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We discuss on general grounds some local indicators of entanglement that have been proposed recently for
the study and classification of quantum phase transitions. In particular, we focus on the capability of entangle-
ment in detecting quantum critical points and related exponents. We show that the singularities observed in all
local measures of entanglement are a consequence of the scaling hypothesis. In particular, as every nontrivial
local observable is expected to be singular at criticality, we single out the most relevant one �in the renormal-
ization group sense� as the best suited for finite-size scaling analysis. The proposed method is checked on a
couple of one-dimensional spin systems. The present analysis shows that the singular behavior of local mea-
sures of entanglement is fully encompassed in the usual statistical mechanics framework.
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The entanglement properties of condensed matter systems
have been recently an object of intensive studies �1,2�, espe-
cially close to quantum critical points �QCP� where quantum
fluctuations extend over all length scales. Moreover, the
amount of entanglement in quantum states is a valuable re-
source that promotes spin systems as candidates for quantum
information devices �3,4�.

Since the seminal studies on the interplay between en-
tanglement and quantum critical fluctuations in spin 1/2
models �1,5�, several works suggested different local mea-
sures of entanglement �LME� as new tools to locate QCP’s
�6–12�. The term local here is meant for measures which
depend on observables that are local in real space. This has
to be contrasted with global measures of entanglement, e.g.,
the block entropy �2,13�, or the so-called localizable en-
tanglement �14,15�, which are aimed to capture the entangle-
ment involved in many degrees of freedom.

The picture that has emerged so far seems to be nonsys-
tematic and model dependent. Some of the �local� indicators
reach the maximum value at QCP’s �9�, while others show a
singularity in their derivatives �1,5,6,12,16�. Close to the
transition, the system being more and more correlated, one
expects naïvely an increase of entanglement. However, it
seems that the maxima observed in single-site entropies have
to be ascribed to a symmetry of the lattice Hamiltonian that
does not necessarily correspond to a QCP. For example, in
the one-dimensional �1D� Hubbard model the single-site en-
tropy reaches the maximum possible value at U=0 �9�. This
is due to the equipartition of the empty, singly, and doubly
occupied sites rather than to the Berezinski-Kosterlitz-
Thouless �BKT� transition occurring at that point. In fact, in
the anisotropic spin-1 system discussed below, the equiparti-
tion points do not coincide with the transition lines which are
not marked by any symmetry of the lattice model �17�.

The onset of nonanalyticity in two commonly used en-
tanglement indicators �concurrence and negativity� was re-
cently proved in Ref. �18� for models with two-body inter-
actions. Let us first stress, from a statistical mechanics point
of view, that this result is in fact more general: as a conse-
quence of the scaling hypothesis every local average displays

a singularity at the transition with the exception of accidental
cancellations, i.e., not related to an explicit symmetry of the
Hamiltonian. In particular as any LME is built upon a given
reduced density matrix, the former will inherit the singulari-
ties of the entries of the latter.

A second order quantum phase transition is characterized
by long-ranged correlation functions and a diverging corre-
lation length �. Let the transition be driven by a parameter g
such that the Hamiltonian is H�g�=H0+gV.

At T=0 the free energy density reduces to the ground-
state energy density which shows a singularity in the second
�or higher� derivatives with respect to g; �1/L��H�g��=e�g�
=ereg�g�+esing(��g�), where ���g−gc�−� is the correlation
length, gc is the critical point, and L is the number of sites.
Note that, as a consequence of the scaling hypothesis, the
singular part of the energy esing is a universal quantity that
depends only on �, the relevant length scale close to the
critical point. Hence, esing may be considered quite in general
an even function of �g−gc� around the critical point.

Differentiating e�g� with respect to g, gives the mean
value Og= �V� /L, whose singular part behaves as

Og
sing � sgn�g − gc��g − gc��. �1�

Scaling and dimensional arguments imply that �= �d+���
−1 where d is the spatial dimensionality and � is the dynamic
exponent. For the sake of clarity here we set �=1 as occurs
in most cases �19�. For a second order phase transition �
�0. In particular, if 0���1 the next derivative will show a
divergence �26� Cg	�2e /�g2��g−gc��−1. In the case where
g is mapped to the temperature T in the related
�d+1�-statistical model, Cg will correspond to the specific
heat and �=1−� �Josephson’s scaling law�. As far as en-
tanglement is concerned, the singular term Og

sing appears in
every reduced density matrix containing at least the sites
connected by the operator V. Obviously, modulo accidental
cancellations, any function �e.g., entanglement measures� de-
pending on such density matrix, displays a singularity with
an exponent related to �. The renormalization group �RG�
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theory allows us to be even more general: to the extent that a
local operator can be expanded in terms of the scaling op-
erators �permitted by the symmetries of the Hamiltonian�, its
average will show a singularity controlled by the scaling
dimension of the most relevant term. Remarkably, within the
RG framework, a universal scaling behavior was already
found in Ref. �13� for a particular nonlocal measure, the
block entropy.

From an operational point of view, LME’s have been em-
ployed mainly to detect the transition point using finite-size
data. Following the previous discussion we can argue that, in
a typical situation, the best suited operator for a finite-size
scaling �FSS� analysis is precisely V for the following rea-
sons. First because it naturally contains the most relevant
operator, whose average Og

sing has the smallest possible criti-
cal exponent �. Second the occurrence of sgn�g−gc� in Eq.
�1� plays an important role in finding the critical point, in
case its location is not known from analytical arguments. The
FSS theory asserts �20� that in a system of length L,

Og
sing�L� � sgn�g − gc�L−�/�	O�L/�� , �2�

where 	O�z� is a universal function which must behave as
z�/� in order to recover Eq. �1� in the �off-critical� thermody-
namic limit L
�. In the critical regime z→0, 	O�z� must
vanish in order to avoid jump discontinuities for finite L.
Notice that the sign of the microscopic driving parameter
�g−gc� survives in the FSS for Og

sing. As a consequence,
since Og

sing�L� is an odd function of �g−gc�, the curves Og�L�
at two successive values of L as a function of g cross at a
single point gL

* near gc. The shift �gL
* −gc� is determined by

the L dependence of the regular part Og
reg�L�. In this way, by

extrapolating the sequence gL
* to L→� one has a useful

method for detecting numerically the critical point. Surpris-
ingly, to our knowledge the present method was not consid-
ered in the past, in favor of the so-called phenomenological
renormalization group �PRG� method �20�. However, the
PRG method exploits the scaling of the finite-size gap which
requires the additional calculation of an excited level typi-
cally computed with less accuracy than the ground state. This
means that the computational time is roughly doubled. An-
other advantage with respect to the PRG method is that we
do not have the complication of two crossing points gL

*. In
fact as ��g�
�−1
�g−gc�� is an even function, the scaled
gaps will cross at two values of g for each L.

Once gc is determined, using FSS techniques the critical
exponents � and � may be extracted simply by estimating
� /�=d+1−1/�. In order to find other possible critical expo-
nents, we should perturb our model with other operators per-
mitted by the symmetries H→H+g�V� and repeat the same
study near g�=0.

In what follows we will illustrate these ideas in two dif-
ferent d=1 spin models: �i� the thoroughly studied, exactly
solvable Ising model in transverse field for which all argu-
ments can be checked analytically and �ii� the spin-1 XXZ
Heisenberg chain with single-ion anisotropy for which there
are no analytical methods to locate the different transition
lines.

(a) Ising model in transverse field. We consider the fol-

lowing Hamiltonian with periodic boundary conditions
�PBC�:

H = − �
i=1

L

�
i
x
i+1

x + h
i
z� , �3�

where the 
�’s are the Pauli matrices. This model exhibits a
QCP at h=1, where it belongs to the same universality class
as the two-dimensional �2D� classical Ising model, with cen-
tral charge c=1/2. From the exact solution, it is possible to
show that the transverse magnetization mz= �
i

z�, obtained
differentiating the energy with respect to the driving param-
eter h, has the following expression near the transition point
h=1:

mz � 2/� − ��h − 1�/���ln�h − 1� + 1 − ln 8� . �4�

As expected, mz is a continuous function at the transition
point h=1, showing a singular part which is manifestly odd
in �h−1�. The next h derivative exhibits a logarithmic diver-
gence, as it is related to the specific heat in the corresponding
2D classical model. Most important for us is the “crossing
effect” near the critical point of the family of curves mz�L�,
for different L. In Fig. 1 mz�L� is plotted for several system
sizes. It is evident that, increasing L, the crossing points con-
verge rapidly to h=1.

A quantitative analysis of the crossing effect may be done
in the spirit of FSS, considering separately the critical regime
�L��� and the off-critical one �L
�� for any finite L. In the
off-critical regime, the finiteness of the correlation length �,
reflects in the exponential convergence of the energy to the
thermodynamic value

eL�h� = e��h� +
�h2 − 1�1/2


�

e−L/�

L3/2 �1 + O�L−1�� , �5�

with � given by the formula sinh�1/2��= �1−h��h�−1/2 /2, from
which we can read the critical exponent �=1, for h→1. In

FIG. 1. �Color online� The transverse magnetization �
i
z�, is

plotted vs h for various sizes L ranging from 20 to 100 in steps of
10. The black thick line corresponds to the thermodynamic limit.
The arrows indicate the direction of increasing L. The inset shows
the derivative with respect to h.
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the critical regime, the finite-size expression for the trans-
verse magnetization is

mL
z �h� �

2

�
+

ln�L� + ln�8/�� + �C − 1

�
�h − 1� +

�

12

1

L2 ,

�6�

where �C=0.5772. . . is the Euler-Mascheroni constant. The
finite-size critical field hc,L is obtained via the crossing points
between curves with slightly different lengths, mL

z �hc,L�
=mL+2

z �hc,L�. The solution is hc,L=1+ ��2 /6��1/L2�+O�L−3�,
showing a convergence towards the critical point as fast as
L−2.

As we stressed already, the singularities of local averages
reflect in the behavior of LME’s. Among these, the simplest
measures the entanglement between one site and the rest of
the system and is given by the von Neumann entropy S1
=−Tr�1 ln �1, where �1 is the reduced single-site density ma-
trix. For spin-1 /2 systems �1 is simply written in terms of
Pauli matrices �1= �1/2��1+mx
x+my
y +mz
z�. For the
Ising model �3� mx=my =0 and the single site entropy be-
haves as S1
−0.239�h−1�ln�h−1� so that its h derivative
diverges logarithmically. A nonzero value of mx is possible if
spontaneous symmetry breaking is taken into account, by
adding a small longitudinal �i.e., along x� field that tends to
zero after the thermodynamic limit is performed. In this case

i

x becomes the most relevant operator and mx=��1−h��1
−h2�1/8. Accordingly the singular part of the entropy is S1


�1−h�1/4 for h�1. The same singularities are encountered
in all the single-site measures built upon ��1�2, e.g., purity
and linear entropy �6�.

On the same line one can consider LME’s based on the
two-site density matrix �ij, obtained taking the partial trace
over all sites except i and j. The entries of �ij now depend
also on the two-point correlation functions �
i

�
 j
��. In accor-

dance with the general theory, all such averages behave as
�h−1�ln�h−1� close to the critical point. In the case of
nearest-neighbor sites this explains the logarithmic diver-
gence in the first derivative of the concurrence C�1�, as
found in �5�. Instead the leading singularity in the next-
nearest neighbor concurrence C�2�= ��
i

x
i+2
x �− �
i

y
i+2
y �

+ �
i
z
i+2

z �−1� /2 turns out to be of the form �h−1�2 ln�h−1�.
We have checked explicitly that this is due to the accidental
cancellation of the �h−1�ln�h−1� terms contained in the cor-
relators.

(b) Spin-1 Heisenberg chain with anisotropies. Let us now
consider the nonintegrable spin-1 model

H = �
i=1

L

�Si
xSi+1

x + Si
ySi+1

y + �Si
zSi+1

z + D�Si
z�2� �7�

which shows a rich phase diagram �17�. It is known that the
transition line between the large-D phase �where the spins
tend to lie in the xy plane� and the Haldane phase �charac-
terized by nonzero string order parameters� is described by a
conformal field theory with central charge c=1 �21�. This
means that the critical exponents change continuously along
the critical line. For the detection of the c=1 critical line, the
PRG �22� or the twisted-boundary method �17� have been

used in the literature. We have tested the finite-size crossing
method outlined above, fixing �=2.59 for which previous
studies ensure ��1 �21�. The driving parameter being now
D, the quantity to consider is �e /�D which, by translational
invariance reduces to ��Si

z�2�	OD. In Fig. 2 we plot OD

versus D for various sizes L. The crossing points of the
curves for subsequent values of L, determined by OD�D ,L�
=OD�D ,L+10�, converge rapidly to the critical point Dc

=2.294 consistently with the phase diagram reported in Ref.
�17�.

The effective theory in the continuum limit of the model
�7� around the c=1 line reduces to the sine-Gordon Hamil-
tonian density �21�

HSG = �1/2���2 + ��x	�2� − ��/a2� cos�
4�K	� . �8�

The coefficient ��� ,D� is zero along the critical line, a is a
short distance cut off of the order of the lattice spacing and K
is related to the compactification radius, varying continu-
ously between 1/2 and 2 along the critical line. In this
framework, crossing the critical line in the lattice model �7�
means going from negative to positive values of � and the
corresponding � derivative gives O�= �cos�
4�K	��. From
the sine-Gordon theory �24� it is known that O�

�sgn������K/�2−K� and �� ���1/�K−2�. In our case ���D−Dc�
at fixed �, so that �=K / �2−K�, �=1/ �2−K�. On the one
hand, the critical exponent � /�=K, can be independently cal-
culated from the conformal spectrum obtained numerically,
as explained in Ref. �21� giving K=0.76. On the other hand,
from the FSS of the derivatives of OD at D=Dc �shown in
the inset of Fig. 2� we find K=0.78 showing that the method
presented here is effective for the calculation of the critical
exponent as well. Since the same transition can be driven
varying � at fixed D, we checked that sitting at D=2.294 we
obtained �c=2.591 by looking at O�= �Si

zSi+1
z �. According to

our general discussion, a similar behavior is seen also in OD

FIG. 2. �Color online� The single-site average OD= ��Si
z�2� is

plotted versus D for various sizes L ranging from 20 to 100 �thick
line� in steps of 10. The arrows indicate the direction of increasing
L and the inset shows numerical derivative with respect to D, inter-
polated with splines. The data have been obtained via a DMRG pro-
gram �23� using 400 optimized states and three finite system itera-
tions with PBC.
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�as a function of �� even if it is a single-site indicator, as it
receives a nonvanishing contribution from the most relevant
operator.

The scaling exponent � /� in Eq. �2� is best obtained from
the analysis of the first derivative when ��1. As we move
towards the BKT point, where the cosine term in �8� is mar-
ginal, K→2−, �→�, so the divergence should be seeked in
derivatives with increasing order. Accordingly the crossing
method �as well as the PRG� becomes less efficient as we
approach the BKT point, for which a finer analysis is needed
involving level spectroscopy �25�.

Again the singularities of local averages enter the LME’s.
In the spin-1 case, the ground state of Eq. �7� lies in the zero
total magnetization sector, so that the single-site entropy
reads S1=−OD ln�OD /2�− �1−OD�ln�1−OD�, where 0�OD

�1 in any bounded region of the phase diagram. Note that
the maximum of S1 occurs for OD=2/3, which is not related
to any phase transition, but simply signals the equipartition
between the three states �+1�, �0�, �−1�. This occurs for ex-
ample at the isotropic point ��=1, D=0� where the system is
known to be gapped. Similarly, in the Ising model S1 is
maximal at h=0, i.e., when mz=0, where no transition oc-
curs. Therefore the intuitive idea of the local entropy S1 be-
ing maximal as a criterion to find quantum phase transitions
�9�, seems to be more related to symmetry arguments rather
than to criticality.

In this paper we have put in evidence the origin of singu-
larities in LME’s which have been recently proposed to de-
tect QCP’s. Typically, apart from accidental cancellations,
such singularities can be traced back to the behavior of the
transition-driving term V and to the corresponding scaling
dimension. Moreover, the FSS of �V� turns out to be a valu-
able method to determine the critical point and the associated
exponents. This method has been illustrated for a couple of
spin models displaying qualitatively different QCP’s. More
generally, these considerations can be directly transposed to
other many-body problems, like strongly interacting fermi-
onic systems. Our arguments indicate that the singular be-
havior of LME’s can be adequately understood in terms of
statistical-mechanics concepts. Physically, the understanding
of the intimate relation between genuine multipartite en-
tanglement and the critical state remains an open challenge.
From this perspective, it may be useful to conceive nonlocal
indicators that could unveil the role of nonclassical correla-
tions near criticality.
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