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Optical theorem in N dimensions
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The quantum-mechanical optical theorem in N-dimensional space is derived in a simple way from S-matrix

theory.
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One of the celebrated and most elegant results of
quantum-mechanical scattering theory is the so-called optical
theorem, stating that for plane-wave incidence in three di-
mensions the total cross section in the scattering process is
linearly proportional to the imaginary part of the coherent
scattered amplitude in the forward direction [1]. The physical
basis for this proportionality is that any collision process that
removes particles from an incident flux must be accompa-
nied by interference between the incident plane wave and the
scattered wave field in the forward direction, and hence must
be a linear function of the forward scattered amplitude. For
an arbitrary dimension N of the space, generalizations of the
theorem referred to above have been given by Adawi [2] and
Boya and Murray [3]. In the study [2] only radially symmet-
ric scattering potentials were considered, and the construc-
tion of the generalized theorem was accomplished with the
aid of the ultraspherical harmonics of Gegenbauer and the
partial-wave decomposition technique. Nonsymmetric poten-
tials were treated in the further work [3], where an optical-
theorem-formula equivalent to that of Adawi was established
by performing a saddle-point approximation in N-1
complex-dimensional space. Because the mathematical pro-
cedures developed in Refs. [2,3] appear to be more or less
laborous and lengthy, it may be of interest to obtain a suc-
cinct proof of this important and many-faceted theorem via
an alternative approach involving a rather simple calculation.
In this contribution, we would like to present an almost el-
ementary proof by utilizing the physically transparent lan-
guage of the S-matrix formalism.

For a particle of mass m, incident momentum p=hk, scat-
tered in N dimensions by a short-range potential field U(r),
the stationary solution of the Schroedinger wave equation
behaves asymptotically for large distances r as [3,4]
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Here, n=k/k is a unit vector along the direction of inci-
dence, n’=r/r is a unit vector along the direction of obser-
vation, and f(n’,n) is the scattered amplitude in a direction
n’ from the direction of n. The scattering matrix S associated
with Eq. (1) may be regarded as an integral operator with
kernel [4]
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where the Dirac 6 function describes the propagation of the
incoming wave.
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In order to relate the total collisional cross section,
a(n)=[|f(n’,n)|?dn’, to the forward scattered amplitude,
f(n,n), let us combine the expression (2) with the isometric
property [3] of the scattering matrix, that is, S*S=1,

f s“(m",n")s(n",n)dn” = (n’ —n).

Above, the asterisk denotes complex conjugation, and the
integration goes over all the directions of the unit vector n”
in the hyperspace (in one-dimensional space, n” assumes
only two discrete values, n”==xn). This step allows one to
arrive at the key identity

f(n’,n) +f*(n,n
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in which the natural units are provided by
AN) = (e =[AMNP =", (3b)

and N=27/k is the de Broglie wavelength. When viewed on
the forward direction (n’ =n), Eq. (3a) gives immediately the
final result of Boya and Murray for the generalized optical

theorem:
+2Re{ fm, n)} 0 )
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This completes the proof from the standpoint of S-matrix
formulation. In three dimensions, Eq. (4) obtains the well-
known form, o(n)=(47/k)Im f(n,n) [1].

Of direct interest for many practical applications is the
weak-coupling scattering limit, which takes place when the
typical strength U, of the potential field is sufficiently small.
In this limit it is useful to develop the quantity f(n’,n) as a
multiple-scattering Born series,

o(n)
a\(N)

2 fw(n’.m), (5)

f(n".n) =

where the term of the mth-order is proportional to U,". By
inspecting this perturbation series with the help of construc-
tion (3a) and making order-of-magnitude comparisons, we
find that the leading terms in the scattering amplitude satisfy
the set of following requirements:

fi(’ ;) +i'f{(n,n’) =0, (6)
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The condition (6) indicates that the first-order object
iN=32f, (n,n) has no imaginary part. In the case N=3, it also
reproduces the familiar symmetry property of the first Born
amplitude, f(n’,n)=f|(n,n’). Furthermore, one easily de-
duces from Eq. (7) that the forward scattered second Born
amplitude establishes the total cross section of the single-
scattering Born process [opom(n)=[|f(n’,n)|’dn’] by
means of a general relation

Ogom(m) = 2AVD2 Im[{(V32, (n m)]. (8)

It is to be noted at this point that for quasiclassical particles
(ka>1, where a is the characteristic range of the scattering
potential), fundamental constraints analogous to Egs. (6)—(8)
can be conveniently obtained by employing instead of the
Born series (5) the notion [5] of eikonal multiple-scattering
series.

Next we concentrate on potential fields possessing a radial
[2] or at least an inversion symmetry [U(r)=U(-r)]. Such
fields convert the full amplitude into a completely symmetric
object, f(n’,n)=f(n,n"). After some rearrangements, Eq.
(3a) now becomes

Im[iV¥?2f(n’,n)] =
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yielding a generalized unitarity equation for the scattering
amplitude. In the three-dimensional world, Eq. (9) leads di-
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rectly to the Glauber-Schomaker relation [6],

k
Im f(n’,n) = e Jf*(n',n”)f(n”,n)dn”.

Suppose further that for a given \ the differential scatter-
ing cross section, a(n’,n)=[f(n’,n)|?, is known for all the
scattering angles between n’ and n. Then, according to Eq.
(9), the possibility arises to determine the phase a(n’,n) of
the complex amplitude f(n’,n)=[c(n’,n)]"? exp[ia(n’,n)]
as the solution of the following integral equation:

sin[a(n’,n) + 7(N — 3)/4]

~ lf (0’(1’1',1’1”)0’(1’1",11))”2
2 oy (N)o(n’,n)
Xcos[a(n’,n”) — a(n”,n)]dn”. (10)

It is easily verified that this equation is invariant with respect
to the replacement

a— (m/2)(1=N) - a. (11)

The inference to be drawn from this is that the phase of the
scattering amplitude can be computed only with the accuracy
of the transformation

f',n) — i'"Nf'(n',n). (12)

Hence the knowledge of differential scattering cross section
at all angles for a given collision energy enables to restore
the scattering amplitude with the accuracy of the transforma-
tion (12).
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