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We study spontaneous emission from a pair of two-level atoms near a nanofiber. We demonstrate a substan-
tial radiative exchange between distant atoms mediated by the guided modes of the nanofiber. The exchange is
shown to lead to increased and decreased lifetimes of the subradiant and superradiant states, respectively. Our
analysis is based on the full quantization of both the radiation and guided modes of the fiber in the framework
of the Heisenberg-Langevin theory and the master equation formalism.
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I. INTRODUCTION

Controlled radiative transfer between two atoms �or mol-
ecules� has been in the focus of scientific research for the
past several decades. Initial research in this area was aimed
at enhancing �in terms of both range and strength� the energy
transfer by means of “dressing” the environment of the
donor-acceptor pair. A typical nonradiative Förster energy
transfer range of �10 nm was surpassed by suitable use of
localized plasmons or whispering gallery modes �1–3�. En-
hancement of energy transfer by two orders of magnitude
was reported as early as in the mid-1980s �2�. Similar en-
hancements have been reported in microcavities �4,5�. Now
the literature on microcavity-assisted dipole-dipole interac-
tion is truly vast �6–9�. Very fast �approaching picosecond
time scales� energy transfer was recorded in systems with
quantum dots �10�. In a recent experiment it was shown that
surface-plasmon-enhanced communication can be estab-
lished between donor-acceptor pairs across 120-nm-thick
metal films �11�. The recent directions of research on dipole-
dipole interaction go much beyond the scope of the initial
interest of chemical physicists. They now encompass emerg-
ing areas of few-atom spectroscopy �12�, near-field optics
�13�, and subwavelength-resolution nano-optics �14�. Spec-
troscopy of two molecules separated by about 10 nm has
been carried out and the resonances induced by two-photon
excitation of the two molecules were reported �12�. The re-
markable possibility of manipulating the degree of entangle-
ment among them was demonstrated. The role of micro-
spheres in controlling the entanglement has also been
investigated �15�. A detailed study on the dipole-dipole inter-
action modified by a nanosphere has been carried out �16�. A
very interesting application was a form of “telegraphy” on a
dielectric microplanet, a resonant molecular “telegraphy” in
relation to the donor and acceptor molecules occupying the
north and south poles of a dielectric microsphere �3�. It is
clear that the range of such “telegraphy” can be increased
arbitrarily if one switches from microspheres to nanofibers.

In this paper, we study resonant coupling between distant

atoms mediated by a subwavelength-diameter fiber. In a re-
cent study we had demonstrated that about 30% of the fluo-
rescence from a single cesium atom can be picked up by a
subwavelength-diameter fiber �200 nm in radius� �17�. The
suitability and advantages of subwavelength-diameter fibers
for cavity QED applications �17–20� and for microscopic
atom trapping �21� were discussed in detail. Our study on a
two-atom system in presence of a nanofiber is general in the
sense that it incorporates fully quantized contributions from
guided and radiation modes for arbitrary mutual orientations
and placements of the atoms. We focus our attention on the
cross-decay rate and show that for large distances the effect
of the radiation modes decays while substantial exchange
between the atoms survives due to the guided modes. As a
signature of this exchange we look at the decay behavior for
the superradiant and subradiant combinations �22,23� of one-
excitation two-atom states. We show that the subradiant
state, even for distant atoms, decays substantially more
slowly than the superradiant state.

The paper is organized as follows. In Sec. II we describe
the model. In Sec. III we derive the basic equations and the
characteristics of spontaneous emission. In Sec. IV we ana-
lyze the dynamics of the system. In Sec. V we present nu-
merical results. Our conclusions are given in Sec. VI.

II. MODEL

A. Quantization of the field around a thin fiber

We consider a fiber that has a cylindrical silica core of
radius a and refractive index n1 and an infinite vacuum clad
of refractive index n2=1 �see Fig. 1�a��. The positive-
frequency part E�+� of the electric component of the field can
be decomposed into the contributions from the guided and
radiation modes as

E�+� = Eguided
�+� + Erad

�+�. �1�

We do not take into account the evanescent modes, which do
not contribute to the spontaneous emission process �18–20�.
We use the cylindrical coordinates �r ,� ,z� with z as the axis
of the fiber. In view of the very low losses of silica in the
wavelength range of interest, we neglect material absorption.

The continuum field quantization follows the procedures
presented in Ref. �24�. Regarding the guided modes, we as-

*Also at Institute of Physics and Electronics, Vietnamese Acad-
emy of Science and Technology, Hanoi, Vietnam.

PHYSICAL REVIEW A 72, 063815 �2005�

1050-2947/2005/72�6�/063815�11�/$23.00 ©2005 The American Physical Society063815-1

http://dx.doi.org/10.1103/PhysRevA.72.063815


sume that the single-mode condition �25� is satisfied for a
finite bandwidth of the field frequency � around the atomic
frequency �0. We label each guided mode by an index
�= �� , f , p�, where f = + ,− denotes the forward or backward
propagation direction, and p= + ,− denotes the counterclock-
wise or clockwise rotation of polarization. When we quantize
the field in the guided modes, we obtain the following ex-
pression for Eguided

�+� in the interaction picture:

Eguided
�+� = i�

fp
�

0

�

d������

4�	0
a�e���e−i��t−f�z−p��. �2�

Here � is the longitudinal propagation constant, �� is
the derivative of � with respect to �, a� is the respective
photon annihilation operator, and e���=e����r ,�� is the
electric-field profile function of the guided mode � in
the classical problem. The constant � is determined by the
fiber eigenvalue equation �A1�. The operators a� and a�

† sat-
isfy the continuous-mode bosonic commutation rules
�a� ,a��

† �=
��−���
 f f�
pp�. The normalization of e��� is
given by

�
0

2�

d��
0

�

nrf
2 �e����2r dr = 1. �3�

Here nrf�r�=n1 for r�a, and nrf�r�=n2 for r�a. The explicit
expression for the guided mode function e��� is given in Ap-
pendix A.

Unlike the case of guided modes, in the case of radiation
modes, the longitudinal propagation constant � for each
value of � can vary continuously, from −kn2 to kn2 �with
k=� /c�. We label each radiation mode by the index

= �� ,� ,m , p�, where m is the mode order and p is the mode

polarization. When we quantize the field in the radiation
modes, we obtain the following expression for Erad

�+� in the
interaction picture:

Erad
�+� = i�

mp
�

0

�

d��
−kn2

kn2

d�� ��

4�	0
a
e�
�e−i��t−�z−m��. �4�

Here a
 is the respective photon annihilation operator, and
e�
�=e�
��r ,�� is the electric-field profile function of the ra-
diation mode 
 in the classical problem. The operators a
 and
a


† satisfy the continuous-mode bosonic commutation rules
�a
 ,a
�

† �=
��−���
��−���
mm�
pp�. The normalization of
e�
� is given by

�
0

2�

d��
0

�

nrf
2 �e�
�e�
��*��=��,m=m�,p=p�r dr = 
�� − ��� .

�5�

The explicit expression for the radiation mode function e�
� is
given in Appendix B.

B. Interaction of a pair of two-level atoms
with the quantum field

Consider two identical two-level atoms located at points
�r1 ,�1 ,z1� and �r2 ,�2 ,z2�, respectively �see Fig. 1�b��. We
label the atoms by the index j=1,2. In the interaction pic-
ture, the electric dipole of the jth atom is given by
D j =d j

*� je
−i�0t+d j� j

†ei�0t. Here the operators � j = �gj	
ej� and
� j

†= �ej	
gj� describe the downward and upward transitions,
respectively, and d j is the dipole matrix element. Without the
loss of generality, we assume that both d1 and d2 are real.

The Hamiltonian for the atom-field interaction in the di-
pole approximation is given by

Hint = − i��
�j

G�j� j
†a�e−i��−�0�t − i��

�j

G�j� ja�e−i��+�0�t

+ H.c. �6�

Here we have introduced the mode index �=� ,

and the notation ��=��+�
, ��=� fp�0

�d�, and
�
=�mp�0

�d��−kn2

kn2 d�. The coefficients G�j and G
j charac-
terize the coupling of the jth atom with the guided mode
�= �� , f , p� and the radiation mode 
= �� ,� ,m , p�, respec-
tively. Their explicit expressions are

G�j =� ���

4�	0�
�d j · e����rj,� j��ei�f�zj+p�j�,

G
j =� �

4�	0�
�d j · e�
��rj,� j��ei��zj+m�j�. �7�

III. SPONTANEOUS EMISSION OF TWO
ATOMS IN PRESENCE OF A THIN FIBER

Let O be an arbitrary atomic operator. The Heisenberg
equation for this operator is

FIG. 1. �a� Two atoms in the vicinity of a thin optical fiber. �b�
Scheme of levels and transitions of a pair of two-level atoms. �c�
Scheme of levels and transitions in terms of superradiant and sub-
radiant states for a pair of two-level atoms coupled to a common
electromagnetic field.
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Ȯ = �
�j

�G�j�� j
†,O�a�e−i��−�0�t + G�j�� j,O�a�e−i��+�0�t

+ G�j
* a�

†�O,� j�ei��−�0�t + G�j
* a�

†�O,� j
†�ei��+�0�t� . �8�

Meanwhile, the Heisenberg equation for the field operators
a� is

ȧ� = �
j

G�j
* � je

i��−�0�t + �
j

G�j
* � j

†ei��+�0�t. �9�

Integrating Eq. �9�, we find

a��t� = a��t0� + �
j

G�j
* �

t0

t

dt�� j�t��ei��−�0�t�

+ �
j

G�j
* �

t0

t

dt�� j
†�t��ei��+�0�t�. �10�

We consider the situation where the field is initially in the
vacuum state. We assume that the evolution time t− t0 and
the characteristic atomic lifetime �a are large as compared to
the optical period 2� /�0 and the light propagation time
�r2−r1� /c between the two atoms. We consider the case
where the atomic frequency is well below the cutoff fre-
quency of the fiber. In this case, the continuum of the guided
and radiation modes is regular and broadband around the
atomic frequency. Under these conditions, the effect of the
retardation is concealed �26�, and the Markov approximation
� j�t��=� j�t� can be applied to describe the back action of the
second and third terms in Eq. �10� on the atom. We insert the
result of this approximation into Eq. �8� and neglect fast-
oscillating terms. Under the condition t− t0�2� /�0, we cal-
culate the integrals with respect to t� in the limit t− t0→�.
Then we obtain the Heisenberg-Langevin equation

Ȯ =
1

2�
ij

�ij���i
†,O�� j + �i

†�O,� j�� + i�
ij

�ij��i
†� j,O� + �O

�11�

for the atomic operator O. Here the indices i and j are equal
to 1 or 2, the coefficients

�ij = �ij
�g� + �ij

�r�, �ij = �ij
�g� + �ij

�r� �12�

describe the decay rates and frequency shifts, and �O is the
noise operator. The coefficients �ij

�g� and �ij
�g� ��ij

�r� and �ij
�r��

describe spontaneous emission into guided �radiation�
modes. The decay coefficients �ij

�g� and �ij
�r� are

�ij
�g� = 2��

fp

G�0iG�0j
* ,

�ij
�r� = 2��

mp
�

−k0n2

k0n2

d� G
0iG
0j
* , �13�

where �0= ��0 , f , p� and 
0= ��0 ,� ,m , p� label the resonant
guided and radiation modes, respectively, whose frequencies
coincide with the atomic frequency �0. The frequency shift
coefficients �ij

�g� and �ij
�r� are

�ij
�g� = − P�

0

�

d��
fp
�G�iG�j

*

� − �0
− �− 1�i+j G�i

* G�j

� + �0

 ,

�ij
�r� = − P�

0

�

d��
mp
�

−kn2

kn2

d��G
iG
j
*

� − �0
− �− 1�i+j G
i

* G
j

� + �0

 .

�14�

Note that �ij =� ji
* and �ij =� ji

* . In addition, we can show that
�ij =�ij

* and �ij =�ij
* �see the discussions around the end of

this section�.
When we use the Heisenberg-Langevin equation �11� and

the relation Tr�O�t���0��=Tr�O�0���t��, we find the master
equation

�̇ =
1

2�
ij

�ij�2� j��i
† − �i

†� j� − ��i
†� j� − i�

ij

�ij��i
†� j,��

�15�

for the reduced density operator � of the atomic system. In
deriving the above equation, we multiplied Eq. �11� with
��0�, took the trace of the result, changed from the picture
for Tr�O�t���0�� to the picture for Tr�O�0���t��, transformed
to arrange the operator O�0� at the first position in each
operator product, and eliminated O�0�.

The basic equations �11� and �15� are valid only in the
framework of the Markov approximation. This approxima-
tion requires the atom-field correlation time to be short as
compared to the characteristic decay time. Such a short
memory is possible only when the mode spectrum is regular
and broadband. When the atomic frequency is near to the
cutoff frequency of the fiber, significant non-Markovian ef-
fects may appear due to the irregularity of the density of
guided modes at the cutoff �27�. Therefore, for the validity of
the Markov approximation, the atomic frequency should not
be close to the cutoff frequency. The atom-field correlation
may also be affected by the confinement of photons in
guided modes, resulting from multiple reflections off the fi-
ber surface �28�, or by the energy exchange between the two
atoms �26�. Therefore, if the atom-field coupling is strong,
the Markov approximation may not work properly when the
atoms are too close to each other or to the fiber surface.
However, when the atom-field interaction is weak, the re-
strictions are less stringent. Another complication may ap-
pear when the atoms are positioned too close to the fiber
surface. The abrupt change of the refractive index at the fiber
surface leads to abrupt changes in mode functions, mode
density, and decay characteristics. Such irregularities occur
in the spatial dependence. They are different from the irregu-
larity in the frequency dependency of the mode density at the
edge of a photon band gap �27�. Although spatial irregulari-
ties do not affect the Markov approximation directly, they
invalidate the macroscopic Maxwell equations at the surface.
In order to describe this case, the whole theory for the atom-
field interaction must be revised. Instead of the mean field
and the continuous structure of the fiber, the local field and
the discrete atomic structure of the material must be consid-
ered. However, this problem is beyond the scope of the
present paper.
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The diagonal coefficients � j j
�g� and � j j

�r� describe the spon-
taneous decay of the individual atoms into guided and radia-
tion modes, respectively. When we set i= j in Eqs. �13� and
use the symmetry of the mode functions, we find

� j j
�g� =

2�0�0�

	0�
�

l

djl
2 �el

�0��rj��2,

� j j
�r� =

2�0

	0�
�
lm

djl
2�

0

k0n2

d��el
��m��rj��2, �16�

where the index l labels the r, �, and z vector components,
and el

�0� and el
��m� are the resonant mode functions el

��0,f=+,p=+�

and el
��0,�,m,p=+� of guided and radiation modes, respectively.

It is clear that � j j
�g�, � j j

�r�, and consequently � j j are real param-
eters. The decay rates of single two-level atoms �18–20� and
multilevel cesium atoms �17� have been studied in detail.

The off-diagonal coefficients �12
�g� and �12

�r� characterize the
energy transfers between the atoms due to guided and radia-
tion modes, respectively. When we set i=1 and j=2 in Eqs.
�13� and use the symmetry of the mode functions, we find

�12
�g� =

2�0�0�

	0�
�
l1l2

d1l1
d2l2

Ul1l2
�g� ,

�12
�r� =

2�0

	0�
�
l1l2

d1l1
d2l2

Ul1l2
�r� , �17�

where

Ull
�g� = el

�0��r1�el
�0�*�r2�cos��1 − �2�cos �0�z1 − z2� ,

Ur�
�g� = ier

�0��r1�e�
�0�*�r2�sin��1 − �2�cos �0�z1 − z2� ,

Uzr
�g� = iez

�0��r1�er
�0�*�r2�cos��1 − �2�sin �0�z1 − z2� ,

Uz�
�g� = − ez

�0��r1�e�
�0�*�r2�sin��1 − �2�sin �0�z1 − z2� ,

�18�

and

Ull
�r� = �

m
�

0

k0n2

d� el
��m��r1�el

��m�*�r2�

�cos m��1 − �2�cos ��z1 − z2� ,

Ur�
�r� = i�

m
�

0

k0n2

d� er
��m��r1�e�

��m�*�r2�

�sin m��1 − �2�cos ��z1 − z2� ,

Uzr
�r� = i�

m
�

0

k0n2

d� ez
��m��r1�er

��m�*�r2�

�cos m��1 − �2�sin ��z1 − z2� ,

Uz�
�r� = − �

m
�

0

k0n2

d� ez
��m��r1�e�

��m�*�r2�

�sin m��1 − �2�sin ��z1 − z2� . �19�

The subscripts l1, l2, and l in Eqs. �17�–�19� label the r, �, or
z orientation of the atomic dipoles. Note that, due to the
relations �A9� and �B9�, all the coefficients Ul1l2

�g� and Ul1l2

�r� are

real parameters, and so are the cross-decay rates �12
�g�, �12

�r�,
and �12.

According to Eqs. �18�, the z dependences of the coeffi-
cients Ul1l2

�g� are described by the trigonometric functions
cos �0�z1−z2� and sin �0�z1−z2�. Due to this property, the
cross coefficient due to guided modes �12

�g� is periodic in the z
direction with the period 2� /�0 and, consequently, does not
reduce to zero with increasing z1−z2. Meanwhile, due to the
integration over � in Eqs. �19�, the cross coefficient due to
radiation modes �12

�r� reduces to zero with increasing z1−z2.
Therefore, the total cross-decay coefficient �12 may remain
substantial for large distances between the atoms. In the limit
of large �z2−z1�, the total coefficient �12 is mainly determined
by �12

�g� and is quasiperiodic with the period 2� /�0.
The diagonal coefficients �11 and �22 describe the Lamb

shifts of the first and second atoms, respectively, in the pres-
ence of the fiber. They must be renormalized. Their renor-
malized magnitudes are typically small as compared to the
optical frequency �0 of the atoms. The cross coefficient �12
characterizes the energy of the dipole-dipole interaction be-
tween the atoms. This coefficient is typically small as com-
pared to �0 when the atomic separation �r1−r2� is larger than
the optical wavelength �0=2�c /�0. The components �12

�g�

and �12
�r� correspond to the contributions of guided and radia-

tion modes, respectively. The explicit expressions for �12
�g�

and �12
�r� are given in Appendix C. It can be shown that �12

�g�

and �12
�r� are real parameters and decrease to zero with in-

creasing �z2−z1�. Consequently, in the limit of large �z2−z1�,
the cross-frequency-shift coefficient �12 can be neglected, as
in the case of two atoms in free space.

IV. TWO-ATOM DYNAMICS

In order to get insight into collective spontaneous decay
of two distant atoms in the vicinity of a fiber, we try to get
some simple analytical results. We note that the Lamb shifts
are usually small. The frequency shifts caused by the dipole-
dipole interaction are also small when the separation be-
tween the atoms is large. For simplicity, we neglect the Lamb
shifts as well as the frequency shifts caused by the dipole-
dipole interaction. Then, Eq. �11� for the atomic operator O
reduces to

Ȯ =
1

2 �
i,j=1

2

�ij���i
†,O�� j + �i

†�O,� j�� + �O. �20�

Similarly, Eq. �15� for the reduced density operator � of the
atoms reduces to

�̇ =
1

2 �
i,j=1

2

�ij�2� j��i
† − �i

†� j� − ��i
†� j� . �21�
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A. Decay of the total excited population

From Eq. �20�, we find the following closed set of equa-
tions:

d

dt
�z1 = − �11��z1 + 1� − �12��1

†�2 + �2
†�1� + �z1,

d

dt
�z2 = − �22��z2 + 1� − �12��1

†�2 + �2
†�1� + �z2,

d

dt
�1

†�2 = −
1

2
��11 + �22��1

†�2 +
1

4
�12��z1 + �z2 + 2�z1�z2�

+ �12,

d

dt
�2

†�1 = −
1

2
��11 + �22��2

†�1 +
1

4
�12��z1 + �z2 + 2�z1�z2�

+ �12
† ,

d

dt
�z1�z2 = − �11�z2 − �22�z1 − ��11 + �22��z1�z2

+ 2�12��1
†�2 + �2

†�1� + �zz. �22�

We introduce the variable

P =

�z1	 + 1

2
+


�z2	 + 1

2
= 
�e1e1	 + 
�e2e2	 , �23�

which describes the total population of the excited levels �e1	
and �e2	 of the two atoms. We note that the variation of P is
equal to the variation of the photon number. Therefore, the
rate of decay of P is the rate of collective spontaneous emis-
sion of the two atoms. The variable P together with the two
other variables

V =
�

2�a
�
�z1	 − 
�z2	� +

�12

�a
�
�1

†�2	 + 
�2
†�1	� ,

Z = 
�z1�z2	 − 1 �24�

are governed by the following closed set of equations:

Ṗ = − �a�P + V� ,

V̇ = − �aV +
�12

2 − �2

�a
P +

�12
2

�a
Z ,

Ż = − 2�a�Z + P − V� . �25�

Here we have introduced the notation

�a = ��11 + �22�/2, � = ��11 − �22�/2. �26�

The eigenvalues of the characteristic matrix for the differen-
tial equations �25� are 2�a, �+, and �−, where

�± = �a ± ��12
2 + �2. �27�

Therefore, the general expression for the total excited popu-
lation P can be written in the form

P = Ae−2�at + A+e−�+t + A−e−�−t, �28�

where the coefficients A, A+, and A− are determined by the
initial conditions. We can show that �a���11�22� ��12� and
hence �±�0. The eigenvalue 2�a is the decay rate of the
fully excited state �ee	= �e1	 � �e2	. The eigenvalues �+ and
�− are the decay rates of the superradiant state ��	 and the
subradiant state ��	, respectively. The explicit expressions
for the states ��	 and ��	 and for the total excited population
P will be given in the next subsection.

B. Superradiant and subradiant states

We introduce the two-atom basis states �see Fig. 1�c��

�u	 = �ee	 , �b	 = �gg	 , �29�

and

� + 	 = cos ��eg	 + sin ��ge	 , �− 	 = − sin ��eg	 + cos ��ge	 ,

�30�

where � is determined by the equations

sin 2� =
�12

��12
2 + �2

, cos 2� =
�

��12
2 + �2

. �31�

In this basis, we find from Eq. �21� that the equations for the
diagonal matrix elements form a closed set

�̇uu = − 2�a�uu, �̇++ = �+�uu − �+�++,

�̇−− = �−�uu − �−�−−, �̇bb = �+�++ + �−�−−. �32�

Here we have introduced the notation

�± = �a ±
�12

2 − �2

��12
2 + �2

. �33�

Note that �±�0 and �++�−=2�a. According to Eqs. �32�,
the time evolution of the diagonal elements of � in the basis
��u	 , �b	 , �+ 	 , �−	� is decoupled from the off-diagonal ele-
ments. Consequently, Eqs. �32� are rate equations. As seen,
the fully excited state �u	 decays to the states ��	 and ��	
with the rates �+ and �−, respectively. The total decay rate of
�u	 is �++�−=2�a. The states ��	 and ��	 decay to the two-
atom ground state �b	 with the rates �+ and �−, respectively.
When �12�0, the states ��	 and ��	 are entangled states of
two atoms. The cross decay leads to an increase in the decay
rate of the state ��	 and a decrease in the decay rate of the
state ��	. The states ��	 and ��	 are superradiant and subra-
diant states, respectively, and are analogies of bright and
dark states, respectively �29,30�. Note that, when �12�0, the
weight factors cos � and sin � have the same signs, indicating
that the superradiant �subradiant� state ��	 ���	� is a phased
�antiphased� superposition of the bare states �eg	 and �ge	.
However, when �12�0, the weight factors cos � and sin �
have opposite signs, indicating that the superradiant �subra-
diant� state is an antiphased �phased� superposition of the
bare states.

We solve Eqs. �32� analytically. Then, we find for the
populations of the states ��	, ��	, and �u	 the expressions
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�uu = �uu�0�e−2�at,

�++ = −
�+

�−�uu�0�e−2�at + ��++�0� +
�+

�−�uu�0�
e−�+t,

�−− = −
�−

�+�uu�0�e−2�at + ��−−�0� +
�−

�+�uu�0�
e−�−t.

�34�

The population of the two-atom ground state �b	 is given
by �bb=1−�uu−�++−�−−. The total excited population is
P=2�uu+�+++�−−. Using Eqs. �34�, we find

P = −
4�12

2

�+�−�uu�0�e−2�at + ��++�0� +
�+

�−�uu�0�
e−�+t

+ ��−−�0� +
�−

�+�uu�0�
e−�−t. �35�

When the two atoms are initially prepared in the superradiant
state ��	 or the subradiant state ��	, we obtain P=e−�+t

or P=e−�−t, respectively. When the atoms are initially
prepared in the fully excited state �u	, we obtain
P=−�4�12

2 /�+�−�e−2�at+ ��+ /�−�e−�+t+ ��− /�+�e−�−t.
We note that, in the case where �11=�22=�a �i.e., �=0�

and �12�0, expressions �30� for the superradiant and subra-
diant states ��	 and ��	 reduce to

� + 	 =
�eg	 + sgn��12��ge	

�2
,

�− 	 =
− sgn��12��eg	 + �ge	

�2
, �36�

with the decay rates

�+ = �+ = �a + ��12� ,

�− = �− = �a − ��12� . �37�

Here we have introduced the function sgn�x�=1 or −1 for
x�0 or �0, respectively. In this case, if �12 is positive, the
superradiant �subradiant� state ��	 ���	� is the symmetric
�antisymmetric� superposition of the bare states �eg	 and
�ge	. However, if �12 is negative, the superradiant �subradi-
ant� state is the antisymmetric �symmetric� superposition of
the bare states. Thus, both the superradiant state and the sub-
radiant state can be a symmetric or antisymmetric superpo-
sition depending on the sign of the cross-decay rate �12 and,
consequently, on the relative placement of the atoms.

V. NUMERICAL CALCULATIONS

In what follows, we present the results of our numerical
calculations pertaining to the cross-decay rate �12 for various
different mutual orientations of the atoms and their relative
positions. For all of our calculations we take the fiber radius
to be a=200 nm and the wavelength of the atomic transition
to be �0=852 nm. The refractive indices of the fiber and the

surrounding vacuum are n1=1.45 and n2=1, respectively. All
the decay rates are normalized to the decay rate
�0=�0

3d2 / �3��	0c3� of a single atom in free space, where
d= �d j�.

The results for both the atoms having the same radial
orientation �hereafter referred to as r-oriented atoms� are
shown in Fig. 2, where the dotted, dashed, and solid curves
refer to the cross-decay rates due to the guided modes, the
radiation modes, and the cumulative effect �sum of the two
rates� of these modes, respectively. It can be easily discerned
from Fig. 2�a� that the effect of guided modes persists over
arbitrarily large axial separations between the atoms while
that due to the radiation modes decays to zero. Thus the
guided modes of the fiber play a crucial role in maintaining
the exchange over large distances. Such long-distance inter-
action cannot exist in free space. The periodicity of the
cross-decay rate into guided modes �see the dotted curve in
Fig. 2�a�� is a direct consequence of the trigonometric func-
tions cos �0�z1−z2� and sin �0�z1−z2� in Eqs. �18�. The vary-
ing oscillation period and the reduction in magnitude in the
case of radiation modes �see the dashed curve in Fig. 2�a��
can be attributed to the effect of the integrals of the trigono-
metric functions in Eqs. �19�. It is thus clear that one can
control the exchange between the atoms by varying the sepa-
ration between them with maximum exchange at certain lo-
cations. Another point that deserves attention is the possibil-
ity of the decay channels due to guided and radiation modes
to act out of phase and consequently to compensate each
other. Figure 2�b� illustrates how the cross-decay rate de-
creases as one increases the radial distance between the at-
oms. Figure 2�c� gives the variation of the cross-decay rate
as the azimuthal angle is varied. As seen, the cross-decay rate
is extremely sensitive to the mutual orientations and the
placements of the two atoms.

In order to further demonstrate the sensitivity of the cross-
decay rate �12 to the mutual orientations and relative posi-

FIG. 2. Cross-decay rate �12 �solid lines�, normalized to the
free-space spontaneous decay rate �0, as a function of �a� the axial,
�b� radial, and �c� angular separations between two atoms. The po-
sition of the first atom is fixed at r1=a, �1=0, and z1=0. One
coordinate of the second atom is varied, while the two others are
fixed as �a� r2=a and �2=0, �b� �2=0 and z2=0, and �c� r2=a and
z2=0. The contribution from guided �radiation� modes is shown by
dotted �dashed� lines. The dipoles of both the atoms are r oriented.

Le KIEN et al. PHYSICAL REVIEW A 72, 063815 �2005�

063815-6



tions of the atoms we show this rate in Fig. 3 as a function of
the normalized distance �z2−z1� /a for various mutual orien-
tations of the atoms. Figure 3�a� gives the results for identi-
cal orientations of the dipole moments. Figure 3�b� gives the
results for nonidentical orientations. The overall behavior in
Fig. 3 reflects the oscillations in both guided and radiation
components as well as the reduction in magnitude of the
radiation component. The comparison between the vertical
scales of Figs. 3�a� and 3�b� shows the reduction of exchange
for nonidentical orientations of the dipoles. The strongest
cross talk occurs for both the dipoles having the same r
orientation.

We next look at the temporal evolution of the total excited
population P= 
�e1e1

	+ 
�e2e2
	 when the system is initially

prepared in the superradiant state ��	 or the subradiant state
��	. The results for r1=r2=a �the atoms are on the fiber
surface� and �1=�2=0, with a large axial separation between
the atoms, namely, �z2−z1� /a=20, are shown in Fig. 4. Both
the atomic dipoles are assumed to be r oriented. The figure
shows that the decay of the total population of the two atoms
depends crucially on the initial state of the system. Indeed,
the decay is faster for the superradiance case �solid line� and
slower for the subradiance case �dashed line� �22,23,31�. The
most noteworthy feature is the persistence of the significant
collective effect over large distances. As is clear from the
earlier data �Figs. 2 and 3� on cross-decay rates, the role of
the radiation modes over such distances is comparatively
negligible. The cooperation between the atoms, observed in
Fig. 4, is mediated basically by the guided modes and can
survive over large distances.

To get deeper insight into the effect of the fiber on the
collective decay of two distant atoms, we plot in Fig. 5 the
superradiant decay rate �+, the subradiant decay rate �−, and

the averaged single-atom decay rate �a as functions of the
radial distance r for the parameters r1=r2=r, �1=�2=0, and
�z2−z1� /a=20. Both the atomic dipoles are assumed to be r
oriented. The figure shows that, when the atoms are on the
fiber surface, the subradiant decay rate is about 54% of the
superradiant decay rate and is about 70% of the single-atom
decay rate. The differences between �+, �−, and �a are sub-
stantial although the atomic separation �r2−r1�= �z2−z1�
=4 �m is large as compared to the atomic transition wave-
length �0=852 nm. Such substantial differences are mainly
caused by the contribution �12

�g� of guided modes. The effect
of the fiber on the differences between �+, �−, and �a quickly
reduces with increasing radial distance r. Due to the period-
icity of �12

�g�, the rates �+ and �− are quasiperiodic in the z
direction with the period 2� /�0.

FIG. 3. Cross-decay rate �12, normalized to the free-space spon-
taneous decay rate �0, as a function of the axial angular separation
between two atoms with �a� the same and �b� different dipole-
moment orientations. In �a�, the solid, dashed, and dotted lines cor-
respond to the common r, �, and z orientations, respectively. In �b�,
the solid, dashed, and dotted lines correspond to the pairs of r and
�, z and r, and z and � orientations, respectively. The position of
the first atom is fixed at r1=a, �1=0, and z1=0. The axial coordi-
nate of the second atom is varied while the two others are fixed as
r2=a and �2=0 �a� or � /2 �b�.

FIG. 4. Decay of the total upper-state population of two atoms
with a single initial excitation in the vicinity of a thin fiber. The
atoms are initially prepared in the superradiant ��	 �solid line� or
the subradiant ��	 �dashed line� state. The coordinates of the atoms
are r1=r2=a, �1=�2=0, and �z2−z1� /a=20. Both the atomic di-
poles are r oriented. For comparison, the decay of the upper-state
population of a single atom with the rate �a is shown by the dotted
line.

FIG. 5. Decay rates �+ �solid line�, �− �dashed line�, and �a

�dotted line�, normalized to the free-space spontaneous decay rate
�0, as functions of the radial distance r. The coordinates of the
atoms are r1=r2=r, �1=�2=0, and �z2−z1� /a=20. Both the atomic
dipoles are r oriented.
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Finally, we demonstrate the transfer of energy between
two distant atoms in the vicinity of the fiber. We solve Eqs.
�22� numerically for the case where the first atom is initially
in the excited state �e1	 while the second atom is initially in
the ground state �g2	. We use this solution to calculate the
excited population �energy� 
�e2e2

	= �
�z2	+1� /2 of the sec-
ond atom as a function of time. The results for r1=r2=a �the
atoms are on the fiber surface� and �1=�2=0, with a large
axial separation between the atoms, namely, �z2−z1� /a=20,
are shown in Fig. 6. Both the atomic dipoles are assumed to
be r oriented. The figure shows that the excited population of
the second atom quickly builds up and then slowly decays.
The peak value is 0.0125, reached at the time t=0.84�0

−1.
Thus, 1.25% of the energy of the first atom can be trans-
ferred to the second atom even though the separation be-
tween the atoms is large as compared to the atomic transition
wavelength. Due to the periodicity of �12

�g�, the magnitude of
the transferred energy does not change much when the axial
separation �z2−z1� between the atoms is increased by an in-
teger multiple of 2� /�0.

VI. SUMMARY

In conclusion, we have studied resonant dipole-dipole in-
teraction near a nanofiber with full account of the radiation
and guided modes. The formulation is general, applicable to
arbitrary placements and orientations of the atomic dipoles.
We have presented the numerical results for the cross-decay
rate for typical choices of the orientations of the dipoles and
their locations. At large distances between the dipoles, the
effect of the radiation modes is shown to be negligible, while
a substantial exchange survives due to the guided modes. We
have shown that the interaction is extremely sensitive to the
mutual placements and orientations of the dipoles and thus
can be controlled by a suitable design of the microscopic
traps. The exchange between the atoms is shown to be par-
ticularly important for radially oriented dipoles near the fiber
surface and parallel to the fiber axis. This interaction is
shown to lead to a substantially smaller decay rate for the
subradiant state as compared to the superradiant state and to
the single-atom excited state even though the two atoms are

distant from each other. We have demonstrated that a sub-
stantial amount of energy can be transferred from an atom to
a distant atom via guided modes. We believe that the longev-
ity of subradiant entangled states as well as the substantial
energy transfer mediated by the nanofiber over large dis-
tances can find important applications in quantum informa-
tion and quantum computing.
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APPENDIX A: MODE FUNCTIONS OF THE
FUNDAMENTAL GUIDED MODES

For the guided modes, the propagation constant � is de-
termined by the fiber eigenvalue equation �25�

J0�ha�
haJ1�ha�

= −
n1

2 + n2
2

2n1
2

K1��qa�
qaK1�qa�

+
1

h2a2

− ��n1
2 − n2

2

2n1
2

K1��qa�
qaK1�qa�


2

+
�2

n1
2k2� 1

q2a2 +
1

h2a2
2�1/2

. �A1�

Here the parameters h= �n1
2k2−�2�1/2 and q= ��2−n2

2k2�1/2

characterize the fields inside and outside the fiber, respec-
tively. The notation Jn and Kn stand for the Bessel functions
of the first kind and the modified Bessel functions of the
second kind, respectively.

The mode functions of the electric parts of the fundamen-
tal guided modes �25� are given, for r�a, by

er
��� = iA

q

h

K1�qa�
J1�ha�

��1 − s�J0�hr� − �1 + s�J2�hr�� ,

e�
��� = − pA

q

h

K1�qa�
J1�ha�

��1 − s�J0�hr� + �1 + s�J2�hr�� ,

ez
��� = fA

2q

�

K1�qa�
J1�ha�

J1�hr� , �A2�

and, for r�a, by

er
��� = iA��1 − s�K0�qr� + �1 + s�K2�qr�� ,

e�
��� = − pA��1 − s�K0�qr� − �1 + s�K2�qr�� ,

ez
��� = fA

2q

�
K1�qr� . �A3�

Here the parameter s is defined as s= �1/q2a2

+1/h2a2� / �J1��ha� /haJ1�ha�+K1��qa� /qaK1�qa��, and the co-
efficient A is determined from the normalization condition.

To normalize the guided mode functions, we need to cal-
culate the constant

FIG. 6. Time evolution of the population of the second atom
transferred from the first atom. At the initial time, the first atom is
excited, while the second atom is in the ground state. The coordi-
nates of the atoms are r1=r2=a, �1=�2=0, and �z2−z1� /a=20.
Both the atomic dipoles are r oriented.
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N� = �
0

2�

d��
0

�

nrf
2 �e����2r dr . �A4�

We find

N� = 2��A�2a2�n1
2P1 + n2

2P2� , �A5�

where

P1 =
q2K1

2�qa�
h2J1

2�ha�
��1 − s�2�J0

2�ha� + J1
2�ha�� + �1 + s�2�J2

2�ha�

− J1�ha�J3�ha�� + 2
h2

�2 �J1
2�ha� − J0�ha�J2�ha��
 �A6�

and

P2 = �1 − s�2�K1
2�qa� − K0

2�qa�� + �1 + s�2�K1�qa�K3�qa�

− K2
2�qa�� + 2

q2

�2 �K0�qa�K2�qa� − K1
2�qa�� . �A7�

In the case where the coefficient A is real, we have the
following symmetry relations:

er
��,f ,p� = er

��,−f ,p� = er
��,f ,−p�,

e�
��,f ,p� = e�

��,−f ,p� = − e�
��,f ,−p�,

ez
��,f ,p� = − ez

��,−f ,p� = ez
��,f ,−p�, �A8�

and

er
���* = − er

���, e�
���* = e�

���, ez
���* = ez

���. �A9�

APPENDIX B: MODE FUNCTIONS OF THE RADIATION
MODES

For the radiation modes, we have −kn2���kn2. The
characteristic parameters for the field in the inside and out-
side of the fiber are h=�k2n1

2−�2 and q=�k2n2
2−�2, respec-

tively. The mode functions of the electric parts of the radia-
tion modes �25� are given, for r�a, by

er
�
� =

i

h2��hAJm� �hr� + im
��0

r
BJm�hr�
 ,

e�
�
� =

i

h2�im
�

r
AJm�hr� − h��0BJm� �hr�
 ,

ez
�
� = AJm�hr� , �B1�

and, for r�a, by

er
�
� =

i

q2 �
j=1,2

��qCjHm
�j���qr� + im

��0

r
DjHm

�j��qr�
 ,

e�
�
� =

i

q2 �
j=1,2

�im
�

r
CjHm

�j��qr� − q��0DjHm
�j���qr�
 ,

ez
�
� = �

j=1,2
CjHm

�j��qr� . �B2�

The coefficients Cj and Dj are related to the coefficients A
and B as �18�

Cj = �− 1� j i�q2a

4n2
2 �ALj + i�0cBVj� ,

Dj = �− 1� j−1 i�q2a

4
�i	0cAVj − BMj� , �B3�

where

Vj =
mk�

ah2q2 �n2
2 − n1

2�Jm�ha�Hm
�j�*�qa� ,

Mj =
1

h
Jm� �ha�Hm

�j�*�qa� −
1

q
Jm�ha�Hm

�j�*��qa� ,

Lj =
n1

2

h
Jm� �ha�Hm

�j�*�qa� −
n2

2

q
Jm�ha�Hm

�j�*��qa� . �B4�

Note that V1=V2
*, M1=M2

*, and L1=L2
*. In addition, we have

C1 /A= �C2 /A�* and D1 /A=−�D2 /A�*. We specify two polar-
izations by choosing B= i�A or B=−i�A for p=+ and p=−,
respectively. The orthogonality of the modes requires

�
0

2�

d��
0

�

nrf
2 �e�
�e�
��*��=��,m=m�r dr = N

pp�
�� − ��� .

�B5�

This leads to

� = 	0c� n2
2�Vj�2 + �Lj�2

�Vj�2 + n2
2�Mj�2

. �B6�

The normalization factor N
 is given by

N
 =
8��

q2 �n2
2�Cj�2 +

�0

	0
�Dj�2
 . �B7�

In the case where A is real, we have the following symmetry
relations:

er
��,�,m,p� = − er

��,−�,m,−p�,

e�
��,�,m,p� = − e�

��,−�,m,−p�,

ez
��,�,m,p� = ez

��,−�,m,−p�,

er,�,z
��,�,m,p� = �− 1�mer,�,z

��,−�,−m,p�*, �B8�

and

er
�
�* = − er

�
�, e�
�
�* = e�

�
�, ez
�
�* = ez

�
�. �B9�

APPENDIX C: CROSS-FREQUENCY SHIFTS

The coefficients �12
�g� and �12

�r� are the contributions of
guided and radiation modes, respectively, to the cross coef-
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ficient �12, which characterizes the energy of the dipole-
dipole interaction. From Eqs. �14� and �7�, we find

�12
�g� =

1

	0�
�
l1l2

d1l1
d2l2

Wl1l2
�g� ,

�12
�r� =

1

	0�
�
l1l2

d1l1
d2l2

Wl1l2
�r� , �C1�

where

Wll
�g� = −

2

�
cos��1 − �2�P�

0

�

d�
�2�����
�2 − �0

2

�el
��,+,+��r1�el

��,+,+�*�r2�cos ��z1 − z2� ,

Wr�
�g� = −

2i

�
sin��1 − �2�P�

0

�

d�
�2�����
�2 − �0

2

�er
��,+,+��r1�e�

��,+,+�*�r2�cos ��z1 − z2� ,

Wzr
�g� = −

2i

�
cos��1 − �2�P�

0

�

d�
�2�����
�2 − �0

2

�ez
��,+,+��r1�er

��,+,+�*�r2�sin ��z1 − z2� ,

Wz�
�g� =

2

�
sin��1 − �2�P�

0

�

d�
�2�����
�2 − �0

2

�ez
��,+,+��r1�e�

��,+,+�*�r2�sin ��z1 − z2� , �C2�

and

Wll
�r� = −

2

�
P�

0

�

d�
�2

�2 − �0
2�

m
�

0

kn2

d� cos m��1 − �2�

� el
��,�,m,+��r1�el

��,�,m,+�*�r2�cos ��z1 − z2� ,

Wr�
�r� = −

2i

�
P�

0

�

d�
�2

�2 − �0
2�

m
�

0

kn2

d� sin m��1 − �2�

� er
��,�,m,+��r1�e�

��,�,m,+�*�r2�cos ��z1 − z2� ,

Wzr
�r� = −

2i

�
P�

0

�

d�
�2

�2 − �0
2�

m
�

0

kn2

d� cos m��1 − �2�

� ez
��,�,m,+��r1�er

��,�,m,+�*�r2�sin ��z1 − z2� ,

Wz�
�r� =

2

�
P�

0

�

d�
�2

�2 − �0
2�

m
�

0

kn2

d� sin m��1 − �2�

� ez
��,�,m,+��r1�e�

��,�,m,+�*�r2�sin ��z1 − z2� . �C3�

Due to the relations �A9� and �B9�, all the coefficients Wl1l2

�g�

and Wl1l2

�r� are real parameters, and so are the cross-frequency

shifts �12
�g� and �12

�r�. Note that Eqs. �C2� and �C3� contain
integrals over �. Therefore, Wl1l2

�g� and Wl1l2

�r� decrease to zero
with increasing �z2−z1�. Consequently, in the limit of large
�z2−z1�, all the cross-frequency-shift coefficients �12

�g�, �12
�r�,

and �12 can be neglected, as in the case of two atoms in free
space.
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