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Vortex distribution in the lowest Landau level
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We study the vortex distribution of the wave functions minimizing the Gross-Pitaevskii energy for a fast
rotating condensate in the lowest Landau level (LLL): we prove that the minimizer cannot have a finite number
of zeroes, thus the lattice is infinite, but not uniform. This uses the explicit expression of the projector onto the
LLL. We also show that any slow varying envelope function can be approximated in the LLL by distorting the
lattice. This is used in particular to approximate the inverted parabola and understand the role of “invisible”
vortices: the distortion of the lattice is very small in the Thomas-Fermi region but quite large outside, where the

“invisible” vortices lie.
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The fast rotating regime for a Bose-Einstein condensate in
a harmonic trap, observed experimentally in Refs. [ 1-3], dis-
plays analogies with type-II superconductor behaviors and
quantum Hall physics. However, some different features
have emerged and are of interest, in particular due to the
existence of a potential trapping of the atoms.

A quantum fluid described by a macroscopic wave func-
tion rotates through the nucleation of quantized vortices
[4,5]. For a condensate confined in a harmonic potential with
cylindrical symmetry around the rotation axis, a limiting re-
gime occurs when the rotational frequency () approaches the
transverse trapping frequency: the centrifugal force nearly
balances the trapping force so that the size of the condensate
increases and the number of vortices diverges. The visible
vortices arrange themselves in a triangular Abrikosov lattice.
The system is strongly confined along the axis of rotation,
and it is customary to restrict to a two-dimensional analysis
in the x-y plane. We will call z=x+iy. The Hamiltonian is
similar to that for a charged particle in a magnetic field: for
rotational angular velocities just below the transverse trap
frequency, the wave function of the condensate can be de-
scribed using only components in the lowest Landau level
(LLL): \If(z)=CI>0HZ1(z—z,-)e'lzlzlz, where @ is a normaliza-
tion factor and the z; are the location of the vortices. In
rescaled units, the reduced energy in the LLL is [6-8]

Euu(¥) = f {(1—m|z|2|\1f|2+§|xp|4 &)

under [d?r|W|*=1, where Q) is the rotational velocity, the
transverse trap frequency is scaled to 1, and G models the
interaction term: G=Ng/(d\2m), where g is the two-body
interaction strength and d is the characteristic size of the
harmonic oscillator in the direction of the rotation.

In the absence of a confining potential, the problem is
reduced to the one studied by Abrikosov [9] for a type-II
superconductor and the minimizer is a wave function with a
uniform triangular lattice [10]; its modulus vanishes once in
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each cell and is periodic over the lattice. The presence of the
confining potential is at the origin of a slow varying density
profile, which can be described as the mean of the modulus
of the wave function on many cells. Ho [6] predicted that for
a uniform lattice, the smoothed density profile is a Gaussian.
Various contributions [7,8,11] then pointed out that the en-
ergy can be lowered if this smoothed density distribution is
an inverted parabola rather then a Gaussian. This type of
density profile can be achieved either by taking wave func-
tions with a uniform lattice but with components outside the
LLL [7] or by remaining in the LLL and distorting the lattice.
The study of the distortion has been the focus of recent pa-
pers [8,11,12] and raises the issue of the optimal vortex dis-
tribution. In the LLL description, there are two kinds of vor-
tices: the “visible vortices,” which lie in the region where the
wave function is significant (for instance, inside the Thomas
Fermi region in the case of the inverted parabola), and the
“invisible vortices” which are in the region where the modu-
lus of the wave function is small. The visible vortices form a
regular triangular lattice, while the invisible ones seem to
have a strong distorted shape, whose distribution is essential
to recreate the inverted parabola profile inside the LLL ap-
proximation. These latter are not within reach of experimen-
tal evidence, but can be computed numerically [8,12]. An
important theoretical question is the distribution of these in-
visible vortices, their number, or an estimate of how many of
them are necessary to approximate the inverted parabola
properly inside the LLL.

Our main result states that the minimizer of the energy in
the LLL has an infinite number of vortices. It relies on an
explicit expression of the projector onto the LLL. This pro-
jector also allows us to approximate any slow varying den-
sity profile by LLL wave functions.

We define a small parameter_g= \e"l - and make the
change of variables y(z)=+eW¥(\ez), so that the condensate
is of size of order 1 and the lattice spacing is expected to be
of order Ve. The energy gets rescaled as &;;;(¥)
=eE;;; (), where
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E ()= f [|Z|2|'//|2 + g|¢|4}d2r. (2)

Moreover,  belongs to the LLL so that f(z)=(z)el7% is a
holomorphic function and thus belongs to the so-called
Fock-Bargmann space,

F= {f is holomorphic, f |f|ze_|2|2/£d2r < 00} (3)

Let us point out that such a function f is not only determined
by its zeroes and normalization factor, but also by a globally
defined phase, which is a holomorphic function. The space F
is a Hilbert space endowed with the scalar product (f,g)

:ff(z)g(z)e“z‘2/5d2r. The point of considering this space is
that the projection of a general function ¢(z,7) onto F is
explicit, and called the Szego projector [13,14],

H(¢) — i f EZZ_’/86—|Z/\2/s¢(z/,zr)d2rr ) (4)

If ¢ is a holomorphic function, then an integration by part
yields T1(¢)=¢.

If one considers the minimization of E;;; () without the
holomorphic constraint on f, then the minimization process
yields that |z|?+G|¢4*— =0, where u is the chemical poten-
tial due to the constraint [|g{>=1, so that || is the inverted
parabola

2 |2 — [2G\"
|¢|2(Z)=W(1 R Ly<rp R=Vp= -
()

The restriction to the LLL prevents from achieving this spe-
cific inverted parabola since zﬂelzlzlz8 cannot be a holomor-
phic function. The advantage of the explicit formulation of
the projector II is that it allows us to derive an equation
satisfied by  or rather f when minimizing the energy in the
LLL. A proper distribution of zeroes can approximate an
inverted parabola profile but is going to modify the radius R
as we will see below by a coefficient coming from the con-
tribution of the vortex lattice to the energy.

If feF minimizes E(f)zf[|z|2|f|ze“z‘2/£
+(GI2)|fl*e 2 75)?r under [|fi%e e d?r=1, then for
any g in F with (f,g)=0, we have f[|z|2g_fe“z‘2/S
+(G/2)|ﬂ2§fe‘2‘z‘2/8]d2r=0. We use the scalar product in F

and the definition of the projector to conclude that f is a
solution of

11(((<f + GlfPe ™7 - w)f) =0 ©)

where w is the chemical potential coming from the mass
constraint. Note that given the relation between f and ¢, E(f)
and E;;; () are identical. Equation (6) was pointed out by
[11] as potentially useful. Indeed, this equation allows us to
derive that this minimizer cannot be a polynomial:

Theorem 1. If f € F minimizes E, and ¢ is small enough,
then f has an infinite number of zeroes.
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(1) The proof first requires another formulation of (6).
The projector Il has many properties [13,19]: in
particular, one can check, using an integration by part
in the expression of II, that II(|z]*f)=zed.f+ef. As
for the middle term in the equation, one can compute

that (e 7 2) =TT e AT =TI (F(2)) T (7o)
=]_‘(8(9Z)H(e‘|1|2/8f2). A simple change of variable
yields B H(e“z‘zlsfz)(z)=(778)‘2fe‘(zzr‘zmz)/sfz(z’)dzr’
=%HQ‘2(~/\5'2))(1/\£'§)=% 2(z/2). Thus, we find the following
simplification of (6):

oS+ ST - (u-ef=0. (1)

(2) Now we assume that f is a polynomial of degree
n and a solution of (7). We are going to show that there
is a contradiction due to the term of highest degree in the
equation. Indeed, if f is a polynomial of degree n,
then (gd.)"[f*(z/2)] is of degree 2n—k. But (7)

implies that f(ed,)[f%(z/2)] is of degree n, hence f
must be equal to cz". This is indeed a solution of
(7) if ne+G|c|?e"(2n)!/(2¥"*'n!)—u+e=0. Using that
A2 =1, we find that |c[>me™'n! =1. The Stirling for-
mula provides the existence of a constant ¢, such that
ne+cyG/(2meVn) < u. For the minimizer, w is of the same
order as the energy, thus of order 1, so that if € is too small,
no n can satisfy this last identity hence the minimizer is not
a polynomial.

(3) If f is a holomorphic function with a finite number of
zeroes, then there exists a polynomial P(z) and a holomor-
phic function ¢(z) such that f=Pe?. The fact that f € F pro-
vides a decrease property on f [15] which implies that
Re[ ¢(z)]=<|z|>/(2€). A classical result on holomorphic func-
tions then yields that ¢ is a polynomial of degree at most
two, and f(z):P(z)e‘)"rﬂ“VZz with |y|<1/(2¢). A similar ar-
gument to case 2, but with more involved computations, pro-
vides a contradiction with the degree of the polynomial P if
€ is small enough. We conclude that f has an infinite number
of zeroes. The detailed mathematical proof will be given in
[19].

The Abrikosov problem [9] consists in minimizing the
ratio (|u|*)/{|u*)* over periodic functions, where (-) denotes
the average value over a cell, for functions u obtained as
limits of LLL functions. The minimum is achieved for u
=u(z,e*™3) where [16]

wz D)= 22D, fle,n) = ezz,ke( \ et T>’
e

(8)
and for any complex number 7=7z+i7y,
(.
e(U, 7.) =- E (_ 1)nei'n'7(n + 1/2)26(2n+1)7riv. (9)

The O function has the following properties O(v+k+I7,7)
= (=1 2imlve=im76 (y , 1) so that |u(z,7)| is periodic over
the lattice \me/ 7;Z ® e/ 7/Z 7, and vanishes at each point
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of the lattice. Without loss of generality, one can restrict 7 to
vary in |7]=1, —=1/2<1,<1/2: this is equivalent to requir-
ing that the smallest period for © is 1 and along the x axis
(see [17]). Any lattice in the plane can be obtained by simi-
larity from one of these.

For any 7, f given by (8) is a solution of

(e 72 =N of  with N, = ([uDb(n),  (10)

and

—’7T|k7'—l‘2/7'1. (11)

4
b(7) = Clu = > e

<|“|2>2 kleZ

This expression can be obtained using arguments in [18].
The minimal value of b(7)~1.16 is achieved for 7=,
that is, for the triangular lattice [10]: in [10], it is argued that
one can restrict to 7x=—1/2, and vary 7; in (1/2, \3/2)
Accepting this restriction, they compute the variations of b
which depends on a single parameter and is indeed minimal
for the triangular lattice. In [19], we prove that this restric-
tion is rigorous using the description of these lattices by
varying 7 for |[7]=1 and 73 € (=1/2,0).

If one compares (6) and (10) and takes \ , to be the chemi-
cal potential in (6), one notices that they only differ by the
term I1(|z|°f)=€zd.f+ef, which is negligible on the lattice
size, but plays a role on the shape of the density profile.

A natural candidate to approximate any slow varying pro-
file a(z,z) is to take a(z,Z)u(z,7), where u is the periodic
function defined in Ref. [8]. Of course, such a function is not
in the LLL, but can be well approximated in the LLL by
f"‘e‘lzlzlzs, where f*=II(«f), I1 is the projector onto the LLL
(4), and f comes from Eq (8). Estimating the energy
of £ yields E(f*)=[[|z]*la|X|u?)+[Gb(7)/2]|al*|ul*)*]d*
~ Ce'*. This computation uses calculus on II [19], and u
and « do not vary on the same scale; hence the integrals can
be decoupled. The contribution of u to the energy is through
the coefficient b(7), which is minimum for 7=¢*™3. On the
other hand, the slow varying profile minimizing this approxi-
mate energy is an inverted parabola. A uniform distribution
of zeroes inside the LLL provides a higher energy as com-
puted in [8].

Using pseudodifferential calculus, one can show [19],
when ¢ is small, that f* is very close to au: the error is at
most like &4 if « is not more singular than an inverted
parabola. In particular, when « is an inverted parabola, this
implies that in the Thomas-Fermi region, the distribution of
visible vortices is almost that of the triangular lattice since
au is a good approximation. Outside the support of the in-
verted parabola, where f is very small, the density of distri-
bution of zeroes of f* is very different from that of a regular
lattice. Indeed, the Cauchy formula provides the number of
zeroes of the holomorphic function II(af) in a ball of radius
R,
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. f Ko PIeT o) (2! i) dPr

N(R) = %

j Rz'/se—\z'\2/sa(zr)f(z/e—i0)d2r/
(12)

The Laplace method yields that the ratio of the two integrals
is bounded when R is large, hence N(R) is proportional to
R/e. This is very different from the regular lattice case
which would provide R?*/s.

Contrary to what was explained in [7,20], it is not a small
distortion of the lattice with this ansatz which results in large
changes in the density distribution, but a very specific and far
from uniform distribution of the invisible vortices (outside
the Thomas-Fermi region) which allows to approximate an
inverted parabola. This is consistent with the numerical
simulations in [8].

The special shape of the inverted parabola comes out if
one wants to approximate the equation of the minimizer of
the energy: for any A\, we can prove that

(|22 + Gl e — N)f2) + ce™
~ ((|z* + Gb(D{|uP|a* - M ap), (13)

where C only depends on bounds on «. In other words, in the

. . 2
equation for f%, one can separate in the term | fa|ze“z‘ ' the
contributions due to the lattice and to the profile. The right-
hand side of (13) is zero if « is the inverted parabola,

~ 2 @) ~ (2Gb(7-)>”4
“(Z)‘\/wRﬁ<lulz>(1‘R3 S

(14)

and A= RO, so that f* is almost a solution of (6), up to an
error in !4,

This approach can be used to study the variations in en-
ergy due to deformations of the lattice. The triangular lattice,
corresponding to 7' =e*™3, is such that the Hessian of b(7) is
isotropic (~0.631d). Two lattices close to each other can be
described by two close complex numbers 7' and 7; the dif-
ference in energy between E(f%(-,7')) and E(f%(-,7)) is at

leading order,

G &b
4(972

17 =2 [l upres - g1 - 7P,

(15)

This computation justifies the approach which consists in
decoupling the lattice contribution from the profile contribu-
tion in the energy [20] but, given the definition of f* using
I1, it relies on strong deformations of the lattice for points far
away from the Thomas-Fermi region. For a shear deforma-
tion for which u;; are the components of the deformation
tensor, 72—Tl=i\53uxy. The elastic coefficient C, is defined
by the fact that the difference in energy should be
4C2u - This separation of scales allows to compute

C,~0.63G/(4mR}) or equivalently 0.12G(|#{?) (see also

Refs. [20,21]) and relate it in Bose-Einstein condensates
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FIG. 1. Number of modes n/n,,, having a lower energy than a
given energy e for G=3, 1=0.999.

(BEC) to the same one computed for the Abrikosov solution.

An interesting issue, especially for the computations of
modes, is to get an estimate of the degree of the polynomial
which could approximate f*, since this function has an infi-
nite number of zeroes. We can prove [19] that as the degree
of the polynomial gets large, the minimum of the energy for
the problem restricted to polynomials (and the computation
of modes) is a good approximation of the full problem. The
convergence rates that we obtain are not satisfactory yet. We
believe that a good degree should be /e, with K>R% and R,
is the radius of the inverted parabola. Given that the volume
of the cell is e, K=R% would correspond to having only the
visible vortices. Numerical simulations indicate that a suffi-
cient number of invisible vortices is needed to recreate the
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inverted parabola profile [8]. There are two types of invisible
vortices: those close to the boundary of the inverted parabola
which contribute to the bulk modes and those sufficiently far
away which produce single particle excitations as explained
in [12]. An open issue is to understand the location of these
latter invisible vortices; some simulations suggest that they
lie on concentric circles, but then the density of these circles
should be very low to match our predicted global vortex
density far away which behaves like 1/|z|. We have per-
formed numerical simulations with 1=0.999 and G=3: this
fixes the number of visible vortices to 30, and we vary the
number of total vortices N. One needs at least N=52 (that is
22 invisible vortices) to properly approximate the inverted
parabola, the energy minimizer, and the bulk modes. The
distortion of the lattice is small at the edges but large at large
distances. For N too small, some modes do not appear (see
Fig. 1), while for N very large, one expects higher modes
that [12,22] interpret as single particle modes.

We have shown that for the minimizer of the Gross-
Pitaevskii energy in the LLL, the lattice of vortices is infinite
(but not uniform). Any slow varying profile can be approxi-
mated in the LLL by distorting the lattice. This is proved
using an explicit expression for the projection onto the LLL.
Our results also give an insight on the elastic coefficient C,
and the approximation of the minimizer and modes by poly-
nomials.
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