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The quantum-mechanical optical theorem in N-dimensional space is derived in a simple way from S-matrix
theory.
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One of the celebrated and most elegant results of
quantum-mechanical scattering theory is the so-called optical
theorem, stating that for plane-wave incidence in three di-
mensions the total cross section in the scattering process is
linearly proportional to the imaginary part of the coherent
scattered amplitude in the forward direction �1�. The physical
basis for this proportionality is that any collision process that
removes particles from an incident flux must be accompa-
nied by interference between the incident plane wave and the
scattered wave field in the forward direction, and hence must
be a linear function of the forward scattered amplitude. For
an arbitrary dimension N of the space, generalizations of the
theorem referred to above have been given by Adawi �2� and
Boya and Murray �3�. In the study �2� only radially symmet-
ric scattering potentials were considered, and the construc-
tion of the generalized theorem was accomplished with the
aid of the ultraspherical harmonics of Gegenbauer and the
partial-wave decomposition technique. Nonsymmetric poten-
tials were treated in the further work �3�, where an optical-
theorem-formula equivalent to that of Adawi was established
by performing a saddle-point approximation in N−1
complex-dimensional space. Because the mathematical pro-
cedures developed in Refs. �2,3� appear to be more or less
laborous and lengthy, it may be of interest to obtain a suc-
cinct proof of this important and many-faceted theorem via
an alternative approach involving a rather simple calculation.
In this contribution, we would like to present an almost el-
ementary proof by utilizing the physically transparent lan-
guage of the S-matrix formalism.

For a particle of mass m, incident momentum p=qk, scat-
tered in N dimensions by a short-range potential field U�r�,
the stationary solution of the Schroedinger wave equation
behaves asymptotically for large distances r as �3,4�

�k�r� � eikr +
eikr

r�N−1�/2 f�n�,n� . �1�

Here, n=k /k is a unit vector along the direction of inci-
dence, n�=r /r is a unit vector along the direction of obser-
vation, and f�n� ,n� is the scattered amplitude in a direction
n� from the direction of n. The scattering matrix S associated
with Eq. �1� may be regarded as an integral operator with
kernel �4�

s�n�,n� = ��n� − n� + �2��−�N−1�/2iei��N−3�/4k�N−1�/2f�n�,n� ,

�2�

where the Dirac � function describes the propagation of the
incoming wave.

In order to relate the total collisional cross section,
��n�=��f�n� ,n��2dn�, to the forward scattered amplitude,
f�n ,n�, let us combine the expression �2� with the isometric
property �3� of the scattering matrix, that is, S+S=1,

� s*�n�,n��s�n�,n�dn� = ��n� − n� .

Above, the asterisk denotes complex conjugation, and the
integration goes over all the directions of the unit vector n�
in the hyperspace �in one-dimensional space, n� assumes
only two discrete values, n�= ±n�. This step allows one to
arrive at the key identity

f�n�,n�
f��N�

+
f*�n,n��

f�
*�N�

+
1

���N� � f*�n�,n��f�n�,n�dn� = 0,

�3a�

in which the natural units are provided by

f��N� = ��/i��N−1�/2, ���N� = �f��N��2 = �N−1, �3b�

and �=2� /k is the de Broglie wavelength. When viewed on
the forward direction �n�=n�, Eq. �3a� gives immediately the
final result of Boya and Murray for the generalized optical
theorem:

��n�
���N�

+ 2 Re	 f�n,n�
f��N� 
 = 0. �4�

This completes the proof from the standpoint of S-matrix
formulation. In three dimensions, Eq. �4� obtains the well-
known form, ��n�= �4� /k�Im f�n ,n� �1�.

Of direct interest for many practical applications is the
weak-coupling scattering limit, which takes place when the
typical strength U0 of the potential field is sufficiently small.
In this limit it is useful to develop the quantity f�n� ,n� as a
multiple-scattering Born series,

f�n�,n� = �
m=1

�

fm�n�,n� , �5�

where the term of the mth-order is proportional to U0
m. By

inspecting this perturbation series with the help of construc-
tion �3a� and making order-of-magnitude comparisons, we
find that the leading terms in the scattering amplitude satisfy
the set of following requirements:

f1�n�,n� + iN−1f1
*�n,n�� = 0, �6�
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f��N��f2�n�,n� + iN−1f2
*�n,n���

+� f1
*�n�,n��f1�n�,n�dn� = 0. �7�

The condition �6� indicates that the first-order object
i�N−3�/2f1�n ,n� has no imaginary part. In the case N=3, it also
reproduces the familiar symmetry property of the first Born
amplitude, f1�n� ,n�= f1

*�n ,n��. Furthermore, one easily de-
duces from Eq. �7� that the forward scattered second Born
amplitude establishes the total cross section of the single-
scattering Born process ��Born�n����f1�n� ,n��2dn�� by
means of a general relation

�Born�n� = 2��N−1�/2 Im�i�N−3�/2f2�n,n�� . �8�

It is to be noted at this point that for quasiclassical particles
�ka�1, where a is the characteristic range of the scattering
potential�, fundamental constraints analogous to Eqs. �6�–�8�
can be conveniently obtained by employing instead of the
Born series �5� the notion �5� of eikonal multiple-scattering
series.

Next we concentrate on potential fields possessing a radial
�2� or at least an inversion symmetry �U�r�=U�−r��. Such
fields convert the full amplitude into a completely symmetric
object, f�n� ,n�= f�n ,n��. After some rearrangements, Eq.
�3a� now becomes

Im�i�N−3�/2f�n�,n�� =
��1−N�/2

2
� f*�n�,n��f�n�,n�dn�,

�9�

yielding a generalized unitarity equation for the scattering
amplitude. In the three-dimensional world, Eq. �9� leads di-

rectly to the Glauber-Schomaker relation �6�,

Im f�n�,n� =
k

4�
� f*�n�,n��f�n�,n�dn�.

Suppose further that for a given � the differential scatter-
ing cross section, ��n� ,n�= �f�n� ,n��2, is known for all the
scattering angles between n� and n. Then, according to Eq.
�9�, the possibility arises to determine the phase ��n� ,n� of
the complex amplitude f�n� ,n�= ���n� ,n��1/2 exp�i��n� ,n��
as the solution of the following integral equation:

sin���n�,n� + ��N − 3�/4�

=
1

2
� 
��n�,n����n�,n�

���N���n�,n� �1/2

	cos���n�,n�� − ��n�,n��dn�. �10�

It is easily verified that this equation is invariant with respect
to the replacement

� → ��/2��1 − N� − � . �11�

The inference to be drawn from this is that the phase of the
scattering amplitude can be computed only with the accuracy
of the transformation

f�n�,n� → i1−Nf*�n�,n� . �12�

Hence the knowledge of differential scattering cross section
at all angles for a given collision energy enables to restore
the scattering amplitude with the accuracy of the transforma-
tion �12�.
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