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General setting for a geometric phase of mixed states under an arbitrary nonunitary evolution

A. T. Rezakhani* and P. Zanardi'
Institute for Scientific Interchange (ISI), Villa Gualino, Viale Settimio Severo 65, 1-10133 Torino, Italy
(Received 29 July 2005; published 18 January 2006)

The problem of a geometric phase for an open quantum system is reinvestigated in a unifying approach. Two
of the existing methods to define geometric phase, one by Uhlmann’s approach and the other by a kinematic
approach, which have been considered to be distinct, are shown to be related in this framework. The method
is based upon purification of a density matrix by its uniform decomposition and a generalization of the parallel
transport condition obtained from this decomposition. It is shown that the generalized parallel transport con-
dition can be satisfied when Uhlmann’s condition holds. However, it does not mean that all solutions of the
generalized parallel transport condition are compatible with those of Uhlmann’s. It is also shown how to
recover the earlier known definitions of geometric phase as well as how to generalize them when degeneracy

exists and varies in time.
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I. INTRODUCTION

The concept of a geometric phase was originally intro-
duced by Pancharatnam in the classical context of comparing
two polarized light beams through their interference [1].
Later, Berry pointed out its importance even in quantum sys-
tems undergoing a cyclic adiabatic evolution [2]. After that,
this important notion was a subject of interest in many dif-
ferent aspects, which has led to many different generaliza-
tions and applications [3,4]. Of course in general cases to
retain a purely geometrical nature of the phase one has to put
some constraints, namely parallel transport (PT) conditions.
In this manner, the geometric phase is a feature that only
depends on the geometry of the path traversed by the system
in its motion during evolution.

It is also worth noting that an important source of the
renewed interest in geometric phases is their relevance to
geometric quantum computation and holonomic quantum
computation [5]. Indeed, it is known that quantum logic
gates can be implemented only by using the concept of geo-
metric phases. It is believed that the purely geometric nature
of this phase makes such computations intrinsically fault-
tolerant and robust against noise [6].

A pure state is merely an idealization, and in real experi-
ments a description of the system in terms of mixed states is
usually required. This point accounts for attempts toward
extending the concept of the geometric phase to mixed
states. In fact, Uhlmann was the first to tackle the problem
through the mathematical approach of purification of mixed
states [7]. This method is rather general in that it is indepen-
dent of the type of evolution of the system. Next, Sjoqvist et
al. put forward a quantum interferometric based definition
for the geometric phase of nondegenerate density matrices
undergoing a unitary evolution [8]. Later, Singh er al. pro-
posed a kinematic description and extended the results to the
case of degenerate mixed states [9]. It must be mentioned
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that there also exists another, differential geometric, ap-
proach to define the geometric phase for mixed states under-
going a unitary evolution [10]. In this approach, the mixed-
state geometric phase appears as an immediate and direct
generalization of the pure-state case.

Indeed, in the case of environmental effects such as deco-
herence, one has to consider nonunitary evolutions of mixed
states. Some generalizations in this direction have been ad-
dressed in Refs. [7,11-18]. The proposition in Ref. [12] for
completely positive maps in spite of being operationally
well-defined depends on the specific Kraus representation for
the map. In Refs. [15,16], the problem of a geometric phase
of an initially pure open quantum system, based on the stan-
dard definition of a pure-state geometric phase, has been ad-
dressed through the quantum jump method. A more recent
effort is based on a kinematic approach, with no a priori
assumption about the dynamics of the system [17]. However,
most of these different definitions do not agree with each
other. In fact, Uhlmann’s method, even in the case of unitary
evolution, does not agree with the interferometric definition
[19,20]. The source of such disagreement is known to be the
use of different types of PT conditions. Hence, it has been
argued [19-21] that these approaches are not generally
equivalent and one cannot obtain one from the other. There-
fore, it could be desirable to find a more unified approach
that can bring together the previous general ideas. Recently,
in the unitary evolution case it was argued that using (non-
orthogonal) decompositions different from spectral decom-
position can make it possible to unify the kinematic and
Uhlmann approaches [22]. In this framework, a suitable no-
tion of PT condition of the mixed state is based on the PT
condition of the vectors constituting this decomposition.

In this paper, we shall use a rather similar mechanism plus
uniform decomposition of density matrices, and propose a
generalized kinematic approach for the geometric phase of
mixed states under an arbitrary nonunitary evolution. This
approach vividly shows how it is possible to merge Uhl-
mann’s approach and the kinematic approach. It is also
shown how to recover the earlier definitions of the geometric
phase from this more general approach. In addition, it is
shown that the approach can be easily modified to include

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.73.012107

A. T. REZAKHANI AND P. ZANARDI

the more general case of degenerate mixed states. This in-
vestigation may also be useful in the study of the robustness
of geometric phases against decoherence [23]. Also, another
possible application of the method can be putting forward a
framework in which a rather deeper understanding of the
notion of a geometric phase can be obtained.

The structure of the paper is as follows. In Sec. II, after a
short review of Uhlmann’s and the kinematic approaches, the
structure of the generalized approach, which is based on uni-
form decomposition, is established. Next, some of the con-
ditions of the approach are relaxed. The paper is concluded
in Sec. III.

II. GENERALIZED APPROACH

Let us suppose that the density matrix of our system of
interest (with the Hilbert space H,) is (¢
=30 O wiO)Xwi(1)], in which pi(£)’s [|wi(r))’s] are con-
sidered to be its eigenvalues (normalized eigenvectors). In a
general evolution both p, and |w;) are subject to change in
time. For simplicity of our discussion, in the sequel we as-
sume that the rank of this matrix is constant at all instants,
and even more that the matrix is nondegenerate. In the case
of unitary evolution, we have py(t)=p,(0) and |w(z))
=U(t)|wi(0)), where U(t) is the unitary evolution operator.
However, when evolution is nonunitary, the eigenvalues
pr can also vary in time. Thus, generally U(r)
=3, w(t)){w,(0)| does not encompass the whole dynamical
information. In fact, in such cases, to obtain @(z) one often
has to resort to some approximative methods in the theory of
open quantum systems [24], such as the Lindblad equation
[25].

Since in our construction we use Uhlmann’s PT condition
[7], we need to recall it briefly. Uhlmann’s approach is based
upon the standard purification w(z), where @(f)=w()wi(z),
for density matrices. In other words, w can be considered as
a purification of @ in the larger Hilbert space of Hilbert-
Schmidt operators with scalar product (w(z),w(t’))
=t[wi()w(t')] such that wwi=p. It is clear that w(r)
= \m V(7) is an acceptable purification of @ for any unitary
V(#). For a special purification where each [(w(z),w(t'))| is
constrained to its maximum value, Uhlmann has defined the
geometric phase associated to the evolution from @(0) to
o(7) as y,(7)=arg((w(0),w(7))), where the PT condition
wi (W (r)=w(r)w(r) has to be satisfied.

Let us also briefly review the construction of the geomet-
ric phase in Ref. [17]. Consider a purification for the density
matrix () as

(WD) = 2 \peDwi0)y ® lage, 10,7 (1)
k

Now after imposing the PT condition, (w;(t)|d/dt|w(¢))=0,
the geometric phase, defined according to Pancharatnam [1],
) =arg[(W(0)|¥(n)], reads y,(7)=arg[ZL,\pi(0)pi(7)
(wi(0) |wk(T)>e‘f5<wk(’)|wk(’)>d’]. Indeed, by using the PT condi-
tion one fixes the general form of the unitary operators,
which, like U(), can run the system’s dynamics. As is clear,
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in this method purification of the mixed state of the system is
done based on its spectral decomposition, and the PT condi-
tion is considered to be the PT condition of all the vectors
constituting this (spectral) decomposition. We know that a
purification as in Eq. (1) is only one of the possible purifi-
cations that can give rise to the correct mixed state of the
system. So, one has the freedom to choose other decompo-
sitions and study the problem of the geometric phase with
respect to them. In the sequel, we follow such a strategy and
look for a specific purification in which all normalized terms
can be treated in a naturally uniform manner, unlike Eq. (1),
where the contribution of the kth normalized term is the
time-dependent variable Vm~ In other words, instead of
starting from the spectral decomposition of a density matrix,
which is the usual starting point of purification-based ap-
proaches, we start with another decomposition that can result
in the mentioned uniformity. In order to do so, we need the
next two important theorems on different decompositions of
a density matrix Q.

Theorem 1 [26]: Let @ have the spectral ensemble
{pr>|wp}. Then {q;,|x))} is another ensemble for it iff there
exists a unitary matrix U=(U,,;) such that

I —
Vaibo) = 2 Npdylwi. (2)
k

Theorem 2 [27]: Let {g;} be a probability distribution.
Then there exist normalized quantum states {|x;)} such that
0=3,q,|lx){x, iff ¢ is majorized by p.

An immediate corollary of Theorem 2 is the existence of
a uniform ensemble for any density matrix. Therefore, there
exist normalized pure states |x,), ...,|x)) such that @ is an-
equal mixture of these states with probability 1/A (N=N),
ie., 0=(1/N)=Y |x)x)|. For the rest of the discussion we
assume that A/'=N. Now, let us see how this uniform decom-
position is related to the spectral decomposition. By using
Theorem 1, we have (1/VN)|x =2 \plylw). Tt is easy to
see that if one chooses an N X N Fourier matrix (correspond-
ing to discrete Fourier transformations [28]) Uy
=(1/\N)e=2m®iIN) (k 1=0,...,N-1), and momentarily runs
all indices from O to N—1 (rather than 1 to N), this equation
is satisfied. Then, by using a Fourier matrix one can find a
uniform ensemble for any density matrix. If we define C(z)
=Ek\,m|wk(0)>(wk(0)| and use the definition of U(z), we
can rewrite |x(¢)) in the following matrix form:

(1)) = \NU(H COUw(0)). (3)

Now we show that the above-mentioned uniform decom-
position is useful in our discussion of geometric phase. Con-
sider the following pure state of the combined system sa:

D)= = [0, ® VD). @)
VN

where V(¢) is the unitary evolution of the |a;)’s. This state is
a legitimate purification of the density matrix @(f) of the
system, @(t)=tr,[|® (1)), (P(t)|]. If V(t)=1, since {x;|x;)=1
and all |x,(f)) vectors enter with equal and constant probabil-
ity of 1/N in the decomposition of the density matrix, it
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seems natural to consider our (generalized) PT conditions in
the form of

(O ) =0, k=1, N, (5)

that is, a density matrix undergoes a PT condition when all of
the vectors in its uniform decomposition do so. Here a point
is in order. It must be mentioned that, except for the pure
state case, this PT condition is generally different from the
one considered in the earlier literature [8,17].!

In general, in the purification (4) ancillary vectors could
also vary in time, and we have to find a natural picture for
the geometric phase in this case. Let us first recall a simple
and useful property of Schmidt decomposition of bipartite
pure states [22]. If |®),,==cilap)br)y, then (U V)| D),
=(UCVI® DZ|ap) by, where C is a diagonal matrix
in the {|ay)} basis defined as C=3;¢la)a;] and V
=3,{b|V|bi ) a){ay|. Here, for notational purposes, we
omit the T sign of V'. Now, noting this property and assum-
ing that the basis vectors of the ancillary Hilbert space are
{lw(0))}, one can rewrite Eq. (4) as

[D(1))50 = 2 [7(1)), ® [Wi(0)ys (6)
k

where |5,(1))=U(t)C(t)uhV(t)|wi(0)). This purification now
results into the nonorthogonal decomposition ©(¢)
=3,]%(t))(%,(¢)| for the density matrix. Unlike the {|x,(¢))}
decomposition, now for a general V, (¥(¢)|x,(1)) is not time-
independent and, as well, is not equal for all £’s. However, if
we consider the normalized vectors |)%(t)>=|)?k(t)>/ [%(2)]| it
still looks natural to consider our generalized PT condition to
be in the following form:

GO @) =0. )

In terms of |X,()) vectors this is equal to (X,(¢)|d/dt|%(t))
=%(d/dt)[<fk(t)|fk(t))], or equivalently in more detail it is

w(OVU cuTuCUY + VU CCUY + ViU Cuviw,(0))
1 d WV ra’
= EEka(O)IV uc W|Wk(0)>]~ (8)

Now let us see what is the form of Uhlmann’s PT condition.
We note that the w(z) operator reads w(t)=U(t) C(t)U(r).
Hence, the explicit form of Uhlmann’s PT condition is

Viutcutucuy + Viutccuy + Viu' ciuy
=Vutcutvcuy +Viu'ccuy + Vi ciuy.  (9)

As is seen, the left-hand side (LHS) of this equation is ex-
actly the expression within bra-ket of the PT condition (8). If

lTong et al.’s PT condition [17] imposes a constraint on the form
of parallel transported evolution operator, U'(r), as

WO U U wi(0))=0, k=1, ..., N, whereas Eq. (5) results into
WOt cu U'CUw,(0))=0, k=1, ...,N.
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sandwiched between (w;(0)| and |w;(0)), Eq. (9) gives rise to

LHS of Eq. (8) = %(wk(0)|LHS +RHS of Eq. (9)|w,(0))

1d
=5 lmOp U o). (10)

This is what we wanted to show; by using Uhlmann’s PT
condition, the generalized PT conditions (8) are also satis-
fied. However, it must be noted that generally the number of
equations of the two PT conditions is not equal. In other
words, Eq. (9) is a matrix equation which constitutes N?
different equations (for V), while Eq. (7) is just a set of N
equations. This simply means that the solutions of Eq. (8) are
usually not solutions of Eq. (9). If it is assumed that V(r)

:e"f’(’), then the solution of Eq. (9) is as follows [7]:

— iH() == 22 Ul lwy (0)Xwi (0) |

kk'
x f iy~ L)
0 P (t') +pi(t’)

Now it is easy to show that Eq. (8) can have solutions other
than Eq. (11). For example, if we suppose that [/V, C]=0,
and UV=S 70w, (0))(w,(0)|, then Eq. (8) gives

(1) == iJ dr"(wi(t")i("), (12)
0

which does not generate a V(r) compatible with Eq. (11).
This comes from the fact that to satisfy Eq. (8) we only need
to have the diagonal terms of Uhlmann’s PT condition,
whereas off-diagonal terms of this equation may put extra
constraints that are redundant for the validity of Eq. (8).

Now the geometric phase can be simply defined according
to Pancharatnam as

Y1) = arg[{®(0)|d(1)] = arg[z vku)ewk@} . (13)
k

where (%,(0)|%.(0))=1,(1)e, ie., v(r) [y(0)] is the vis-
ibility (geometric phase) of the kth component of |®(#)). The
explicit form is obtained by insertion of the definition of
|X,(1)) in this equation, which gives

Yo(0) = arg<2 VP 0)pe(0) 0w (0)]wi(0))

kk'

X <wk<o>|uv<r>w|wkf<o>>>. (14)

This equation shows that the geometric phase, as described
here to be combined with Uhlmann’s definition, generally
retains a memory of the evolution of both the system and the
ancilla, that is, it is a general property of the whole system
that depends on the history of the system as well as the
history of the ancilla entangled with it [19].

In the remainder of the paper, we investigate how the
earlier definitions of the geometric phase [8,17] can be ob-
tained from the present framework as special cases. If we
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confine ourselves to a restriction of the solution of Eq. (11)

for V(r), such that Vy;:(f) =V (1) 8y and has the property
wu'ciu]=o, (15)

or equivalently V(¢)=3,e 1w, (0))(w,(0)|if, where I(z)
is defined as in Eq. (12), then the explicit form of y, be-
comes

Y1) =arg| 3 vpk(O)pk<z)<wk<o>|wk<r>>e-”k<f>], (16)
k

as in Ref. [17]. Thus, in the context of the discussion of Ref.
[12], it can be said that the physical role of the commutation
relation (15) is to remove memory effects of the ancilla’s
evolution from the geometric phase.

Let us end by mentioning some remarks on the initial
assumptions of the approach, while our emphasis is still on
the derivation of earlier results and their possible generaliza-
tions. Based upon Theorem 2, it is seen that one can always
choose N, the number of vectors in uniform decomposition,
such that N’=N. For example, we can assume that A
=dim(H,). Now we show how the whole framework can be
modified in the degenerate case. Consider the evolution for
the density matrix of the system from @(0) to ©(z)
:EQ’:lEZ’;lpk(t)|w,’f(t)><w,’j(t), where p,(1), k=1,...,N, are
the ni-fold degenerate eigenvalues of @(¢), and |wi (1)), u
=1,...,n, are considered the corresponding eigenvectors. In
this case, the pure state of the total system is |®()),,
=22V=IEZ’;1|)?,’:(I)>J®|w2‘(0))u, where |¥(z)) is defined as in
Eq. (6) in which |w;(0)) is replaced by |w#(0)). Then, one
notes that

(@O = X VPO OwOlw (1)

ke e

X (WHO)UV (U Wk (0)), (17)

which is determined when all elements of V(f) are known.
Now we choose our PT condition in this general case as

2 d At ,
<Xif(t)|z|x1’! =0, wmwup' =1,....n. (18)

It can be checked that this PT condition can also be satisfied
by assuming Uhlmann’s PT condition, Eq. (9). In this case, it

is easily seen that the most general form for V that satisfies
Eq. (15) is as follows:

V)= 2 o™ (U wi0))wl (0)|. (19)

kpp
After some algebra and using the commutation relation (15),
it is obtained that af** ()=(w!(0)|Pe~foV U |\ue" (0)),
where P denotes path ordering. After inserting this relation

PHYSICAL REVIEW A 73, 012107 (2006)

back into Eq. (17), non-Abelian factors show up in the geo-
metric phase.

In general, when degeneracies vary in time, a level-
crossing-like behavior can occur. In this situation, in the dis-
cussion of differentiability of the eigenvalues (and eigenvec-
tors), the notion of ordering of the eigenvalues becomes
important. For example, it can happen that the natural order-
ing as p,(t)=---=py(t) (for all r) destroys differentiability,
thus one has to seek for some ordering which respects it [29].
If such an ordering can be found, then the operator U(r),
eigenvalues, and eigenvectors are still well-defined differen-
tiable functions and our approach may be generalized as
well.

III. CONCLUSION

In summary, the notion of geometric phase of a mixed
state undergoing nonunitary evolution has been investigated
in a unifying picture in which two of the previous general
definitions, Uhlmann’s definition and the kinematic ap-
proach, have been related to each other. In this formalism,
we have used the idea of purification of state of a system by
uniform decomposition of its density matrix rather than the
spectral one, and by attaching a time varying ancilla to it.
Then, as a natural choice for a parallel transport condition,
we have considered that a mixed state is undergoing a par-
allel transport condition when all the (normalized) vectors of
its corresponding purification are subject to this condition.
This generalized parallel transport condition is different from
the ones defined previously in the literature. It has been
shown that the new conditions are satisfied when Uhlmann’s
condition holds. However, because of the different numbers
of equations in the two parallel transport conditions, the gen-
eralized parallel conditions are only diagonal equations of
Uhlmann’s condition. Finally, it has been shown how to re-
cover earlier definitions of the geometric phase of a mixed
state. An extension of the method to the more general cases
of degenerate density matrices with time-varying degenera-
cies has also been discussed. Since our approach comprises
the previously existing definitions, it is clear that, like those
models, it can be used in different physical applications.
While the range of physical applicability of the presented
approach is tantamount to the former ones, this latter appears
now to be tied by an underlying conceptual structure. We
hope that this new approach can shed light on the notion of a
mixed-state geometric phase in physical applications and to
remove some ambiguity in its definition.
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