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Electromagnetically induced transparency (EIT) resonance in a A configuration is obtained when the fre-
quencies of two fields are close to resonance with two of the transitions and their frequency difference matches

the frequency of the third transition. In this situation the spectrum of one swept field as a probe gives a simple
transparency feature. However, when an additional field drives the third transition the EIT feature associated
with the probe is split. This perturbed EIT is illustrated for both single and bichromatic driving fields. In the
single-driving-field case a density matrix treatment is shown to be in reasonable agreement with experiment,
and in both single and bichromatic cases the structure in the spectrum can be explained using the dressed-state

formalism. The dressed states can also be used to account for subharmonic resonances observed in the strong-

probe regime.
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I. INTRODUCTION

There has been considerable interest in the phenomenon
of electromagnetically induced transparency (EIT) [1-3] be-
cause of applications associated with gain and lasing without
inversion [4], enhanced susceptibilities [5], ultraslow light
[6], and light storage [7]. The applications are based on the
ability of one light field to strongly modify the spectral prop-
erties of the medium for a second light field. In the simplest
case there are two fields and three levels and this situation
has been studied extensively and covered by review articles
[8]. Recently there has been interest in controlling the EIT by
using an additional electromagnetic field, and in this work
this is discussed in terms of the EIT being perturbed by the
extra field. We have considered previously one case where an
extra “light” field is introduced and couples the levels in-
volved in the EIT to a fourth level [9]. There are similar
studies for gases [10]. In the present work the perturbation is
restricted to the three-level system. There are three levels and
three fields and we are not aware of studies where EIT has
been perturbed in this way.

The situation to be discussed is an EIT in a three-level A
system with inhomogeneous broadening in the high-
frequency transitions but near-homogeneous broadening in
the low-frequency transition. That is, there are two lower
hyperfine levels |1) and |2) and the energy separation be-
tween the levels is taken to have a fixed value. There is one
upper level |3) (Fig. 1) but there is a distribution in its energy
with respect to levels |1) and [2). The coupling field is ap-
plied near resonance with the |2)-|3) transition and a conven-
tional EIT is observed when probing transition |1)-|3). The
EIT is perturbed by driving the transition between the two
lower levels, |1)-]2). Experimental measurement of such a
situation has been reported for spin levels in a color center in
diamond [11,12]. Splittings were observed but no detailed
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calculation was presented [12] and one of the motivations for
this paper is to correct this situation. The situation is mod-
eled and modest comparison made with the experimental
traces obtained using a density matrix formalism. In addition
the observations are explained in terms of the dressed states
of the driven system and this dressed-state approach is ex-
tended to account for experimental measurements also pre-
sented in this paper. The measurements involve perturbing an
EIT with a bichromatic field and also observation of reso-
nances obtained when using strong coupling and probe
fields.

The EIT spectra reported are for radio frequency fields,
but the phenomena are general and analogous effects are
possible at visible wavelengths. At radio frequencies sources
are readily available, the optical and rf double-resonance
techniques give very efficient detection of the rf responses,
and these factors combined with the unusual properties of the
diamond color center provide an avenue for studying EIT
and related effects. The authors take advantage of the condi-
tions to study the effect an additional field has on an EIT.

II. EXPERIMENT

The experiments involve measurements of spin transitions
within the ground state of the nitrogen-vacancy center in
diamond. The ground state is an orbital singlet and the elec-
tron spin has S=1 and nuclear spin /=1 and the absorption of
the spin transitions are determined using rf and optical tech-
niques. An account of the color center and experimental
techniques has been given in previous publications [9,13,14]
and only an outline is given here. The detection involves
Raman heterodyne detection, which is a wave mixing
scheme where it is possible to detect the signal associated
with one rf response in the presence of other rf fields. The
experiments involve a 2 X2 X2 mm?® diamond cube with a
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FIG. 1. (a) Energy levels of the ground state of the nitrogen-
vacancy color center in diamond used in the experiments. The
ground state is an orbital singlet with S=1 and /=1 and a magnetic
field is used to bring the spin levels [M,=-1) and |M,=0) close to
an avoided crossing. In this situation the three upper hyperfine lev-
els |M,=—1,M;=+1,0) are typically 40 MHz higher in energy than
the lower hyperfine levels (|M,=0,M,;=+1,0) for a magnetic field
of 1000 G. The relative energies of the states are given and the
arrows indicate the transitions involved in the study. (b) Energy
levels, fields, and decay rates used in experiments and theoretical
treatment. The three levels are the same as those given in (a) and
designated by the simpler notation 1), |2), and |3). The experiments
involve the application of three fields simultaneously. The coupling
field and probe field have Rabi frequencies of (),,, and (.,
respectively. The perturbation field is applied resonant with the X
transition with Rabi frequency (1.

nitrogen-vacancy concentration of 10'® cm™ cooled to he-
lium temperatures. The transmission of a 20 mW laser beam
resonant with the optical transition at 637 nm is detected
with a fast pin diode and with the Raman heterodyne tech-
nique the out-of-phase modulation at the frequency of the
probe rf field gives a measure of the absorption of the elec-
tron spin transition. The probe field and other driving rf
fields are applied to a six-turn coil wound round the crystal.
The unusual aspect of Raman heterodyne scheme for this
color center is that the laser also pumps the population into a
single electron spin level |[M,;=0) and this leads to greatly
enhance detection sensitivity. Raman heterodyne requires op-
tical transitions to be allowed to a common excited state and
is achieved by working close to an avoided crossing with a
magnetic field of 1030 G along a crystallographic (111) di-
rection. Six spin levels are involved in the crossing and three
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FIG. 2. (a) Electron spin resonance spectrum of nitrogen-
vacancy center in diamond measured using the Raman heterodyne
technique. The measurements are made about a central frequency of
40 MHz corresponding to a situation close to an anticrossing of
spin levels. C, D, and E are the three allowed lines associated with
the nuclear spin of the nitrogen, M;=+1, 0, and —1, and the other
lines are induced in first order of the magnetic field misalignment
with the trigonal axis of the center. The dashed trace gives the
spectrum obtained for a weak probe in the absence of other fields
whereas the solid line gives the spectrum when a strong coupling
(Qr=60 kHz) field is applied resonant with the transition F. A
transparency is induced in the D transition at a frequency shift of
5.5 MHz from the frequency of the coupling field. The separation
corresponds to the frequency of the hyperfine transition X (see Fig.
1). (b) Spectrum of hyperfine transitions measured using the Raman
heterodyne technique.

of these are used in the present studies; one hyperfine level
of the upper electron spin state and two hyperfine levels of
the lower spin state [Fig. 1(a)]. The inhomogeneous width of
the electron spin transition has a width of 1 MHz as can be
seen from Fig. 2(a) whereas the homogeneous width and
population relaxation can be determined from separated Ra-
man heterodyne electron spin-echo and spin-recovery mea-
surements. Both are found to have values of the order of
60 kHz [9]. From Fig. 2(b) the hyperfine transitions have a
linewidth of the order of 3 kHz and echo measurements
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show that these linewidths are only slightly increased from
the homogeneous width of 1 kHz. In the calculations the
hyperfine transition is assumed to be homogeneous with a
width of 3 kHz. (This assumption of a homogenous broad-
ened hyperfine transition gives some limitations to the calcu-
lations as will be discussed.) For the subset of centers
used, the relaxation within the hyperfine levels is similar
to that of the homogeneous linewidth of the order of
1 kHz. The energies and transitions are summarized in
Fig. 1(a). We probe an allowed transition D corresponding to
the |M;=0,M,;=0)-|M,=—1,M,=0)) transition, and the cou-
pling field is applied resonant with the F transition
(|M,=0,M;=+1)-|M;=—1,M,;=0)). For brevity the |M,,M,)
states [0,0), |0, +1), and |~1,0) are denoted |1), |2), and |3),
respectively. These states and the driving fields are summa-
rized in Fig. 1(b) together with population and coherence
relaxation rates used in the calculations. We choose the |2)
level as the lowest as it leads to formulation similar to other
EIT publications [1,3].

In the absence of a perturbing field a sharp EIT transpar-
ency is observed within the D transition and this spectrum is
shown in Fig. 2(a) whereas Fig. 2(b) shows a direct measure
of the hyperfine transitions. We study how the EIT feature in
Fig. 2(a) is changed by the application of a perturbing field
resonant with a ground-state hyperfine transition X. In an
associated study we also consider the effect of applying a
perturbing field Y resonant with a second hyperfine transition
and this will be presented in a separate paper [15].

III. DENSITY MATRIX CALCULATION

The N-V system used in this study is a multilevel system.
There are nine ground-state spin levels and 18 optical
excited-state levels. An optical field resonant with the
ground- to excited-state transition is used for detection but it
is weak and there is negligible population in the optical lev-
els. The light field pumps population into the |M,;=0) elec-
tron spin state and with the external magnetic field there is
also some preferential population of the nuclear hyperfine
levels. Most of the population is in the |M,=0,M,=+1), [1)
state, with less in the |M,=0,M,;=0), |2) state and less still in
the [M,=0,M,;=—1) state. This means that the majority of the
population is in states |1) and |2). The driving field couples
these levels to the excited |M,=—1,M,=0), |3) level. Little of
the population leaves the three levels [1), |2), and |3) and it
can be modeled as a closed three-level system. The relax-
ation between the levels can be modeled using an equilib-
rium population value for each of the three levels or with an
effective relaxation between the levels, and the latter ap-
proach is used in the following calculations.

The coupling field is resonant with the |2)-|3) transition
and the |1)-|3) transition is probed, giving the standard EIT
for the A situation. The EIT feature occurs where the fre-
quency difference of the probe and coupling field matches
the frequency of the |1)-|2) transition. The perturbing field is
introduced resonant with this transition and a theoretical
treatment of the situation is described in this section. The
population differences are defined as W, =py—p;; and
W31=p33—p;; and the density matrix equations can then be
written as
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The population decays vy and 7y; have been defined in Fig.
1(b). The complex detunings d;; are defined as

d3 =i83 -1,
dy =183~ Ty,

d21=i521—F21’ (2)

where I';; are the dephasing rates of the transition between
levels i and j and the detunings 9;; are defined as

532 = Wepyp — W32, 621 = Wpypy — W21,

031 = Wegyp + Opypx — W31 = O3p + Oy,

o= Wprobe ~ Ocoup — Opypx - (3)

It is convenient to write the Rabi frequencies as €1,,,,p,
=2Xpr0be’ Qcoup=2Xcoup’ and thszzthpX for the probe,
coupling, and hyperfine perturbing fields, respectively. To
calculate the absorption profile of the transition |1)-|3) using
a weak field of frequency w,,,,,, we obtain a steady-state
solution for p;;. The solution is derived perturbatively to the
first order of the probe Rabi frequency (), using the Flo-
quet expansion method [16]. Details are given in the Appen-
dix. The absorption profile of the probe is obtained by plot-
ting the imaginary part of the first-order solutions of the
off-diagonal density matrix element pgll) as a function of
probe detuning 031 =,,,pe— 03

As we are dealing with a three-level “atom” interacting
with three fields in a cyclic configuration there is a special
case when the sum frequency of two fields exactly matches
that of the third field. In this case the instantaneous response
will be phase dependent and has been treated by other work-
ers [17]. However, here the solutions correspond to the re-
sponse of the probe field averaged over all phases. The cou-
pling field and the hyperfine field are of fixed frequency and
the swept probe field will only coincide with the frequency
difference when within the detection bandwidth. The band-
width can be 10 Hz, much smaller than the linewidth of the
spectral features, 3 kHz. A single sweep can give a spike for
the resonance situation but has different phases for each sub-

063813-3



WILSON et al.

T T T T

(a) Vary Qx With o, =60KkHz

coup

Q =250 kHz

2p

200

Absarption (arbitrary units)
>

Absorption (arbitrary units)

-400 -200 0 200 400

(b) vary o, with @, =100 kHz
af Q oup = 210kHz 1

/\/v\/\

Absorption (arbitrary units)

-400 -200 0 200 400

Probe frequency shift (kHz)

FIG. 3. Calculation of EIT for a homogeneously broadened
three-level A system perturbed by a field applied resonant with the
lowest transition. The traces (displaced for clarity) give the spec-
trum obtained by the solution of the density matrix equations given
in the text. The calculations are those for a homogeneously broad-
ened line with I'3;=1"3,=1 MHz. All other parameters are those for
the experimental system as given in Fig. 1. (a) gives the spectrum
for fixed coupling field strength and five different Rabi frequencies
Qy,,x of the perturbing field. (b) gives the equivalent for a fixed
perturbing field and varying coupling field strength as indicated.

sequent sweep and averages to zero. Thus, it is straightfor-
ward to avoid the resonance response in the experimental
traces.

The solutions for a homogeneously broadened system are
illustrated in Fig. 3. We adopt a homogeneous width of
1 MHz whereas the other parameters are given their experi-
mental values. The calculation gives a 60% deep transpar-
ency in the 1 MHz line for a coupling field with a Rabi
frequency of 60 kHz [Fig. 3(a)]. With low coupling field
strengths the EIT linewidth approximates the value assumed
for the homogeneously broadened hyperfine transition of
3 kHz. Here the strength of coupling field causes some
broadening and the EIT widths are of order of 8 kHz. A
perturbing field with a Rabi frequency of ),y is applied
resonant with the |1)-|2) transition and this causes the EIT to
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FIG. 4. Calculation of EIT for an inhomogeneously broadened
three-level A system with perturbing field with Rabi frequency of
Qy,y,x=110 kHz applied resonant with the lowest transition. The
lower traces show the spectrum for various homogeneous lines con-
tributing to the inhomogeneous line. For these the resonant fre-
quency is shifted and, hence, the coupling field is detuned from the
individual resonance as indicated. A Gaussian distribution is as-
sumed and the contribution summed to give the second top trace.
The strengths of coupling field and perturbing field are indicated
and the decay parameters are given in Fig. 1. The top trace is
included for comparison. It gives the splitting for a homogeneous
linewidth of 1 MHz with all other parameters the same as for the
inhomogeneous case.

be split into three transparencies with separations of €);,y.
Driving a transition with a resonant field does not cause
broadening and, hence, in this case the driving field splits but
does not add to the width of the features and so the three EIT
features have similar widths to the undriven EIT case. This is
illustrated in Fig. 3(a) for Rabi frequencies from €,y
=50-250 kHz. Compared with the parent EIT feature the
transparencies are reduced in depth, with the unshifted EIT
being deeper than the two satellite lines, but all are of similar
widths. With a strong coupling field the central line is 100%
and the satellite EIT’s 50% and this situation is shown in Fig.
3(b). Further increase of the strength of the coupling field
broadens each of the EIT features in a similar fashion to the
situation where strong coupling fields broaden conventional
EIT features.

The inhomogeneous broadening of the electron spin tran-
sitions can be modeled by repeating the above calculation for
a frequency distribution of homogeneous lines and summing
the individual contributions. Such a calculation is illustrated
in Fig. 4 for the case of 1 MHz inhomogeneous and 60 kHz
homogeneous linewidths. The lower traces indicate the con-
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tribution of individual centers and these are summed to give
the second top trace. The top trace shows the result of a
calculation for a homogeneously broadened system. Had
there been no hyperfine driving field the inclusion of inho-
mogeneous broadening would give rise to a modest increase
in the parent EIT width, in the present case from
8 to 10 kHz. With the driving field present, including inho-
mogeneous broadening can be seen to give rise to a more
significant increase in the transparency linewidths, which is
larger for the central feature than for the satellites. There is
the occurrence of a broad central spectral hole in the inho-
mogeneous spectrum due to a reduction in the contribution
from near-resonant centers. The latter effect is dependent on
the branching ratio of the population decay from the upper
level |3) and the spectrum corresponds to that for equal decay
to the two lower levels |1) and |2). The calculation has not
taken into account any inhomogeneous broadening in the
hyperfine transition.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH DENSITY MATRIX CALCULATION

The experimental measurements of EIT perturbed by an
addition field in the three-level, three-field situation are
shown in Fig. 5(a). A coupling field is applied resonant with
the inhomogeneously broadened F transition and the D tran-
sition is probed [see Fig. 2(a)]. The on-resonant Rabi fre-
quencies are (,,,=60 kHz driving the F transition and
Q,,05.=0.5 kHz for the probed D transition. The relaxation
parameters of the system have been given previously [9] and
the Rabi frequencies of the applied fields are established
from independent measurements. Therefore, all the relevant
parameters are known and a solution of the above density
matrix equations can be obtained by following the proce-
dures given in the previous section. The result of the calcu-
lation is shown in the lower trace in Fig. 5(b) and can be
compared with the experimental trace in Fig. 5(a). Equiva-
lent experiments and calculations for various coupling field
strengths are shown in Fig. 6. It is clear from these traces that
the characteristics, such as the three-line pattern and broad
hole, are in agreement but other details are not reliably pre-
dicted. In particular, there is a noticeably poor agreement in
the width of the central EIT between experiment and calcu-
lation. No substantially better agreement has been obtained
with minor variation of parameters used in the present cal-
culation. Some of the inadequacy can be attributed to the
inhomogeneous broadening of the hyperfine transition,
which is not included in the current theoretical treatment.
The hyperfine transition has a homogeneous width of 1 kHz
and there is an inhomogeneous broadening of 3 kHz
(whereas calculations have assumed a homogeneous broad-
ening of 3 kHz). When driving such a transition near reso-
nance with a Rabi frequency much higher than the linewidth,
the positions of the features become determined by the fre-
quency of the driving field plus or minus the Rabi frequency.
Thus the small shifts in transition frequencies associated
with inhomogeneous broadening are effectively quenched.
The result is that the linewidth of features of a driven two-
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FIG. 5. (a) Experimental measurement of an EIT and that per-
turbed by a hyperfine driving field using spin levels in the nitrogen-
vacancy center in diamond. Signals are obtained by the Raman
heterodyne technique and give the absorption response of a weak
(Q,05.=0.5 kHz) rf source swept in frequency. The coupling field
with a Rabi frequency of (),,,=60 kHz is applied resonant with
the peak of the inhomogeneously broadened F transition and this
gives rise to the EIT near the peak of the probed D transition,
5.5 MHz lower in frequency, as shown in the lower trace. The upper
trace is obtained when a perturbing field with a Rabi frequency of
Qy,x=51.5 kHz is applied resonant with the X transition. (b) Cal-
culation of EIT and EIT with hyperfine perturbing field equivalent
to experimental situation given in (a). The density matrix formula-
tion is given in the text and these are solved for system decay
parameters given in Fig. 1 and field strengths indicated.

level system will approach the homogeneous linewidth and
these are the linewidths to be expected in the present EIT
case. By not including the 1-3 kHz broadening in our cal-
culation, this narrowing will not occur and this can partially
account for the disagreement between experiment and calcu-
lation. In future work a complete analysis including inhomo-
geneous broadening in both the electron spin and hyperfine
transitions will be undertaken to investigate whether a more
satisfactory agreement can be attained.
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FIG. 6. (a) Experimental measurements of EIT perturbed by
fixed hyperfine driving field with €,,,y=51.5 kHz but for three
different strengths of coupling field as indicated. (b) Calculation of
EIT as for Fig. 4(b) and field strengths equivalent to (a).

V. DRESSED-STATE ANALYSIS

The positions of the spectral features are reliably pre-
dicted by the density matrix calculation. They can also be
anticipated using the dressed states [18] of the hyperfine field
shown in Fig. 7. It can be considered that the probed transi-
tion (2)-[3)) is split into two with a separation of (.
These two probe transitions are both inhomogeneously
broadened to 1 MHz and so will overlap with each other.
The coupling field gives rise to two EIT features (likewise
separated by ),,,,y) in each of the probed lines. When con-
sidering the overlapping transitions one pair of EIT features
(b) and (c) coincide at zero frequency. The other EIT fea-
tures, one within each probe transition, are displaced ().
Thus, the predicted overall spectrum indicates a deeper cen-
tral EIT [from (b) and (c)] and two weaker satellite EIT
features [(a) and (d)] consistent with the experimental traces
in Figs. 5 and 6.

The EIT feature occurs when the probe frequency in this
case matches the frequency difference between the coupling
and hyperfine transition frequencies ®,,pe= Ocoupiing= @12- If
there is a distribution of width &y, in the frequency of the
[1)-]2) transition there will be a similar distribution in EIT
frequencies. However, when the transition is driven the
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FIG. 7. Energy levels and dressed energy levels for EIT per-
turbed by (a) single and (b) bichromatic perturbing fields. (i) gives
the bare states and fields. (ii) and (iii) give the dressed and doubly
dressed states, respectively. In the dressed-state diagrams the cou-
pling field is indicated by solid arrows and has the same frequency
in each case. The probe is indicated by the dashed line and gives
resonances at various frequencies as indicated. The splittings of the
singly-dressed-state levels are associated with the first perturbing
field and the smaller splitting of the doubly-dressed-state levels
with the second perturbing field. In (iii) for brevity the transitions
are only shown for the lowest-energy group of transitions.

effective _width of the EIT will be reduced to
\”/(6%2+92pr)_912' Therefore, where there is inhomoge-
neous broadening of the hyperfine transitions the dressed-
state model can also be used to account for the driving field
causing a reduction in the distribution of EIT frequencies and
a narrowing of all EIT features.

VI. BICHROMATIC PERTURBING FIELD

In this section we study the effect of applying a second
perturbing field to the hyperfine transition |1)-|2). We restrict
the study to a special case where the second perturbing field
is detuned in frequency by the Rabi frequency of the first
perturbing field, €),,x. This gives a resonant situation as the
frequency of the second perturbing field coincides with a
dressed-state transition (see Ref. [19]). Each of the single-
field dressed-state levels is split in two, giving the doubly-
dressed-state levels (Fig. 7). From analogous consideration
to that given in the previous section it can be seen that the
result is that each of the three EIT features obtained with a
single driving field will itself be split into three.

The experimental measurements for such a bichromatic
hyperfine perturbing field are shown in Fig. 8. The first hy-
perfine field is applied near resonant with the hyperfine tran-
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FIG. 8. (a) Experimental measurements of (i) EIT, (ii) EIT per-
turbed by single hyperfine driving field with Rabi frequency of
Qy,x=51.5 kHz resonant with transition X, and (iii) EIT perturbed
by a bichromatic field; the first component of the bichromatic field
is equivalent to (ii) whereas the second is detuned by 51.5 kHz and
has a Rabi frequency of Qﬁpr=20.6 kHz. (b) Raman heterodyne
measurements of a weak probe field measuring the X hyperfine
transition. The driving fields for traces (i), (ii), and (iii) are the same
as those used in (a).

sition. The response is shown for a Rabi frequency of
Qyy,x=51.5 kHz and gives the three-line EIT spectrum as in
the previous section. The second driving field has Rabi fre-
quency of 20.6 kHz and is detuned by 51.5 kHz. The result-
ant spectrum is shown in the upper trace in Fig. 8(a). All
three of the EIT features are split into three with separations
of 10 kHz. The splittings are not well resolved but clearly the
patterns are not the same for the three cases. The two satellite
EIT features are each split in three with the central compo-
nent stronger than the outer two. However, this is not the
case for the central EIT feature where the magnitude of the
splitting is the same but the middle component is weak or
missing. A schematic of the dressed-state levels and transi-
tions involved is shown in Fig. 7(b). The origin of the split-
ting is shown for the lower-energy features in detail but not
duplicated for central and high-energy features. However, us-
ing this diagram the relative positions of the nine lines
are readily justified as at O, iQf\?pX/ 2, iQhWX, and
tQh_\,,,Xiny)px/ 2. A much more elaborate treatment would
be required to determine the magnitude of the transparencies
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using a dressed-state model but such a calculation has not
been attempted.

VII. COMPARISON OF EIT WITH DIRECT PROBE
OF HYPERFINE LEVELS

From the preceding section it can be seen that the two-
photon EIT resonance provides a probe of the dressed states
of the driven ground state. Clearly there will be a relation-
ship between this spectrum and that obtained using a con-
ventional one-photon weak-field probe. An experimental il-
lustration of this comparison is presented in Fig. 8. Figure
8(a) has been described in the previous section and Fig. 8(b)
gives the response of the driven system probing the hyperfine
absorption directly. The one-photon probe of a driven two-
level system is termed the Mollow spectrum [20,21] and has
been reported by many groups. The one-photon probe of the
bichromatic driven two-level system has also been reported
previously [19]. The two-photon (EIT) probe shown here has
not been reported previously to our knowledge. The relative
positions of the features in the spectra are the same for the
one- and two-photon probes but clearly the spectra have dif-
ferent characteristics. For example, with one photon the driv-
ing field equalizes population in the two-level system and
significantly reduces the absorption response of a weak
probe. Thus, the absorptions involving perturbing fields in
Fig. 8(b) are significantly weaker than the parent absorption.
This is not the case with the EIT spectrum. There are reduc-
tions in the equivalent EIT spectrum but not so marked as for
a one-photon probe. Another way in which the spectra differ
is in that the Mollow spectrum is very sensitive to the precise
frequency [20]. The sign of the response depends on the
frequency of the driving field and for the example used in
Fig. 8(b) absorptive and emissive responses are observed.
There is no such effect in the case of the EIT as all features
are simple transparencies.

It is also worth noting the changes of linewidth of the
features in the driven and un-driven systems. It has been
mentioned before in Sec. IV that in a driven inhomoge-
neously broadened system the features can be narrowed
when the Rabi frequency is larger than the inhomogeneous
linewidth. This affect is clearly illustrated here in comparing
traces (i) and (ii) in Fig. 8(b) where the driven system is
probed directly. There is similar narrowing in the EIT spec-
trum, traces (i) and (ii) in Fig. 8(a), where the driven system
is effectively probed via the two-photon process.

VIII. STRONG-PROBE EFFECTS

In the previous section it has been shown that there is
relationship between one-photon and two-photon probes of a
driven two-level system. It is known that the spectrum of a
driven two-level system exhibits new resonances when the
strength of the probe is increased. These resonances give
features at integral fractions of the Rabi frequency of the
driving field and are termed subharmonic resonances
[14,22,23]. In this section it is shown that equivalent reso-
nances can be observed in the two-photon (EIT) probe spec-
trum.
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FIG. 9. (a) Experimental measurement of a perturbed EIT mea-
sured using strong probe fields. The perturbing field has a Rabi
frequency of €),,x=51.5 kHz and is resonant with transition X.
Figure 5(a) indicates the absorption associated with a weak probe
field whereas the present traces give the response when the strength
of the probe field is increased to Rabi frequencies of (),,,,,=20,
100, and 150 kHz (lower trace to upper, respectively). Gain is in-
creased by two orders of magnitude in comparison to that used in
Fig. 4(a). The positions of the hyperfine resonances are indicated.
(b) Direct measurements of the driven hyperfine transition using
strong probe fields with Rabi frequencies as indicated. The posi-
tions of the subharmonic resonances are indicated.

Experimental measurements of subharmonic resonances
are shown in Figs. 9(a) and 9(b). The one-photon case is
shown in Fig. 9(b). Subharmonic resonances in this experi-
mental system have been reported previously to our knowl-
edge [14] and absorptive and emissive features are seen at
displacements of +();, x, i%thpX, and i%thpx for probe
fields with Rabi frequencies of (),,,,,=30 kHz; the features
become clearer when the probe field is increased to {1,
=100 kHz. Equivalent resonances can be detected in the
two-photon probe spectrum as shown in Fig. 9(a). Both
the coupling and probe fields are involved. Simply increasing
the strength of the coupling field leads to a broadening of the
EIT features, and this is not appropriate as it will lead to a
loss of the sharp features. Increasing the strength of the
probe field saturates the absorption in the normal way and
the signal strength is reduced. Although weak, a clear spec-
trum can still be detected when the signal is amplified. It can
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be seen that when the probe field has a Rabi frequency of
100 kHz, features at subharmonic frequencies are discern-
ible. It can be concluded that there is again an equivalent
observation of one- and two-photon probe fields. It is inter-
esting to compare the processes involved in the two cases. In
the conventional subharmonic resonance spectrum the first,
second, and third features correspond to one-, three-, and
five-photon transitions between dressed states. In this probe
technique the first, second, and third resonances will corre-
spond to two-, four-, and six-photon transitions between the
driven two-level dressed states.

IX. CONCLUSION

The work in this paper presents an experimental investi-
gation of an EIT perturbed by single and bichromatic driving
fields. Various experimental investigations of this situation
are compared with approximate density matrix calculations
and dressed-state models. For most aspect of the spectra
there is agreement between experiment and prediction and
we conclude that the phenomena are being correctly inter-
preted. However, the area where there is poor agreement is in
the prediction of the linewidths. The parameters have been
obtained from independent measurements, and a calculation
for a three-level system with no free parameters does give
plausible agreement for the linewidth of the conventional
EIT. The disagreement arises when driving the transition be-
tween the two lower levels. Calculation anticipates that EIT
will be split and the split EIT features will be marginally
broadened whereas the features are observed to be narrowed.
The source of the disagreement is attributed to not including
the effects of the inhomogeneous broadening of the lower
transition. It is known that driving an inhomogeneous broad-
ened two-level system causes a narrowing and the narrowing
in the present situation is observed by direct measurement. It
is found that there is a one-to-one comparison between the
narrowing in the spectrum measured directly and that ob-
tained in the EIT spectrum. This clearly indicates that the
poor agreement is attributable to not allowing for the inho-
mogeneous nature of the width of the hyperfine transition.
More elaborate calculations will be required to include these
narrowing effects.

The principal motivation for the work has been to obtain a
fundamental understanding of the behavior of an EIT with
additional electromagnetic fields and this has been largely
achieved with account given of the change to an EIT by
single and bichromatic fields. The results have implications
for the potential applications of EIT. A perturbing field can
be used to open more than one EIT window and by control-
ling the strength and frequency of the perturbing field we can
continuously vary the position of the transparencies, en-
abling EIT frequency tuning. The narrowing effects caused
by the driving fields offer an even more exiting application
as inhomogeneous broadening in hyperfine transitions in
solid state system can often be significant and prohibit the
observation of narrow transparencies. Introducing an addi-
tional driving field to narrow the EIT may make observation
and application of EIT in such cases a more viable situation.
Although the equivalent experiments at optical frequencies
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will be more difficult, the present work has value in assess-
ing the usefulness of the various perturbation schemes for
controlling and modifying EIT features.
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APPENDIX

In this appendix we outline procedure for solving the den-
sity equation of motion given by Egs. (1). The steady solu-
tion of Egs. (1) can be written in terms of Fourier expansion
as

Wy = 2 Way(n)e™?,
Wy =2 Way(n)e™?,
p31 =2 pyi(me™?,
P21 =2 pyi(m)e™?,

P32 = 2 pa(n)e ™,

Substituting Egs. (Al) into Egs. (1), we obtain a set of
equations for the Fourier coefficients,

(2y=ind)Wy(n) =

(A1)

= iXprovelP31(n+ 1) = py3(=n+1)]
+ choup[p32(n) - P23(— Vl)]
= 2iXpypxl P21 (n) = pro(=n)],

(ys = in Wy () == 226, - (w—%)wzl(m

- ZiXprobe[pSI(n + 1) - p13(_ n+ 1)]
- iXCoup[pSZ(n) - p23(_ l’l)]
- ithpx[le(n) - p(=n)],

(_ d3l —in 5)p31(l’l) == iXproheWSI(n - 1) + choupPZl(n)

- ithpo32(n) P

in6)py(n) = = ixpypxWai(n) —
+ i/\/coupp3 1 (l’l) 5

(_ d21 - iXprobePZS(_ n+ 1)

(=d3p = ind)p3p(n) = ixXprppepra(— 1 + 1)
- iXmup[W3l(n) - W21(n)]

- ithpXPS](n)' (A2)
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The perturbation approach is used to solve the above
equations to first order of the weak probe field. To zero order
of Xpope the equations can be written as

2y = indWE(1) = iX ol P2 (1) = P33 (= 1)]
= 22X PN (1) = Y (= )],

n() (’y_ﬁ) 2(1)(”)

zxmup[p“)(n) P} (=n)]

thpr[pZI (I’l) P (_ Vl)]

(y3 = in®)Wy(n) = -

(_ d31 - lné)pg(i)(n) =+ choupp(Zol)(n) - th\pog%)(n) 4

(= dyy = in®pK)(n) = = ixpypx W (1) + iXeoupP's) (1),

(= dsy = in8)p (n) = = iXeou L WA (1) = WD ()]
- ithpXPSl (l’l), (A3)

and to first order of x,,., the equations can be written as

(27 lI’L5 W(zl (I’l) - lXprohe[p3l (l’l + 1) P ( n+ 1)]
+ leup[p32 (}’l) P(l)( I’l)]
Zthpr[lel)(n) P(])( n)],
m5)W< (I’l) ( ?) W(211)(n) - 21Xp10be[p(301)(n + 1)

- (=n+1)]- ixwu,,[p(slz)(n) — %y

X(_ I’l)] - ithpX[p n) P ( I’l)]

(= dy; — ind)p§)(n) = -

- thprP(slz)(”) B

iXpmbeVV(SOl)(n - ]) + choupp(le)(n)

(_ d21 —in 5)p(211)(n) == thprVV(le)(n) - iXprobep(Zg)(_ n+ 1)

+ X eoupPsi (1),

(_ d32 - lna)pi(KIZ)(n) = iXprobep(I%)(_ n+ 1)
zxm,,[W§ (n) = W5 (m)]
- thprP31 (l’l) . (A4)

It is straightforward, although tedious, to solve the above
equations and the absorption response of the weak probe
field is proportional to the imaginary part of the first-order
solution of ps;, corresponding to p(;l) in the notation adopted
in this paper.
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