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We present a full quantum treatment of a five-level atomic system coupled to two quantum and two classical
light fields. The two quantum fields undergo a cross-phase-modulation induced by electromagnetically induced
transparency. The performance of this configuration as a two-qubit quantum phase gate for traveling single
photons is examined. A trade-off between the size of the conditional phase shift and the fidelity of the gate is
found. Nonetheless, a satisfactory gate performance is still found to be possible in the transient regime,
corresponding to a fast gate operation.
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Single photons are natural candidates for the implementa-
tion of quantum information processing systems �1�. This is
due to the photon’s robustness against decoherence and the
availability of single-qubit operations. However, it is difficult
to realize the necessary two-qubit operations since the inter-
action between photons is very small. A possible solution is
the enhancement of photon-photon interaction either in cav-
ity QED configurations �2� or in dense atomic media exhib-
iting electromagnetically induced transparency �EIT� �3�. In
this latter case, optical nonlinearities can be produced when
EIT is disturbed, either by introducing additional energy lev-
el�s� �4,5�, or by mismatching the probe and control field
frequencies �6,7�.

In this Rapid Communication, we address the feasibility
of EIT-based systems for the implementation of a two-qubit
quantum phase gate �QPG� for traveling single photons
�8–10� by means of a full quantum treatment of the system
dynamics. In a QPG, one qubit gets a phase conditional to
the other qubit state according to the transformation �11,12�,
�i�1�j�2→exp�i�ij��i�1�j�2 where �i , j�=0,1 denote the logical
qubit bases. This gate is universal when the conditional
phase shift �CPS�,

� = �11 + �00 − �10 − �01, �1�

is nonzero, and it is equivalent to a controlled-not �CNOT�
gate up to local unitary transformations when �=� �11,12�.
The existing literature focused only on the evaluation of the
CPS and on the best conditions for achieving �=� �8–10�,
while the gate fidelity, which is the main quantity for esti-
mating the efficiency of a gate, has been never evaluated. In
this paper we calculate both the fidelity and the CPS of the
QPG, enabling us to discover a general trade-off between a
large CPS and a gate fidelity close to one, hindering the QPG
operation. However, we show that this trade-off can be by-
passed in the transient regime, which has never been consid-
ered before in EIT situations, still allowing a satisfactory
gate performance.

The qubits are given by polarized single-photon wave
packets with different frequencies, and the phase shifts �ij
are generated when these two pulses cross an atomic en-
semble in a five-level “M” configuration �see Fig. 1�. The
population is assumed to be initially in the ground state �3�.
From this ground state, it could be excited by either the

single-photon probe field, coupling to transition �3�↔ �2�, or
by the single-photon trigger field, coupling to transition
�3�↔ �4�. If the five levels are Zeeman sublevels of an alkali
atom, and both pulses have a sufficiently narrow bandwidth,
the Zeeman splittings can be chosen so that the atomic me-
dium is coupled only to a given circular polarization of either
the probe or trigger field, while it is transparent for the or-
thogonally polarized mode, which crosses the gas undis-
turbed �9�. In this way, the logical basis for each qubit prac-
tically coincides with the two lowest Fock states of the mode
with the “right” polarization, �0 j� and �1 j� �j= p , t�.

When the probe �trigger� is on two-photon resonance with
the classical pump field with Rabi frequency �1 ��4�, i.e.,
�1=�2 ��3=�4� �see Fig. 1 for a definition of the detunings�,
the system exhibits EIT for probe and trigger simultaneously.
In fact, the scheme can be seen as formed by two adjacent �
systems, perfectly symmetric between probe and trigger. A
nonzero CPS occurs whenever a nonlinear cross-phase
modulation �XPM� between probe and trigger is present.
This cross-Kerr interaction takes place if the two-photon
resonance condition is violated. For small frequency mis-
match �12=�1−�2 and �34=�3−�4 �both chosen to be within
the EIT window�, absorption remains negligible and the
cross-Kerr interaction between probe and trigger photons
may be strong. The consequent CPS may become large, of
the order of �, if the probe and trigger pulse simultaneously
cross the atomic medium and interact for sufficient time.

FIG. 1. Energy levels of the “M”-scheme. � j are the Rabi fre-
quencies of classical fields, while gp,t denote couplings of the quan-
tized probe and trigger fields to their respective transitions. � j are
the detuning of the fields from resonance.
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This is achieved when the group velocities of the two pulses
are small and equal to vg �see Refs. �8,9��, so that the inter-
action time is given by tint=L /vg, L being the length of the
gas cell �13�. The inherent symmetry of this scheme guaran-
tees perfect group velocity matching whenever �1=�4,
�2=�3, and gp /�1=gt /�4, where gj =� j

		 j /2
�0V �j= p , t�
is the coupling constant between the probe �trigger� quantum
mode with frequency 	 j and the corresponding transition
with electric dipole moment � j. These features are shared by
all the proposals for an EIT-based, nonlinear two-qubit quan-
tum gate �8,9�. They essentially differ only in the way in
which group velocity matching is achieved.

The scope of this paper is to find the ultimate physical
limits imposed on QPG operations in systems with EIT-
based optical nonlinearities. To this end, we neglect all the
possible technical limitations and experimental imperfec-
tions. First, we assume perfect spatial mode matching be-
tween the input single-photon pulses entering the gas cell
and the optical modes excited by the driven atomic medium,
and which are determined by the geometrical properties of
the gas cell and of the pump beams �14�. This allows us to
describe the probe and trigger fields in terms of single trav-
eling optical modes, with annihilation operators âp,t. Next,
we assume that the pulses are tailored in such a way that they
simultaneously enter the gas cell and completely overlap
with it during the interaction. This means that their length
�compressed due to group velocity reduction� is of the order
of the cell length L and their beam waist is of the order of the
cell radius. In this way, the two pulses interact with all Na
atoms in the cell and, moreover, one can ignore spatial as-
pects of pulse propagation. With these assumptions, and ne-
glecting dipole-dipole interactions, the interaction picture
Hamiltonian may be written as

H = 
�12Ŝ11 + 
�2Ŝ22 + 
�3Ŝ44 + 
�34Ŝ55

+ 
�1
	Na�Ŝ21 + Ŝ12� + 
gp

	Na�âpŜ23 + Ŝ32âp
†�

+ 
gt
	Na�âtŜ43 + Ŝ34ât

†� + 
�4
	Na�Ŝ45 + Ŝ54� , �2�

where we have defined the collective atomic operators

Ŝkl=
i=1
Na �kl

i /	Na, k� l=1, . . . ,5, and Ŝkk=
i�kk
i , with

�kl
i ��k�i��� referring to the ith atom. Since the initial state

��in� = �
i=1

Na

�3�i � �c00�0p� � �0t� + c01�0p� � �1t�

+ c10�1p� � �0t� + c11�1p� � �1t�� �3�

contains at most two excitations, the time evolution driven
by Eq. �2� is simple and restricted to a finite-dimensional
Hilbert space involving few symmetric collective atomic
states. In fact, each component of the initial state of Eq. �3�
evolves independently in a different subspace. Defining

�e3
�np,nt��= �

i
1

Na �3�i�np� � �nt�, the component with no photon in
Eq. �3�, �e3

�0,0��, is an eigenstate of H and does not evolve.
The component �e3

�0,1�� evolves in a three-dimensional Hilbert
space spanned also by the two states �e4

�0,0�� and �e5
�0,0��,

where we have defined, for r=1,2 ,4 ,5, the symmetric
collective states

�er
�np,nt�� =

1
	Na



i=1

Na

�31,32, . . . ,ri, . . . ,3Na
� � �np� � �nt� .

�4�

In a similar fashion, the component with only one probe
photon, �e3

�1,0��, evolves in a three-dimensional Hilbert space
spanned also by the two states �e1

�0,0�� and �e2
�0,0��. Finally, the

component �e3
�1,1�� evolves in the five-dimensional subspace

spanned also by the four collective states �e1
�0,1��, �e2

�0,1��,
�e4

�1,0��, and �e5
�1,0��. What is relevant is that the dynamics

remain simple and restricted within a finite-dimensional Hil-
bert space even when we include spontaneous emission, so
that time evolution is described by the following master
equation for the system density matrix �:

�̇ = −
i



�H,�� + 


kl

�kl

2 

j=1

Na

�2�kl
j ��kl

j† − �kl
j†�kl

j � − ��kl
j†�kl

j � ,

�5�

where �k� denotes the decay rate from the excited states
�=2,4 to the ground states k=1,3 ,5 �15�. Spontaneous
emission seems to complicate the system dynamics. How-
ever, the Hamiltonian evolution involves only the singly ex-
cited symmetric atomic states of Eq. �4�. This means that
these collective states decay with a rate equal to the single-
atom decay rate �k�, and that spontaneous emission involves
only a restricted number of additional collective atomic
states in the dynamics. To state it in an equivalent way, the
atomic medium behaves as an effective single 5-level atom,
with a collectively enhanced coupling with the optical modes
gj

	Na, but with the same single-atom decay rates �k�, Rabi
frequencies �i, and detunings �i �see Ref. �16��.

Spontaneous emission causes the four independent Hilbert
subspaces corresponding to the four initial state components
to become coupled. Moreover, the joint effect of the “cross”
decay channels �4�→ �1� and �2�→ �5� together with the
Hamiltonian dynamics couples the above-mentioned collec-
tive states with six new states, �e1

�1,0��, �e2
�1,0��, �e3

�2,0�� �popu-
lated if �41�0�, and �e5

�0,1��, �e4
�0,1��, �e3

�0,2�� �populated if
�25�0�. Therefore Eq. �5� actually describes dynamics in a
Hilbert space of dimension 18, which we have numerically
solved in order to establish the performance of the QPG.

This analysis allows us to fully characterize the QPG op-
eration, by calculating both the CPS � of Eq. �1� and the
fidelity of the gate, at variance with former treatments
�8–10�. The accumulated CPS as a function of tint is obtained
by using the fact that the phase shifts �ij of Eq. �1� are given
by combinations of the phases of the off-diagonal matrix
elements �in the Fock basis� of the reduced density matrix of
the probe and trigger modes, � f�tint�. The gate fidelity is
given by �12�

F�tint� = 	��id�tint��� f�tint���id�tint�� , �6�

where
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��id�tint�� = c00 exp�i�00�tint���0p,0t� + c01 exp�i�01�tint��

��0p,1t� + c10 exp�i�10�tint���1p,0t�

+ c11 exp�i�11�tint���1p,1t�

is the ideally evolved state from the initial condition �3�, with
phases �ij�tint� evaluated from � f�tint� as discussed above.
The overbar denotes the average overall initial states �i.e.,
over the cij, see Ref. �17��. The above fidelity characterizes
the performance of the QPG as a deterministic gate. How-
ever, one could also consider the QPG as a probabilistic gate,
whose operation is considered only when the number of out-
put photons is equal to the number of input photons. The
performance of this probabilistic QPG could be experimen-
tally studied by performing a conditional detection of the
phase shifts, and it is characterized by the conditional fidelity
Fc�tint�, similar to that of Eq. �6�, but with � f�tint� replaced by

� f
c�tint� = Tratom���nj�tint����nj�tint���/��nj�tint���nj�tint��

where ��nj�tint�� is the �non-normalized� evolved atom-field
state conditioned to the detection of no quantum jumps �18�,
i.e., of no spontaneous emission.

The conditional fidelity is always larger than the uncon-
ditional one, but they become equal �and both approach 1�
for an ideal QPG in which the number of photons is con-
served and all the atoms remain in state �3�. This ideal con-
dition is verified in the limit of large detunings � j ��kj �to
significantly suppress spontaneous emission� and very small
couplings gj

	Na�� j. In this limit, each component of the
initial state of Eq. �3� practically coincides with the dark
state of the four independent Hamiltonian dynamics dis-
cussed above. The four phase shifts �ij can be evaluated as a
fourth-order perturbation expansion of the corresponding ei-
genvalue, multiplied by tint, obtaining the following CPS:

� =
gp

2gt
2Na

2tint

��34�3 − �4
2���12�1 − �1

2�

�
 �34��12
2 + �1

2�
��12�1 − �1

2�
+

�12��34
2 + �4

2�
��34�3 − �4

2� � . �7�

This prediction is verified by the numerical solution
of Eq. �5� in the limit of large detunings and small couplings.
However the resulting CPS is too small, even for very long
interaction times �i.e., long gas cells�: for example, for
gp,t

	Na=0.5 MHz, �12,34=1.9 MHz, �1,4=65 MHz, and
�1,3=1.9 GHz, we obtain a tiny CPS of only 3�10−4 rad
when tint=10−4 s. This is not surprising because this limit
corresponds to a dispersive regime far from EIT, and one has
to explore the nonperturbative regime of larger couplings in
order to exploit EIT and achieve a satisfactory QPG opera-
tion.

We have found good QPG performance for the following
parameters, corresponding to a gas cell of Na�108 87Rb at-
oms: �kl=�=2��6 MHz, �1=�3=15�, �12=�34=0.01�,
gp=gt=0.0022�, �1=�4=4�. The results are shown in Figs.
2 and 3, where we see that a CPS of �� radians is obtained
in the transient regime for tint�0.4/��10 ns, corresponding
to a fast operation of the gate. At the same interaction time,

the unconditional gate fidelity �Fig. 3, full line� is about 94%,
while the conditional gate fidelity reaches the value of 99%
�Fig. 3, dashed line�, in correspondence with a success
probability of the gate equal to 0.94. The probe and trigger
group velocity is vg�3�106 ms−1, yielding a gas cell length
L=vgtint�3.1 cm. The value of gj yields an interaction vol-
ume V�2�10−3 cm3, corresponding to a gas cell diameter
of about 330 �m and to an atomic density Na /V�5
�1010 cm−3.

EIT is a stationary phenomenon, while the above results
are obtained in the transient regime where �tint�1. However
we can attribute these results to a sort of “nonstationary,”
EIT process. This is suggested by the reduction of vg �by a
factor �100�, which has been estimated by evaluating the
“instantaneous” susceptibility from the reduced atomic den-
sity matrix given by Eq. �5� and then averaging over the time
interval between 0 and tint. This nonstationary vg is one order
of magnitude smaller than the conventional vg obtained from
the steady-state susceptibility corresponding to the above pa-
rameters. The presence of a moderate EIT process is also
confirmed by the fact that in a numerical study of the three-
level ladder atomic scheme, yielding XPM without EIT �4�,
we have found a slower accumulation of the CPS and a
smaller conditional fidelity ��78% � for a corresponding set
of parameters.

Our study of Eq. �5� also shows that it is not possible to
achieve a comparable QPG performance in the steady-state

FIG. 2. Conditional phase shift � versus the interaction time.
See text for details.

FIG. 3. Fidelity of the QPG operation. Deterministic fidelity
�solid� and conditional fidelity �dashed� are shown. See text for
details.
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regime �tint�1. In fact, we have found at best a CPS of � in
correspondence with fidelities F�tint� and Fc�tint� equal to
77% and 83%, respectively. This is due to the general pres-
ence of a trade-off between the size of the CPS and of the
gate fidelity. In fact, we have seen that both gate fidelities
approach 1 in the small perturbation limit, but with a CPS
that becomes appreciable only for unrealistically long gas
cells. A larger CPS requires a larger ratio gj

	Na /� j. This
condition, however, increases the population of atomic states
�1� and �5� at the expense of the initial atomic state �3�, un-
avoidably decreasing the gate fidelity. Similar conclusions
hold for other options, such as increased detunings � j, or
adjusting two-photon detunings �ij. This trade-off is present
also at large ratios gj

	Na /� j in the transient regime, where,
however, it may be less effective. In fact, in this case one has
significant oscillations of the atomic populations, but it is
possible to find appropriate interaction times tint at which
high fidelities are achieved �see Fig. 3�, simultaneously with
a CPS of about �.

In conclusion, our study shows that the implementation of

efficient EIT-based nonlinear two-qubit gates for traveling
single photons is possible. In fact, even if there is a trade-off
between the size of the CPS and the fidelity of the gate in the
stationary regime, it is possible to have a satisfactory gate
performance in the transient regime, where a fast gate opera-
tion and fidelities equal to 0.99 are achievable. The experi-
mental realization might be challenging, but the implemen-
tation of this quasideterministic two-qubit gate would be
extremely useful, not only for quantum computation, but also
for quantum communication purposes: for example, a QPG
allows a complete Bell-state discrimination for single-photon
polarization qubits �19�. We expect that these considerations
apply to all EIT-based crossed-Kerr schemes �8,9�, regardless
of the specific level scheme considered. Finally, we note that
our analysis does not apply to situations where the nonlin-
earity comes from independent processes such as atomic col-
lisions or dipole-dipole interactions �10�.
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G. Di Giuseppe.
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