spins depending on the dis-
tance R. The exchange interaction varies as I�R�
=4�J2�FF1,3�2kFR� with F3�x�= �sin x−x cos x� /x4 in three
dimensions �41� and F1�x�=−�1/4��x

�dy sin y /y in one di-
mension �42�. �F and kF are the Fermi energy and the Fermi
wave vector, respectively. Recently the RKKY interaction in
single-walled nanotubes has been studied �43� theoretically.
Note that the sign of I�R� depends on the distance R between
the two-impurity spins. AFM coupling occurs for I�R��0
and ferromagnetic �FM� coupling occurs for I�R��0. The
competition between the RKKY interaction and the Kondo
effect determines the characteristics of the system by the
ratio of the relevant energy scales, I�R� /TK. For instance, for
a strong ferromagnetic RKKY interaction, 	I	�TK, the two-
stage Kondo effect �44� is seen in the temperature depen-
dence of susceptibility; there are three distinct temperatures
at which the susceptibility decreases. The ratio I�R� /TK can
be varied by changing J or R.

III. REDUCED DENSITY MATRIX
FOR THE TWO-IMPURITY SPINS

At zero temperature �T=0�, the total system should be in
a ground state, 	�G
, which is pure. The ground state should
be a spin singlet �39�. This means that it is invariant under
joint rotation of all the spins. To quantify entanglement be-
tween the two localized spins, let 	= 	�G
��G	 be the density
matrix for the ground state of the total system. Although the
total system is in a pure state, the two localized spins are in
a mixed state. For any two qubits, here two Kondo impurity
spins SA and SB, the density matrix can be written in the
form �40�

	AB = TrC�	� =
1

4 �

,�=0,x,y,z

r
��A



� �B
�, �3�

where the coefficients in this operator expansion are deter-
mined by the relation

r
� = Tr��A

�B

�	AB� = ��A

�B

�
 . �4�

� j
0 and � j

� ��=x ,y ,z� are the identity matrix and the Pauli
matrices, respectively, and j=A and B. The reduced �four by
four� density matrix 	AB is obtained from 	 by taking the
partial trace over the states of subsystem C �conduction elec-
trons�. All influences of the direct and indirect interactions
between the two Kondo spins are contained in the correlation
functions defined by the coefficients r
�.

For the two Kondo spins, we derive a general expression
for the reduced density matrix which is valid when any total
system considered satisfies the following symmetries. The
reflection symmetry of the system implies that 	AB=	BA.
Since the Hamiltonian describing the system is real, 	AB

*

=	BA. Furthermore, if the ground state is a total spin singlet,
i.e., spin rotationally invariant, then r
�=0 if 
�� and rxx
=ryy =rzz=r. The symmetries require that the only nonzero
coefficients in the operator expansion are r00, rxx, ryy, and rzz.

FIG. 1. �Color online� Two-impurity Kondo system. The total
system may be regarded as a combined system containing three
subsystems: A, B, and C. Two localized spins A and B are separated
by a distance R, and C is the conduction electrons. These three
subsystems interact with one another both directly and indirectly.
For example, the localized spins interact directly with the conduc-
tion electrons by the spin-exchange interaction J and indirectly with
each other by the RKKY interaction I, which is mediated by the
conduction electrons.
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In addition, r00=1=Tr�	AB� because the density matrix must
have trace unity. The reduced density matrix may depend
only on the distance R between the two Kondo impurity
spins SA and SB because in our study the indirect RKKY
interaction between the Kondo impurity spins is mediated by
the conduction electrons. In the basis �	↑↑
, 	↑↓
, 	↓↑
, 	↓↓
,
the reduced density matrix 	AB can be rewritten entirely in
terms of the spin-spin correlation function, fs��SA ·SB

=3r /4, as follows:

	AB =
1

4�I + r �

=x,y,z

�A



� �B

� , �5�

where I denotes the four by four identity matrix.
To get more insight into the entanglement for the two

impurity Kondo system, we rewrite the reduced density ma-
trix in the Bell basis of maximally entangled states
�	�±
 , 	±
, where 	�±
= �1/�2��	↑ ↓ 
± 	↓ ↑ 
� and 	±

= �1�2��	↑ ↑ 
± 	↓ ↓ 
�. Note that 	�−
 is the spin singlet state.
The result is

	AB = ps	�−
��−	 + pt�	�+
��+	 + �
i=±

	i
�i	� , �6�

where ps= �1/4�− fs and pt= �1/4�+ fs /3. This state is a
singlet-triplet mixture. The spin-spin correlation function of
any two spins is bounded: −3/4� fs�1/4. Thus, the prob-
abilities for the singlet and three triplet states are 0� ps�1
and 0� pt�1/3. The spin-spin correlation determines the
properties of the state for the two spins. The probability of
the two spins being in a singlet state is P�S�= ps= �1/4�− fs

and the total probability of triplet states is P�T�=3pt

= �3/4�+ fs. In the limit of a pure AFM singlet of the two
spins, i.e., fs=−3/4, the two spins are in a maximally en-
tangled state; 	S= 	�−
��−	, with P�S�=1 and P�T�=0.
While in the limit of no singlets, i.e., fs=1/4, the two spins
are in an equal mixture of three triplet states, 	T= 1

3 �	�+

���+	+�i=±	±
�±	�, with P�S�=0 and P�T�=1. However,
the concurrence/negativity for this particular mixture of trip-
let states is zero, as will be discussed below. When the spin-
spin correlation vanishes, i.e., fs=0, the reduced density ma-
trix becomes 	AB= 1

4I, the totally mixed density matrix which
is “garbage” for QIP. Then there is no entanglement between
the two spins. In this case, the probabilities for the singlet
and triplet states are P�S�=1/4 and P�T�=3/4. When the
probabilities for the singlet and triplet states are equal, i.e.,
P�S�= P�T�=1/2, the spin-spin correlation is fs

c=−1/4. The
state for the two localized spins can be regarded as an equal
mixture of the total spin of impurities Simp=0 and Simp=1.

IV. CONCURRENCE/NEGATIVITY AND A CRITICAL
VALUE OF CORRELATION

	AB is actually a Werner state �14� and can be written as

	AB =
4ps − 1

3
	�−
��−	 +

1 − ps

3
I . �7�

This state is characterized by a single parameter ps called the
fidelity because ps= ��−		AB	�−
 measures the overlap of the

Werner state with the spin singlet Bell state. One measure of
entanglement is the concurrence �45�. For the Werner state
	AB, the concurrence is given by �45�

C�	AB� = max�2ps − 1,0 . �8�

For 0� ps�1/2 �i.e., −1/4� fs�1/4�, the concurrence is
zero and the reduced density matrix can be written as a con-
vex combination of �disentangled� product states. For 1 /2
� ps�1 �i.e., −3/4� fs�−1/4�, the concurrence ranges
from zero to one �a maximally entangled state�, and it is
related to the spin-spin correlation function monotonically.
Therefore, at ps

c=1/2, there exists a critical value of the spin-
spin correlation, fs

c=−1/4, separating entangled states from
unentangled states. In a quantum spin system, a critical value
of spin-spin correlation has been discussed for a system con-
sisting of a spin S and a spin 1

2 �46�. Another important
measure of entanglement is the negativity N�	AB� �48,49�.
Similarly to the concurrence, the negativity ranges from zero
to one. The negativity of the Werner state �50� is equal to the
concurrence,

N�	AB� = C�	AB� . �9�

Hence, the negativity gives exactly the same critical value of
the spin-spin correlation for the absence of entanglement. In
fact, any measure of the entanglement shows that the critical
value of the spin-spin correlation, fs

c=−1/4, is a unique point
for the two-impurity Kondo problem. We will see below that
the critical correlation can be related to the unstable fixed
point in the two-impurity Kondo model �39�.

V. QUANTUM TELEPORTATION, BELL INEQUALITIES,
AND CORRELATION

There are rigid constraints on the value of the spin-spin
correlation required to use the two Kondo impurities for QIP.
The state of Eq. �7� for two Kondo impurities is a Werner
state that is highly symmetric and SU�2� � SU�2�-invariant
�14,51�. The Werner state can be entangled but not violate
any Bell inequality �i.e., be described by a hidden variable
theory� for some values of the fidelity ps. In fact, a Werner
state with ps� �1+3/�2� /4�0.78 satisfies the Clauser-
Horne-Shimony-Holt �CHSH� inequality �47,52�, i.e., it does
not have the nonlocal correlations characteristic of maxi-
mally entangled states. This criterion corresponds to fs�
−�3/4��2�−0.53 in the two-impurity Kondo system. The
values of the spin-spin correlation, for an entangled state
without the violation of the Bell-CHSH inequality, is deter-
mined by the concurrence/negativity. The entangled state, for
fs�−1/4, can then be used for QIP including teleportation
�53,54�. To provide a clear comparison of criteria in terms of
the spin-spin correlation for the two-impurity Kondo prob-
lem, Table I shows values required for Bell inequalities,
quantum teleportation, and entanglement.

We summarize pictorially the main results of this study;
the relationship between the concurrence/negativity and the
probabilities of the states for two-impurity spins as a func-
tion of the spin-spin correlation is shown in the top panel of
Fig. 2.
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VI. RELATIONSHIP BETWEEN CONCURRENCE/
NEGATIVITY AND QUANTUM PHASE TRANSITIONS

A connection between entanglement and quantum phase
transition �QPT� has been proposed for a particular class of
Hamiltonians �34�. For first- and second-order QPTs, there
occurs a discontinuity in the ground-state concurrence/
negativity and its first derivative, respectively, due to
nonanalyticities in the ground-state energy. In the case of the
two-impurity Kondo problem, the concurrence/negativity is a
continuous function and its first derivative has a discontinu-
ity at the critical value of spin-spin correlation. However, the
discontinuity does not come from nonanalyticity in the
ground-state energy but from the requirement of non-
negative concurrence �37� or nonpositive negativity. Conse-

quently, in general, the critical point of the spin-spin corre-
lation in the concurrence/negativity is not necessarily related
to a QPT �34�. Thus, to use the concurrence/negativity as a
signature of QPTs, the nonanalyticities in the ground-state
energy should occur at values of spin-spin correlation −3/4
� fs�−1/4, even if the two-impurity Kondo system has a
definite QPT. Otherwise, since the concurrence/negativity is
zero for −1/4� fs�1/4, we see that nonanalytic behavior of
the concurrence/negativity is not a definitive signature of a
QPT.

VII. VANISHING ENTANGLEMENT AT A QUANTUM
CRITICAL POINT

We now consider how the vanishing entanglement at fs
c

=−1/4 may relate to the unstable fixed point �QPT� of the
two-impurity Kondo model found by Jones, Varma, and
Wilkins �39�. Wilson’s numerical renormalization-group
technique �39� and conformal field theory approaches �55�
have shown that at the unstable fixed point, the staggered
susceptibility and the specific-heat coefficient, �, diverge.
The critical value of �I /TK�c separates the regimes of
renormalization-group flows to the stable Kondo effect fixed
point for I /TK� �I /TK�c and the locked-impurity singlet fixed
point for I /TK� �I /TK�c �44�. It should be stressed that this
critical point only exists when there is a symmetry between
even- and odd-parity channels �39,56–58�. The divergence of
thermodynamic properties implies that, at and around the
unstable fixed point, a local description of the impurity and
conduction electron degrees of freedom in terms of a local
Fermi liquid is not possible. Interestingly, in addition, the
spin-spin correlation of the ground state varies continuously
as a function of I /TK and, at the unstable fixed point �I /TK�c,
approaches the critical value of fs

c=−1/4 within numerical
accuracy in the wide range of values of TK �39�. This value at
the critical point was also found analytically �57�. The sche-
matics in the top and bottom panels of Fig. 2 show a corre-
spondence between the entanglement and renormalization-
group flow for the two-impurity Kondo system. When the
symmetry of even-odd parity is broken, the critical point is
replaced by a crossover �56,57�. This might suggest that the
quantum entanglement for this two-impurity Kondo problem
plays an important role in this quantum phase transition.
However, if the even-odd symmetry is not present, then the
entanglement still vanishes for a critical value of �I /TK�c but
there is no quantum phase transition �56,57�.

TABLE I. Comparison of criteria for entanglement, quantum teleportation, and violation of a Bell in-
equality in terms of the fidelity, ps= �1/4�− fs, and the spin-spin correlation, fs��SA ·SB
, for which the two
spin-1

2 is in a spin-rotationally invariant mixed state. Note that the requirement for violation of the Bell
inequality is a more stringent condition than the presence of entanglement.

Fidelity ps Correlation fs

Concurrence ps�1/2 fs�−1/4

Quantum teleportation ps�1/2 �53� fs�−1/4

Violation of Bell-CHSH inequality ps� �1+3/�2� /4 �47� fs�−3/ �4�2�

FIG. 2. �Color online� Top: Relationship between the probabili-
ties for spin singlet �ps� and triplet �pt� states between the two
Kondo impurity spins SA and SB, and the entanglement measures
concurrence �C� /negativity �N� �C�	AB�=N�	AB�=2ps−1�0, oth-
erwise C=N=0� and the spin-spin correlation function fs

��SA ·SB
. Here, ps corresponds to the singlet fidelity. Only for
−3/4� fs�−1/4 the concurrence/negativity has a nonzero value.
This implies that the critical value of fs

c=−1/4 separates entangled
states �hatched� from disentangled states �nonhatched�. The en-
tangled state is useful for quantum teleportation for which the cri-
terion is given by ps�1/2 �fs�−1/4� �53�. Then, for −3/4�2
� fs�−1/4, the entangled states which do not violate the Bell-
CHSH inequality can be used for quantum teleportation. Bottom:
Schematic renormalization-group flow on the axis of the ratio of
RKKY interaction to Kondo temperature, I /TK, at zero temperature
taken from Ref. �39�. Note that there is a one-to-one correspon-
dence between the fixed point and the critical value of the spin-spin
correlations.
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VIII. ENTANGLEMENT BETWEEN THE CONDUCTION
ELECTRONS AND THE KONDO IMPURITIES

The von Neumann entropy �40� is a good measure of
entanglement between two subsystems of a pure state 	�G

�59�. Although above we considered the total system in terms
of the three subsystems �two impurity spins A and B, and the
conduction electrons C�, it can also be regarded as a bipartite
system having two subsystems A and B. There are two op-
tions: �i� one-impurity spin �A= j� and the remainder of the
total system �B= j���j��C� or �ii� two-impurity spins �A
=A�B� and the conduction electrons �B=C�. For the pure
state 	�G
 of the bipartite systems, the von Neumann entropy
E�	�=−Tr	 log 	 is given by the density matrix associated
with either of the two subsystems, i.e., E�	A�=E�	B�. The
logarithm is taken in the base 2.

To quantify the entanglement of one-impurity spin �j�
with the remainder �j�C� of the total system, the reduced
�two by two� density matrix of the one-impurity spin, 	 j
=Trj�C�	�=Trj��	AB�, needs to be evaluated by taking trace
over the state of the remainder of the total system. In terms
of the Pauli matrices, it has the form 	 j = �� j

0+�
r
� j

� /2

with r
= �� j


. As expected, 	A=	B=� j

0 /2 because the expec-
tation value of each impurity spin is zero, �� j



=0, due to the
spin-rotational invariance of the system. Then we have

E�	 j� = − Tr	 j log2 	 j = 1. �10�

Note that the von Neumann entropy of each impurity spin is
not dependent on the spin-spin correlation fs of the two-
impurity spins. Hence, each Kondo spin is always maximally
entangled with the remainder of the total system �30�. The
entanglement of two-impurity spins �A and B� with the con-
duction electrons �C� is quantified by the von Neumann en-
tropy of the reduced density matrix 	AB,

E�	AB� = − ps log2 ps − �1 − ps�log2
1 − ps

3
. �11�

Figure 3 shows the von Neumann entropy, E�	AB�, and the
singlet fidelity, ps, as a function of the spin-spin correlation,
fs. When fs=−3/4 �ps=1�, E�	AB�=0 and the two Kondo
spins are completely disentangled from the conduction elec-
trons. The maximum degree of the entanglement of one
Kondo spin with the remainder of the total system is then
attributed to the other Kondo spin rather than the conduction
electron spins. The concurrence, C�	AB�=1, as a measure of
the entanglement between the two Kondo spins shows that
they form the AFM spin-singlet state in the limit of I /TK
�0, as shown in Ref. �44�. In the language of Kondo screen-
ing, one Kondo spin perfectly screens the other Kondo spin
and the conduction electrons do not participate in screening
any Kondo spin. As the RKKY interaction increases up to
I /TK=0, i.e., ps=1/4, the entropy of Eq. �11� increases
monotonically and reaches its maximum value of 2. As dis-
cussed, each Kondo spin is always maximally entangled with
the conduction electrons but the entanglement of two Kondo
spins disappears for fs�−1/4. Thus, partial screenings by
one Kondo spin and the conduction electrons accomplish a
complete screening of the other Kondo spin. In fact, the

competition between the Kondo effect, TK, and the RKKY
interaction, I, determines the extent of the partial screening
of one Kondo spin by the other Kondo spin and the conduc-
tion electron spins. At fs=0 �ps=1/4�, i.e., I /TK=0, the two
Kondo spins are maximally entangled with the conduction
electrons but no entanglement between them exists. As the
spin-spin correlation �RKKY interaction� increases to I /TK

→�, i.e., ps=0, the entropy of Eq. �11� decreases gradually
to E�	AB�=log2 3 in the limit of the FM spin-triplet state. As
a result, the entanglements of �i� one Kondo spin and the
remainder of the total system and �ii� two Kondo spins and
the conduction electrons exist in the whole range of the spin-
spin correlation, and do not show any signatures of the
unique behavior of the two-impurity Kondo system at the
unstable fixed point �I /TK�c, i.e., fs

c=−1/4.

IX. CONCLUSIONS

Any system of two spins which are a subsystem of a
spin-rotationally invariant state will have similar entangle-
ment properties. To our knowledge, this is the first discussion
of an experimental solid-state realization of a Werner state.
This work has significant implications for proposals using
the RKKY interaction for QIP. We have shown that it is not
sufficient to just use the RKKY interaction to produce anti-
ferromagnetic correlations between spins. Entanglement will
only be created when the AFM correlations are larger than a
critical nonzero value. Hence, it is important that realistic
estimates be made for the ratio I /TK for candidate systems
�10–12�. Similar physics will be relevant to proposals to
couple Josephson-junction qubits via one-dimensional wires
�60�.

FIG. 3. �Color online� The von Neumann entropy E�	AB� for
entanglement between the two Kondo spins and the conduction
electrons is shown as a function of the spin-spin correlation func-
tion fs��SA ·SB
. The von Neumann entropy is zero only at fs=
−3/4. Thus the two Kondo spins are entangled with the conduction
electrons except for the extreme limit of a pure singlet of two
Kondo spins, i.e., I /TK�0. The hatched region for −3/4� fs�
−1/4 is compared to show the entanglement between two Kondo
spins �compare Fig. 2�. No unique behavior is seen in the von
Neumann entropy at fs

c=−1/4. When the indirect RKKY interaction
disappears at fs=0 �I=0�, the two Kondo spins are maximally en-
tangled with the conduction electrons. At fs=1/4, the von Neumann
entropy for the triplet states of the two Kondo spins is log 3.
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