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We reconsider the problem of entanglement of thermal equilibrium states of composite systems. We intro-
duce characteristic, viz., critical, temperatures—and bounds for them—marking transitions from entanglement
to separability, or vice versa. We present examples for the various possible thermal entanglement scenarios in
bipartite qubit-qubit and qubit-qutrit systems.
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I. INTRODUCTION

Since the work of Nielsen �1� and Arnesen et al. �2� the
issue of entanglement in thermal equilibrium states has been
the subject a number of papers �3–15� dealing with different
aspects of the problem. Since formulas which allow one to
decide whether a given state is entangled or not are available
only for a bipartite qubit-qubit or qubit-qutrit system, the
quantitative entanglement studies presented in the literature
have, perforce, been restricted to investigations of the en-
tanglement of the Gibbs state reduced to the possible two-
component subsystems, or to the study of particular so-called
entanglement witnesses or other entanglement monotone
functions �e.g., �10��. Among the physically more relevant
are the studies of the different spin-1 /2 one-dimensional
chain models �Heisenberg �2,8�, Ising �3,7�, XX �6�, XY �7�,
XXZ �9�� where the two-component subsystem entanglement
issue is studied in dependence of the length of the chain
and/or parameters entering the Hamiltonian. All studies iden-
tify a threshold temperature above which thermal states re-
stricted to bipartite subsystems are separable. Although many
of the available studies, e.g. �1,2,5–7,11,14�, observe that the
bipartite subsystem entanglement of thermal states need not
be monotone in temperature, it is not at all clear what en-
tanglement behaviour is to be expected for Gibbs states with
temperatures below the threshold temperature. Moreover it is
not clear which qualitative features of the entanglement of
the Gibbs state �of the specific Hamiltonians studied� re-
duced to two-component subsystems, carry over to global
entanglement properties of the thermal states of multipartite
systems. To clarify these points was one of our basic moti-
vations. The other basic motivation comes from certain prob-
lems addressed in �16� that will be briefly discussed below.

In this Brief Report we reconsider the global entangle-
ment problem of thermal equilibrium states of arbitrary com-
posite quantum systems. We give precise definitions and ba-
sic properties for two characteristic, viz., critical,
temperatures: the upper entanglement temperature TE below
which the corresponding thermal equilibrium states are en-
tangled, and the lower separability temperature TS above
which the corresponding Gibbs states are separable. One has
generally 0�TE�TS and various entanglement scenarios

can be distinguished depending on whether the two inequali-
ties are equalities or not. We provide bounds on these two
critical temperatures. We also show that when TE�TS then
there can be many transitions from entanglement to separa-
bility for the thermal states with temperatures in the interval
�TE ,TS�. We exhibit examples of the different scenarios for
two qubits and a qubit-qutrit system.

II. GENERAL RESULTS

Consider a finite composite quantum system described by
the complex Hilbert space H=H1 � H2 � ¯ � HN, which is
the tensor product of N��2� finite dimensional Hilbert
spaces H j of dimension dj �2 �j=1,2 ,… ,N�; and has
dimension D=d1d2¯dN. Given any Hamiltonian H=H*

acting on H, the thermal equilibrium �or Gibbs� state �T
for temperature T is given by the density matrix �T
=exp�−H /T� / tr�exp�−H /T��.

We recall that an arbitrary state �mixed or pure� of the
composite system is said to be separable or unentangled if it
can be written as a mixture �finite convex sum� of pure prod-
uct states. If this is not the case, the state is said to be en-
tangled.

The rest of this section collects basic information which is
generally valid, i.e., for any N and D, and every Hamiltonian.
If the Hamiltonian is a real multiple of the identity, H=c ·1,
then �T=1 /D for all T, and the state is the normalized trace
or the completely mixed state, which we denote by �. Since
1 /D= �1 /d1� � �1 /d2� � ¯ � �1 /dN� the normalized trace �
is a separable state. We assume henceforth that the Hamil-
tonian H is not a multiple of the identity, and let P− be the
spectral projection associated with the minimal �ground-state
energy� eigenvalue hmin whose multiplicity we denote by m−.
For the ground state �0= P− /m−, one has limT→0�T=�0 where
the limit can be taken in various ways. As the limit of matrix
elements in any orthonormal basis you wish; or
limT→0tr���T−�0��=0 where �X� denotes the absolute value of
the operator X; etc. Moreover limT→��T=� in the same
sense, and the map 0�T��T is continuous.

For what follows it will be important to observe that the
energy U�T�=tr��TH� as a function of temperature, is a
monotone increasing continuous function with limT→0U�T�
=hmin and limT→�U�T�=tr��H�=tr�H� /D.

Various “critical” temperatures

As mentioned, a critical or threshold temperature above
which entanglement is impossible has been observed in all
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cited studies. It is shown in �16� that for every Hamiltonian
there exists a finite critical temperature TS which satisfies �i�
0�TS��; �ii� �T is separable for every T� �TS ,��; and �iii�
for every 0�T�TS there are entangled thermal states with
temperatures in the interval �T ,TS�. We call TS the lower
separability temperature. Even if H is not a multiple of the
identity, it could still be trivial in the sense that it contains no
interactions whatsoever between the component subsystems,
H=�n=1

N H�n� , H�n� acting only on the nth component. In this
case �T=�T

�1�
� �T

�2�
� ¯ � �T

�N� is a product state; hence unen-
tangled and TS=0.

It is important to stress the fact that the convex set of
separable states is closed, and this implies that the set of
non-negative temperatures T for which �T is unentangled, is
closed. Accordingly, the non-negative temperatures T for
which �T is entangled is an open set in �0,TS�.

By their very definition, entanglement witnesses or en-
tanglement monotone functions will always provide tem-
peratures for which the thermal states are entangled and
these temperatures are lower bounds on TS. A particularly
simple witness is the energy itself as observed in �11–13�.
Let �=inf�tr�	H� : 	 is separable�, that is, the lowest energy
expectation value obtainable with an unentangled state. The
infimum is assumed, and since the map 	� tr�	H� is con-
vex linear, it can be taken over the pure product states. � can
be calculated or estimated in general as soon as the Hamil-
tonian is known.

If for some T1�0 we have �T1
�H���, then �T1

is en-
tangled. By the monotone increase of U�T� and the
intermediate-value theorem there is a unique TH
T1 such
that U�TH�=� and all Gibbs states with temperatures in
�0,TH� are entangled �in particular �0 is entangled�. In �12�,
TH is denoted by TE and called the entanglement-gap tem-
perature. It follows that TH�TS. It does not follow that
Gibbs states with temperatures �immediately� above TH are
necessarily separable. Although TH
0 does indeed signal
the presence of thermal entanglement at low enough tem-
peratures, its importance should not be overrated. The correct
critical value is: TE=inf�T�0: �T is separable�; for which
one can prove, as in �16�, that �i� 0�TE�TS, and �TE

is
separable; and �ii� TE
0 if and only if �0 is entangled, and
in this case all thermal states with temperatures in �0,TE� are
entangled. Alternatively, TE could be defined as the greatest
temperature such that all Gibbs states with temperatures be-
low it are entangled; we call TE the upper entanglement tem-
perature. Obviously, TH�TE, but one should expect that, in
general, TH can be a rather poor lower bound on TE. The
following example should serve as illustration. Consider two
qubits; and suppose the minimal energy hmin of your Hamil-
tonian is doubly degenerate with ground-state vectors �1
=� � �, and �2= �� � 
+
 � �� /	2 where ��
� is an eigen-
state of �3 to the eigenvalue 1 �−1� for one qubit. Then the
ground state is �0= �1/2���1
��1�+ �1/2���2
��2�, and it is en-
tangled �the partial transpose of �0 has a negative eigen-
value�; �=hmin= ��1 ,H�1
 and thus TH=0; but TE
0.

The “more mixed than” ordering of thermal states:
Upper bounds on TS

The proof of existence of TS given in �16� proceeds via an
upper bound which turns out to be very poor. The theory of

the “more mixed than” partial ordering of states of a quan-
tum system, �17�, can be put to use in the discussion of
entanglement of Gibbs states, and provides upper bounds on
TS. It is a result of Wehrl and Uhlmann �cf. Refs. �17,18��,
that 0�T�T��� implies F��T��F��T��, for every uni-
tarily invariant, concave, continuous real-valued functional F
defined on states. It is shown in �16� that for every such
functional F, for which F�	�=F��� implies 	=�, there is a
critical constant CF�F��� such that �i� if the state 	 satisfies
F�	��CF then 	 is separable; and �ii� for every possible
value C of F below CF there is an entangled state � with
F���=C. There is an analogous version of this for unitarily
invariant, convex, continuous real-valued functionals. Thus,
every unitarily invariant, continuous real-valued functional
which isolates � and is either convex or concave, acts as a
separability detector and can be used to obtain an upper
bound on TS. Indeed, take such a concave separability detec-
tor F. Then, T�F��T� is a nondecreasing continuous func-
tion for which limT→�F��T�=F���
CF. By the intermediate-
value theorem there is TF�� such that F��TF

�=CF and all
Gibbs states with temperatures in �TF ,�� are unentangled. It
follows that TS�TF.

The map 	� tr�	2� is strictly convex �cf. Ref. �18�, p.
47�, unitarily invariant and is easily seen to isolate �. It turns
out to be a rather useful separability detector because it is
easy to calculate. Furthermore, the critical values for the
trace of the square are known for bipartite systems, and
lower bounds for the critical values are known for the gen-
eral case �16,19,20�. This allows one to obtain upper bounds
on TS.

Thermal entanglement scenarios

The above results allow one to distinguish various en-
tanglement scenarios. The uninteresting scenario occurs
when TE=TS=0 as happens when the Hamiltonians present
no interactions whatsoever. But this scenario is possible even
when interactions are present �cf. Sec. III�.

The next scenario is that in which the ground state is
separable, i.e., TE=0, but TS
0. Then as temperature in-
creases away from zero, separability is lost at some tempera-
ture 0�T1�TS. For temperatures in the “separable segment”
�0,T1� all Gibbs states are unentangled, and the segment
�T1 ,TS� contains temperatures for which the corresponding
thermal states are entangled. The possibility arises for
various closed “separable segments” ��0,T1� ,
�T2 ,T3� , ¯ �Tn ,Tn+1�� alternating with open “entanglement
segments” ��T1 ,T2� , ¯ �Tn+1 ,TS��. We will present examples
for this “abnormal” scenario in Sec. III.

The other scenarios occur when the ground state �0 is
entangled, i.e., TE
0. The normal case is TE=TS and this is
what has been observed in most studies we know of. The
abnormal scenario is 0�TE�TS, and then there is a tem-
perature T1 with TE�T1�TS such that for T� �TE ,T1� ,�T is
unentangled but there are temperatures T�� �T1 ,TS� for
which �T� is entangled. Again the way is open for closed
separable segments alternating with open entanglement seg-
ments. Examples of this behavior are given in Sec. III.
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Measuring entanglement: The modulus of separability

Consider any state 	 of the composite system and con-
sider the segment joining the normalized trace � to 	, i.e.,
	t= t	+ �1− t�� with 0� t�1. Since 	0=� is separable, one
will ask in case 	1=	 is entangled: when as t increases does
one lose separability? This question has been analyzed by
many authors, notably by Życzkowski et al. �21�, who de-
velop it to obtain a method of estimating the “size” of the
separable states; by Vidal and Tarrach, �22�, who give a vir-
tually complete treatment of formal aspects of the problem;
and by Gurvits and Barnum �19,20�, who obtain the best
bounds. In Ref. �16�, the modulus of separability of 	 was
defined as ��	�=sup�0� t�1:	t is separable�, whereas the
quantity considered by Vidal and Tarrach is R�	 ���
= ���	��−1−1 and called by them the random robustness of
entanglement. The modulus of separability has an inmediate
geometric interpretation; it tells you how far along the seg-
ment with end points � and 	 you can go starting from �
until you lose separability. Here we only need to observe that
0���	��1, with ��	�=1 if and only if 	 is separable.
Moreover, the upper-semicontinuity property of � obtained
in �16�, guarantees that the map T����T� is continuous.
This in turn, proves the claims about the sets of temperatures
where the Gibbs state is separable, respectively entangled.

III. THERMAL ENTANGLEMENT IN QUBIT-QUBIT AND
QUBIT-QUTRIT SYSTEMS

In dealing with two qubits one may use the well-known
concurrence or the entanglement of formation to characterize
separability. For two qubits or a qubit-qutrit system one
could use the negativity to characterize separability via the
positive partial transpose criterion. Nevertheless in the
graphs we will present we stick to �, in part because it ap-
pears naturally as a tool in various proofs suggested above
and in those given in �16�. Fortunately, Vidal and Tarrach
�22� have computed the modulus of separability for a
qubit-qubit �D=4� or a qubit-qutrit �D=6�; their beautiful
formula is ��	�=1/ �1+D�min���	� ,0���, where ��	� is the
minimal eigenvalue of the partial transpose of 	 with respect
to the qubit. The plots which we will exhibit show T����T�
for selected Hamiltonians which exemplify the distinct sce-
narios.

We denote by T*, the numerically obtained value of
TF—recall Sec. II—for F equals minus the trace of the
square. The critical values for the trace of the square are 1/3
for two qubits and 1/5 for the qubit-qutrit case. The eigen-
values of the Hamiltonian counting multiplicities are given
as a row vector h. Since in our definition of �T we have
incorporated Boltzmann’s constant in the Hamiltonian, the
components of h have the same dimension as the tempera-
ture. Since thermal equilibrium states are invariant with re-
spect to addition of a multiple of the identity to the Hamil-
tonian, we choose hmin=0, and use T /hmax as the temperature
scale. The eigenvector to the jth eigenvalue hj is listed as a
row vector ej, where the coordinates are with respect to the
canonical orthonormal tensor-product basis built from the
orthonormal basis ��1,0�,�0,1�� of C2, and ��1,0,0�,�0,1,0�,

�0,0,1�� of C3. The Hamiltonians to be presented are specifi-
cally chosen to exhibit transitions from entanglement to
separability below TS, that is in the interval �0,TS�. The gen-
eral idea is, obviously, to choose the eigenvector associated
with the nondegenerate ground-state energy to be either
separable or entangled and then the eigenvector associated
with the first excited state to be, correspondingly, either en-
tangled or separable; etc.

Qubit-qubit system

The minimal value of the separability modulus for two
qubits is 1 /3. The scenarios 0�TE=TS and 0=TE�TS have
been observed before; e.g., in �1,4,5,14�. Figure 1 shows the
0=TE�TS scenario with a separable segment �0,T1� fol-
lowed by an entanglement segment �T1 ,TS�. Using the very
same eigenvectors as those of Fig. 1, but with h
= �0,1.5,2 ,3� , �T is unentangled for every T�0, that is,
TS=0.

In the qubit-qubit system, we have not found the scenario
where 0�TE�TS �cf. Fig. 2 for a qubit-qutrit�. The sugges-
tion is that the dimension is too small to accommodate this
case, but we have no precise arguments for or against this.

Qubit-qutrit system

The minimal value of the separability modulus for a
qubit/qutrit systems is 1 /4. Figure 2 shows the 0�TE�TS
scenario; the entanglement segment �0,TE� is followed by a
separability segment �TE ,T1� and a second entanglement seg-
ment �T1 ,TS�. In this and further examples not shown here,
we have found that once a region of the h space is found
where the pertinent scenario is present, the values TE ,T1 ,TS
are quite stable with respect to changes in h which are large
with respect the temperature values. The inset of Fig. 2
shows this effect for which we have no physical rationaliza-
tion and which needs to be studied further. Moreover, the
same eigenvectors used in Fig. 2, but with h
= �0,1.7,1.75,2 ,3 ,4� give TE=TS=0.699.

FIG. 1. e1= �1,0 ,0 ,0� , e2= �0,x ,y ,0� , e3= �0,x ,−x2 /y ,z /y� ,
e4= �0,z ,−xz /y ,−x /y�, where x=0.5, y=	1−x2, and z=	1−2x2;
h= �0,1.5,7 ,8�. TH=TE=0, T1=0.159, TS=2.356, and T*=5.40.
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Figure 3 shows the 0=TE�TS scenario �cf. Fig. 1 for the
two-qubit system� with four transitions: �0,T1�, and �T2 ,T3�
are separable segments alternating with entanglement seg-
ments �T1 ,T2� and �T3 ,TS�.

IV. CONCLUDING REMARKS

We have introduced two characteristic temperatures TE
and TS which organize the entanglement behavior of the ther-
mal state associated to any Hamiltonian of an arbitrary com-
posite system. For qubit-qubit and qubit-qutrit systems, we
have exemplified the possibility of various transitions from
entanglement to separability as temperature increases from
zero to TS, above which entanglement is impossible. One
could expect that the features found here will persist and be
enhanced as N or D increase �although at present there is no
manageable criterion to decide when a given state is en-
tangled or not�. Thus, in general, there will be many sepa-

rable temperature segments alternating with entangled ones
for multipartite systems of higher dimensions.

In the general case if one is able to obtain the bounds TH
and T* then one has a rough idea of the location of the
interval �TE ,TS�. For temperatures between TH and T* one
can use some appropiate entanglement monotone to try to
detect the entanglement segments, if one is lucky �recall that
an entanglement monotone can be zero for entangled states�.

One of the main motivations for the present study came
from certain problems posed in Ref. �16�. From that point of
view, the main conclusions to be drawn from our findings
here are theoretical and concern the results briefly mentioned
in Sec. II. It was asked in Ref. �16�: given a separable state 	
which is not pure, does there exist a unitarily invariant, con-
cave, continuous real-valued functional F defined for the
states of the composite system which isolates the trace and
such that F�	��CF? The answer given here is definitely no!
Take any unentangled thermal state �T1

such that for some
T2
T1 the Gibbs state �T2

is entangled. Then there cannot
exist an F with F��T1

��CF because by Wehrl’s result �cf.
Sec. II�, F��T2

��CF and by �16�, the separability of �T2
would follow.
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FIG. 2. e1= �0,0 ,x ,0 ,x ,y� , e2= �1,0 ,0 ,0 ,0 ,0� , e3= �0,0 ,1 /
	2,0 ,−1/	2,0�, e4= �0,1 /	2,0 ,1 /	2,0 ,0�, e5= �0,1 /	2,0 ,
−1/	2,0 ,0�,e6= �0,0 ,y /	2,0 ,y /	2,−x	2�, where x=0.2 and y
=	1−2x2; h= �0,0.75,0.75,2 ,3 ,4�. TH=0.13, TE=0.296, T1

=0.334, TS=0.571, and T*=2.76. Inset: using the same eigenvectors
and eigenvalues except, from top to bottom, h2=0.75, 1, and 1.5

FIG. 3. e1= �1,0 ,0 ,0 ,0 ,0�, e2= 1
2 �0,1 ,0 ,1 ,1 ,1�, e3= �1/2��0,

1 ,0 ,1 ,−1 ,−1�, e4= �1/2��0,1 ,0 ,−1 ,1 ,−1�, e5= �1/2��0,−1,0 ,
1 ,1 ,−1�, e6= �0,0 ,1 ,0 ,0 ,0�; h= �0,0.7,0.9,1 ,1.5,7�. TH=TE=0,
T1=0.0355, T2=0.467, T3=0.476, TS=0.923, and T*=2.645.
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