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The Schrödinger equation for a spinless electron near an azimuthally symmetric curved surface � in the
presence of an arbitrary uniform magnetic field B is developed. A thin-layer quantization procedure is imple-
mented to bring the particle onto �, leading to the well-known geometric potential VC�h2−k and a second
potential that couples AN, the component of A normal to � to mean surface curvature, as well as a term
dependent on the normal derivative of AN evaluated on �. Numerical results in the form of ground-state
energies as a function of the applied field in several orientations are presented for a toroidal model.
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I. INTRODUCTION

Nanostructures with novel geometries have become the
subject of a large body of experimental and theoretical
work �1–23�. Many of the fabricated structures exhibit
curvature on the nanoscale, making once purely theoretical
investigations of quantum mechanics on curved and reduced
dimensionality surfaces relevant to device modeling.
Because magnetic field effects prove important to Aharanov-
Bohm and transport phenomena, the interplay of an applied
field with the curved regions of a nanostructure
�1,4,5,8,12,14,20,24,25� �particularly if the structure has
holes� may be critical to a complete understanding of the
physics of a nanodevice element.

In a previous work �5� the Schrödinger equation for a
spinless electron on a toroidal surface T2 in an arbitrary static
magnetic field was developed and numerical results ob-
tained. There, however, the particle was restricted ab initio to
motion on T2, which precluded the appearance of the well-
known geometric potential VC� �h2−k� �26–42�, with h and
k the mean and Gaussian curvatures, that arises via thin-layer
quantization �43�. Furthermore, if the degree of freedom nor-
mal to � �labeled q in everything to follow� is included, then
the component of the vector potential AN normal to �
couples to the normal part of the gradient. Given that VC is
generated from differentiations in q and the requirement of
conservation of the norm, it is not surprising that other cur-
vature effects would follow from inclusion of A. This work
is concerned with determining the effective potential that
arises from the AN� /�q operator and, through numerical cal-
culation with a simple but realistic model, gauging its influ-
ence on the single-particle spectra and wave functions as a
function of field strength and orientation.

The remainder of this paper is organized as follows: Sec.
II develops the Schrödinger equation

1

2m
��

i
� + eA�2

� = E� �1�

for a spinless electron allowed to move in the neighborhood
�. In an earlier, unpublished version of this work �44� dif-

ferential forms were employed to represent Eq. �1�, but here
more conventional language is used. Section III briefly re-
views the procedure by which VC is derived and uses a simi-
lar but not identical methodology to reduce the AN� /�q
operator to an effective potential expressed entirely in sur-
face variables. Section IV employs the formalism presented
in Sec. III to calculate spectra and wave functions as a func-
tion of field strength and orientation for a toroidal structure,
and Sec. V is reserved for conclusions.

II. CURVED-SURFACE SCHRÖDINGER EQUATION

The development of the Schrödinger equation in three di-
mensions on an arbitrary manifold generally yields a cum-
bersome expression. To remove some complexity in what
ensues, an azimuthally symmetric surface � with q the coor-
dinate that gives the distance from � will be adopted.

Let e�, e�, and ez be cylindrical-coordinate-system unit
vectors. Parametrize ��� ,�� by the Monge form

r��,�� = �e� + S���ez, �2�

with S��� the shape of the surface. Points near the surface
S��� are then described by

x��,�,q� = r��,�� + qen��,�� , �3�

with en everywhere normal to the surface and to be defined
momentarily below. The differential line element of Eq. �3�
is

dx = dr + dqen + qden. �4�

After some manipulation along with a list of expressions to
be defined below, Eq. �4� can be rewritten as �the subscript
on S denotes differentiation with respect to ��

dx = Z�1 + k1q�e1d� + ��1 + k2q�e�d� + dqen

� Zf1e1d� + �f2e�d� + dqen, �5�

with

Z = �1 + S�
2, �6�

e1 =
1

Z
�e� + S�ez� , �7�
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en =
1

Z
�− S�e� + ez� �8�

and the principal curvatures

k1 = −
S��

Z3 , �9�

k2 = −
S�

�Z
. �10�

The metric elements can be read off of

dx2 = Z2f1
2d�2 + �2f2

2d�2 + dq2, �11�

from which the Schrödinger equation can be determined, but
since the minimal prescription will be employed as per
Eq. �1�, it proves convenient to use the gradient

� =
1

f1Z
e1

�

��
+

1

f2�
e�

�

��
+ en

�

�q
�12�

instead. Equation �1� can be rearranged as

1

2
	 1

Z2f1
2

�2

��2 +
1

f1f2Z

1

�

�

��
+

1

f1f2

1

�2

�2

��2 + � k1

f1
+

k1

f1
� �

�q
+

�2

�q2

− ��k1k2

f1
2 +

k1

f1
+

qk1�

Z2f1
3� �

��
+ 2�i� A1

f1Z

�

��
+

A�

f2�

�

��

+ AN
�

�q
� − �2�A1

2 + A�
2 + AN

2 � +
2Em

�2 
� = 0, �13�

with �=e /� and Aj =A ·ej.
While Eq. �13� describes the general case for an azimuth-

ally symmetric geometry, it can be simplified substantially
when considering the q→0 limit or, as dubbed by Golovnev
�43�, with thin-layer quantization. The procedure entails first
performing all q differentiations in accordance with the in-
tuitive notion that the kinetic energy in a thin layer is large,
then setting q=0 everywhere. Equation �13�, leaving the q
differentiations intact and setting q=0 everywhere save the
AN term, cleans up to

1

2
	 1

Z2

�2

��2 +
1

Z

1

�

�

��
+

1

�2

�2

��2 + 2h
�

�q
+

�2

�q2 − k1��k2 + 1�
�

��

+ 2�i���A1

Z
�

q=0

�

��
+ �A�

�
�

q=0

�

��
+ AN

�

�q
�

− �2�A1
2 + A�

2 + AN
2 ��

q=0
+

2Em

�2 
� = 0, �14�

with the mean curvature h above given by

h =
1

2
�k1 + k2� . �15�

The Gaussian curvature which will appear later is

k = k1k2. �16�

III. DERIVATION OF GEOMETRIC POTENTIALS

The geometric potential VC��� is found by reducing Eq.
�13� further by the well-known procedure of assuming a suit-
able confining potential Vn�q� in the normal direction and
demanding conservation of the norm in the q→0 limit. The
latter requirement is generally imposed via assuming a sepa-
ration of variables in the surface and normal parts of the total
wave function �26–30,39–41�

���,�,q� → �S��,���N�q� �17�

and imposing conservation of the norm through

����,�,q��2�1 + 2qh + q2k�d�dq → ��S��,���2��N�q��2d�dq ,

�18�

or, equivalently,

� = �S�N�1 + 2qh + q2k�−1/2 � �S�NG−1/2. �19�

Inserting the rightmost term in Eq. �19� into Eq. �13� and
subsequently taking q→0 reduces the q differentiations there
to

2h
�

�q
+

�2

�q2 →
�2

�q2 + h2 − k . �20�

Separability of the surface and normal variables in the non-
magnetic part of the Hamiltonian is manifest.

Since AN can be a function of q while h is not, it is not
immediately apparent that separability of the Schrödinger
equation in the surface and normal variables is preserved by
the AN�� ,� ,q�� /�q operator. Rather than apply the method
above or that employed in �45� to this term, instead integrate
out any q dependence with some reasonable ansatz for
�N�q�—say, a normalized hard-wall form �N�q�
=�2/Lsin 	q /L. While equivalent to the method summa-
rized in Eqs. �17�–�20�, this procedure assists in establishing
conditions on AN that will prove useful later, and previous
work �46� has demonstrated that to a good approximation the
procedure is justified even for a particle not strongly con-
fined to a region near �.

Write

I = 
0

L �N�q�
G−1/2 AN�
,�,q�	 �

�q

�N�q�
G−1/2 
Gdq , �21�

which is equivalent to

I = − 
0

L

�N
2 �q��h + qk�G−1AN��,�,q�dq

+ 
0

L

�N�q�AN��,�,q��N� �q�dq . �22�

Consider the left-hand integral IL, and assume �suppressing
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surface arguments� AN�q��a0+a1q+¯; expanding out the
arguments and noting that each power of q when integrated
picks up a power of L that will vanish as L→0, the result in
this limit is

IL
0 � − hAN��,�,0�

0

L

�N
2 �q�dq; �23�

i.e., the effective potential arising from IL is proportional to
−hAN�� ,� ,0�.

Turning to the second integral IR, write �N�q��N� �q� as
� /�q��N

2 �q� /2� and perform an integration by parts. The sur-
face term vanishes so that

IR = −
1

2


0

L

�N
2 �q�

�AN��,�,q�
�q

dq . �24�

Again taking AN�q��a0+a1q+¯ allows Eq. �24� to be ex-
pressed in the q→0 limit as

IR
0 � −

1

2


0

L

�N
2 �q�� �AN��,�,q�

�q
�

q=0
dq . �25�

Equations �23� and �25� combine to give an effective surface
potential �with constants appended�

VN
mag��,�� =

ie�

m
	h���AN��,�,0� +

1

2
� �AN��,�,q�

�q
�

q=0

 .

�26�

There are two points that should be addressed with further
explanation. First, assuming a nonsingular series expansion
for AN is reasonable since AN�� ,� ,0� is the value of the
vector potential on the surface; it should certainly be physi-
cally well behaved there but need not vanish. Second, while
a hard-wall form has been assumed for the trial wave func-
tion �a Gaussian works as well�, it is a reasonable conjecture
that the arguments made above are independent of the choice
of �N�q� as long as there is negligible mixing among states in
the q degree of freedom.

IV. NUMERICS

The formalism developed above is now applied to calcu-
late the spectrum and eigenfunctions for a toroidal structure
in a uniform magnetic field of arbitrary orientation inclusive
of geometric potentials.

A convenient choice to parametrize points near a toroidal
surface T2 of major radius R and minor radius a is �47�

x�
,�� = W�
�e� + a sin 
ez + qen, �27�

with

W = R + a cos 
 �28�

and

en = cos 
e� + sin 
ez. �29�

The differential line element is

dx = a�1 + k1
Tq�e
d
 + W�
��1 + k2

Tq�e�d� + endq

� aq�q�e
d
 + Wq�
,q�e�d� + endq , �30�

with e
=−sin 
e�+cos 
ez and the toroidal principle curva-
tures

k1
T =

1

a
, �31�

k2
T =

cos 


W�
�
. �32�

The gradient that follows from Eq. �30� is

� = e


1

aq�q�
�

�

+ e�

1

Wq�
,q�
�

��
+ en

�

�q
. �33�

The symmetry of the torus allows an arbitrary static mag-
netic field to be taken as

B = B1i + B0k . �34�

In the Coulomb gauge the vector potential A�
 ,��= 1
2B�r

expressed in the geometry of Eq. �27� is

A�
,�,q� =
1

2
�B1 sin ��R cos 
 + aq�e


+ �B0Wq − B1aq sin 
 cos ��e�

+ B1R sin � sin 
en� . �35�

FIG. 1. �0 as a function of  for B=B0k. Diamonds correspond
to VC=Vmag=0, stars to VC�0, Vmag=0, and squares to VC�0,
Vmag�0.
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In this case �AN /�q=0, so only the first term in Eq. �26� will
contribute to VN

mag�
 ,��. The Schrödinger equation in the
q→0 limit inclusive of geometric potentials can be written
�spin will be neglected� in a compact form by first defining

� = a/R ,

F�
� = 1 + � cos 
 ,

�0 = B0	R2,

�1 = B1	R2,

�N =
	�

e
,

0 =
�0

�N
,

1 =
�1

�N
,

� = −
2mEa2

�2 ,

after which Eq. �1� may be written

	 �2

�
2 −
� sin 


F�
�
�

�

+

�2

F2�
�
�2

��2 +
1

4F2�
�

+
i�1

2
sin 
 sin �

1 + 2� cos 


F�
�

+ i�0�2 −
1�3

F�
�
sin 
 cos �� �

��

+ i�1 sin ��� + cos 
�
�

�

−

0
2�2F2�
�

4

−
1

2�2F2�
�
4

�sin2 � +
�2sin2 


F2�
�
�

+
01�3F�
�

2
sin 
 cos �
� = �� , �36�

⇒H� = �� , �37�

with the fourth and fifth terms of Eq. �36� being proportional
to VC and VC

mag.
To obtain solutions of Eq. �36� a basis-set expansion or-

thogonal over the integration measure d2J�
�=F�
�d
d�
may be employed for a given �. Here R will be set to 500 Å
in accordance with fabricated structures �16,23,48,49� �for an
R=500 Å torus ��0

2+1
2=0.263�B0

2+B1
2�. With a=250 Å,

�=1/2, a value which serves as a compromise between
smaller � where the solutions tend towards simple trigono-
metric functions and larger � which are less likely to be
physically realistic.

There are two options available for basis functions, one
being

TABLE I. Ground-state wave functions for B=B0k at integer values of . The arguments in square
brackets indicate if VC /Vmag are switched off or on. Only the dominant terms are shown.

=0 =1 =2

�G�off,off� 1 �1 �−0.969f0+0.245f1�e−i�

�G�on,off� −0.968f0−0.244f1 −0.957f0+0.254f1 �0.987f0−0.158f1�e−i�

�G�on,on� −0.968f0−0.244f1 −0.957f0+0.254f1 �0.987f0−0.158f1�e−i�

FIG. 2. �0�� for B=B0�i+k� /�2. Diamonds correspond to
VC=Vmag=0, stars to VC�0, Vmag=0, and squares to VC�0,
Vmag�0.

FIG. 3. �0�� for B=B1i. Diamonds correspond to VC=Vmag=0,
stars to VC�0, Vmag=0, and squares to VC�0, Vmag�0.
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�n��
,�� =
1

�2	
F−1/2ein
ei�� �38�

and the other being

�n�
± �
,�� = � fn�
�

gn�
�
�ei��, �39�

with fn�
� and gn�
� even �odd� orthonormal functions la-
beled by � ���, respectively, constructed by a Gram-
Schmidt �GS� procedure �50� over d2J�
� using
cos n
 , sin n
 as primitives. Here the latter approach will be
adopted in order to facilitate comparisons to a related work
�5� and because of the ease by which the Hamiltonian matrix
elements

Hn̄�̄n�
	̄	 = ��n̄�̄

	̄ �H��n�
	 � �40�

can be evaluated analytically. The basis comprises six GS
functions of each 
 parity and five azimuthal functions span-
ning −2���2 per 
 function for a total of 60 basis states.
The resulting 60�60 Hamiltonian matrix blocks schemati-
cally into

�H++ H+−

H−+ H−− � ,

from which eigenvalues and eigenfunctions are determined.
Since the concern here is with the ground-state eigenfunc-
tions, only a few GS states prove relevant; they are
f0�
�=0.3987, f1�
�=0.6031 cos 
−0.1508, and g1�
�
=0.5642 sin 
.

Figures 1–3 plot the ground-state energy �0 as a function
of the magnitude of flux  for three field orientations. Each
figure displays results for �0�� with VC and/or Vmag switched
on or off. In Fig. 1 the field is oriented along the z axis. In
this case there is no component of A normal to the surface,
so only two curves are evidenced. The curves are qualita-
tively similar, and the effect of VC is to smooth out the
VC=0 curve at 0�1 and shift it downward by an overall

constant. It should be noted that although the curves are
similar, persistent current effects depend on the smoothness
and shape of the of ��� curves so that even fine details can
prove important. Table I shows the evolution of the ground-
state wave function �G�
 ,�� for several ; because the field
is oriented along the z axis,  also measures the flux through
the toroidal plane. Both VC and Vmag are zero so that the
evolution of �G�
 ,�� is due only to changes in field strength.

Figure 2 shows results for a field orientation oriented
tilted 	 /4 radians relative to the toroidal plane with the mag-
nitude of  plotted on the horizontal axis. The divergence of
the two lower curves illustrates the influence of Vmag on the
spectrum. The curve inclusive of Vmag begins to involve ex-
cited states in both the 
 and azimuthal degrees of freedom
�see Table II�. While the admixture of excited states would
tend to raise �0, the interaction is strong enough to pull the
�0�� down as the applied field increases.

In Fig. 3 the magnetic field is situated parallel to the tor-
oidal plane along the x axis. As would be anticipated, there is
no structure in the VC=Vmag=0 curve since no flux pen-
etrates the plane of the torus. This trend obtains also when
VC ,Vmag�0. The effect of Vmag becomes substantial very
quickly both in �0�� and on �G�
 ,�� �Table III�. In this case
there is not even qualitative agreement between results with
VC�0 with Vmag omitted compared to when it is included.

V. CONCLUSIONS

This work presents a method to reduce the AN� /�q term
appearing in the Schrödinger equation for a spinless electron
near a two-dimensional surface in an arbitrary static mag-
netic field to a geometric potential Vmag written entirely in
terms of surface variables. This potential can appreciably
modify energy versus magnetic flux curves as well as surface
wave functions considered here.

In the context of real structures, the practical utility of
deriving geometric potentials lies in reducing three-
dimensional problems to two-dimensional ones. Earlier work

TABLE II. Ground-state wave functions for B=B0�i+k� /�2 as per Table I. For this field configuration AN�
 ,���0.

=0 =1 =2

�G�off,off� 1 −0.989f0−0.115g1e−i� �−0.928f0+0.159f1�e−i�−g1�0.287−0.145e−i��
�G�on,off� 0.968f0−0.244f1 0.961f0−0.252f1 0.932f0−0.270f1

�G�on,on� 0.968f0−0.244f1 �0.957f0−0.232f1�+g1�0.094ei�−0.127e−i�� f0�0.909e−i�−0.126�−g1�0.173e−i�−0.351�

TABLE III. Ground-state wave functions for B=B1i at integer values of  as per Table I. AN�
 ,�� is nonzero, and there is no flux through
the toroidal plane.

=0 =1 =2

�G�off,off� 0.968f0−0.244f1 0.978f0+0.279ig1 sin � 0.894f0+0.133f1−0.552ig1 sin �

�G�on,off� 0.968f0−0.244f1 0.964f0−0.218f1 0.941f0−0.132f1+0.403ig1 sin �

�G�on,on� 0.968f0−0.244f1 −0.954f0+0.178f1+0.320ig1 sin � 0.869f0−0.250f1 cos �−0.314ig1 sin �
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�46� on a simple nanoscale model has shown that solutions
of an ab initio two-dimensional Schrödinger equation do not
adequately approximate thin-layer three-dimensional solu-
tions on a curved space unless VC is included in the
Schrödinger equation. From this perspective, geometric po-
tentials of the form discussed here should be considered ef-
fective potentials that must be included in the modeling of

curved structures in order to achieve a complete description
of the object.
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