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The dynamics of a fiber laser passively mode-locked through nonlinear polarization rotation is theoretically
investigated. The model is based on an iterative equation for the nonlinear polarization rotation and the phase
plates and on a scalar differential equation for the gain, the Kerr nonlinearity, and the dispersion. It is dem-
onstrated that depending on the orientation of the phase plates, the laser can be continuous, mode-locked, or
Q-switched. In the latter case, an additional equation for the gain dynamics must be taken into account.
Hysteresis dependence of the operating regime versus the orientation angles of the phase plates is shown. A
large bistability domain between the Q-switch and the continuous regimes is demonstrated. This model allows
us to obtain the main features observed in passively-mode-locked fiber lasers.
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I. INTRODUCTION

Self-started, passively-mode-locked fiber lasers are very
attractive from the dynamical point of view because they
exhibit a large variety of behaviors. Indeed, in addition to the
regular mode-locking regime which has been reported in dif-
ferent optical configurations, many regimes involving several
pulses by cavity round trips have been experimentally ob-
served or theoretically predicted �1–6�. Other features such
as the Q-switch operation and bistability between the con-
tinuous �cw� and mode-locked or Q-switch regimes were
also reported �3,5�. Many of the experimental configurations
involve some phase plates. Hysteresis phenomena as a func-
tion of the orientation of the phase plates have been also
reported �7�. In this paper we are interested in fiber lasers
passively mode-locked through nonlinear polarization rota-
tion. The principle is based on the rotation of the polarization
ellipse resulting from the optical Kerr nonlinearity �8�. A
unidirectional ring cavity is considered together with a po-
larizer placed between two polarization controllers. If, at the
output of the fiber, the polarization controller is suitably ad-
justed, the polarizer lets the center of the pulse pass while it
blocks the low-intensity wings �4,9,10�. Although there are
many theoretical papers devoted to the mode-locking
through nonlinear polarization rotation, most of them are fo-
cused on a particular behavior. In addition, the phase plates
are not directly taken into account and therefore their effects
on the operating regime of the fiber laser cannot be de-
scribed. However, Haus et al. �11� had considered analyti-
cally the nonlinear losses resulting from nonlinear polariza-
tion rotation combined with a polarization controller and a
polarizer. The calculated approximate nonlinear loss param-
eter explicitly takes into account the coefficient of the matrix
associated with the polarization controller. An attempt to ex-
plicitly include the orientation angles of the phase plates has

been recently reported in �12�. The model reduces to a scalar
cubic complex Ginzburg-Landau equation. The coefficients
explicitly depend on the orientation of the phase plates. The
great advantage of this model is that it allows us to investi-
gate analytically the stability of the mode-lock and the con-
tinuous solutions as a function of the orientation angles of
the phase plates �12–14�. Its major drawback is that it does
not take into account gain saturation. As a consequence, hys-
teresis phenomena cannot be obtained with such an ap-
proach. In a recent paper, we have proposed a model includ-
ing saturation effects together with the orientation angles of
the phase plates �15�. This allowed us to successfully account
for multiple pulsing behavior as well as hysteresis phenom-
ena versus the pumping power.

The aim of this paper is to show that our recent model is
able to reproduce the key features exhibited by a passively-
mode-locked fiber laser: bistability between the cw and the
mode-lock or Q-switch regimes, hysteresis as a function of
the angles, and Q-switching. In Sec. II we briefly present the
model and the numerical procedure. Section III is devoted to
numerical results. Bistability between the mode-locked and
the cw regime is first shown and also multiple pulsing be-
havior. Large hysteresis phenomenon versus the phase plate
orientation is pointed out. In Sec. IV, the model is modified
to take into account the finiteness of the relaxation time of
the gain, which is needed to describe the Q-switching opera-
tion. The resulting three-equation model is able to reproduce
cw, Q-switch, and mode-lock regimes as well as bistability
between the different regimes. Different unstable behaviors
are also demonstrated.

II. THE MODEL

We consider a ytterbium-doped fiber ring laser operating
in the normal dispersion regime and passively mode-locked
through nonlinear polarization rotation. The setup is sche-
matically shown in Fig. 1. For isotropic fibers this scheme
involves all necessary elements for the control of nonlinear
losses. After the polarizing isolator the electric field has a
linear polarization. Such states of polarization do not expe-
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rience polarization rotation in the fiber because the rotation
angle is proportional to the area of the polarization ellipse.
Consequently, it is necessary to place a quarter-wave plate 3
��3 represents the orientation angle of one eigenaxis of the
plate with respect to the laboratory frame�. At the output of
the fiber, the direction of the elliptical polarization of the
central part of the pulse can be rotated towards the passing
axis of the polarizer by the half-wave plate 2 �the orientation
angle is �2�. Then this elliptical polarization can be trans-
formed into a linear one by the quarter-wave plate 1 �the
orientation angle is �1�. In this situation the losses for the
central part of the pulse are minimum while the wings un-
dergo strong losses. The setup of Fig. 1 has been modeled as
follows �15�. The fiber has been assumed to have group ve-
locity dispersion �GVD�, optical Kerr nonlinearity, and satu-
rable gain. Linear birefringence has not been taken into ac-
count in our model since it is not required for mode locking
neither for hysteresis phenomena. The nonlinear losses are
described by solving, in a first step, the equations for a field
propagating in a Kerr medium when dispersion is neglected,
and then taking into account the three phase plates and the
polarizer �self- and cross-phase-modulation terms were con-
sidered together with four-wave mixing terms�. On the other
hand, a scalar equation has been written for a wave propa-
gating in a saturable amplifying medium with GVD, to ac-
count for dispersion and gain. The resulting model assumes
localized effects for the nonlinear loss due to the Kerr non-
linearity and the phase plates, while gain and GVD are dis-
tributed. In a dimensionless form, the final set of equations
for the electric field amplitude is

�E

��
= �Dr + iDi�

�2E

��2 + �G + i�E�2�E , �1�

En+1��� = − ��cos�pIn + ��cos��1 − �3�

+ i sin�pIn + ��sin��1 + �3��En��� , �2�

where �=z /L, �= t /�t, G=a / �1+b� I d��, Dr=GDr
0+dr,

Dr
0=2/ ���2�L�g

2�, In= �En�2, dr=2�c / ��2�, p=B sin 2�3,
a=g0L, b= Ir�t / �PsatTa�, Ir=1/�L, �=2�2−�1−�3, and
�t=��2L /2.

� �W−1 m−1� is the nonlinear coefficient related to the
nonlinear index coefficient n2, and B= 1

3 for silicate fibers
�16�. � is the transmission coefficient of the polarizer �free
parameter�. �2 �ps2 m−1� is the second order GVD.

Ta=Ln0 /c �s� is the photon round trip time, n0 the re-
fractive index, c the velocity of light in the free space, g0
�m−1� the unsaturated gain, and Psat �W� the saturating
power. Psat= �h	
r2� / ��T1�, where h	 �J� is the photon en-
ergy, � �m2� the stimulated emission cross section, T1 �s� the
lifetime of the upper level of the lasing transition, and r �m�
the radius of the fiber core; 	 is the optical frequency and h
the Planck’s constant. �g �s−1� is the spectral gain bandwidth.
�c describes the frequency-dependent loss due to both addi-
tional spectrally selective elements for control of a radiation
spectrum or uncontrolled spectrally selective losses related
with intracavity elements. Di and L �m� are the dispersion
and the length of the fiber, respectively.

The numerical procedure starts from the evaluation of the
electric field after passing through the Kerr medium, the
phase plates, and the polarizer, using Eq. �2�. The resulting
electric field is then used as the input field to solve Eq. �1�
over a distance L, using a standard split-step Fourier algo-
rithm. The computed output field is used as the new input for
Eq. �2�. This iterative procedure is repeated until a steady
state is achieved.

III. MULTIPLE PULSING AND BISTABILITY

For the numerical simulations we consider the practical
case of a ytterbium-doped fiber laser operating in the normal
dispersion regime. The values of the different parameters
are �=3�10−3 W−1 m−1 �16�, L=9 m, c=3�108 ms−1,
�2=0.026 ps2 m−1 �17�, �g=1013 s−1 �17�, r=7�10−6 m,
�=2.5�10−24 m2, T1=8�10−4 s, and �=0.95.

A. Multiple pulsing and hysteresis phenomena

Before we present the results, it is of importance to dis-
cuss the effects of the different mechanisms affecting the
emergence of the mode-locked regime. Equation �2� is re-
lated to the nonlinear feedback. Mode-locking requires posi-
tive feedback, i.e., the greater intensities must undergo the
lower losses. In practice, the feedback is controlled by
changing the orientation of the phase plates. An additional
mechanism of feedback must be taken into account. Indeed,
the intensity-dependent phase modulation leads to a spectral
broadening and then to a lower amplification because of the
finite spectral gain bandwidth. This phenomenon can be
viewed as a negative feedback. The competition between
these two mechanisms is responsible for bistability and hys-
teresis behaviors �15�.

To illustrate this competition, we have numerically solved
Eqs. �1� and �2� for the same values of the parameters but
with different initial conditions. Results are shown in Fig. 2
which are taken from �15�. It can be seen that bistability
between the cw and the mode-locked regimes is obtained.
With suitable initial conditions, the positive feedback is
achieved and mode-locking occurs �Fig. 2�a��. On the other
hand, when using parameters for small peak intensity, the
nonlinear losses act as a negative feedback; the pulses de-
crease and the cw operation is reached after transient evolu-
tion. This bistability has been experimentally observed in
many fiber lasers passively mode-locked through nonlinear

FIG. 1. Schematic representation of a fiber laser passively
mode-locked through nonlinear polarization rotation.
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polarization rotation �5,7�. Another feature commonly ob-
served is the multiple pulsing regime. Indeed, under a suit-
able orientation of the phase plates, the laser can deliver
bunches of pulses and the number of pulses increases when
the pump power increases �5�. This point has been deeply
investigated in our previous paper �15�. However, for com-
pleteness, we show in Fig. 3 an example of a bunch of three
pulses �extracted from �15��. The analysis reported in �15�
show that the number of pulses exhibits a strong pump
power hysteresis and that the pulses are created and annihi-
lated one by one.

B. Hysteresis versus the orientation of the phase plates

Let us now consider the effects of the rotation of the
phase plates on the operating regime of the fiber laser. It is
well established that large hysteresis occurs in passively-
mode-locked fiber lasers when one phase plate is rotated. In
particular, bistability between the cw and the mode-locked
regime is commonly observed �5,7�. Although the analytic
model developed in �12� takes into account the orientation of
the phase plates, it was not possible to state about any
bistable behavior. In the framework of the model based on
Eqs. �1� and �2�, numerical integrations allow us to point out
bistability behaviors and hysteresis phenomena. Results are
given in Fig. 4, which gives the evolution of the operating
regime as a function of the angle �. The orientations of the

phase plates numbers 1 and 3 are fixed and the half wave
plate 2 is rotated in the right-hand and then in the left-hand
direction. Results of Fig. 4 show that the laser is first con-
tinuous and then switches towards the mode-locked regime
for �=�ML for which a positive nonlinear feedback occurs.
At this stage, if the phase plate is rotated in the opposite
direction, the laser becomes again a cw but for a lower value
of �. A large bistability domain is then obtained versus the
orientation angle of the phase plates. In addition, when the
laser is in the ML regime, the number of pulses N increases
when the phase plate is rotated; pulses appear one by one.
Again, large hysteresis is obtained versus the orientation
angle.

IV. SPIKE OPERATION AND PASSIVE MODE-LOCKING

A. Introduction and discussion

It is well known that solid-state lasers with saturable ab-
sorption can work in regimes of undamped spikes and of
giant pulses �Q-switching operation�. To model these re-
gimes it is necessary to take into account the finiteness of the
relaxation time for the gain medium.

A typical model for a solid-state laser with saturable ab-
sorption is

�I

�t
= − ��I + �NI − ��N�I , �3�

�N

�t
= −

N

T1
− �NI + P , �4�

�N�

�t
= −

N� − N�0

T1�
− ��N�I , �5�

where �� �s−1� is the inverse of the photon lifetime, I �m−3�
the density of photons, N �m−3� the population inversion, P
�m−3� the pumping, N� �m−3� the population of the level
responsible for the saturable absorption effect, N�0 the value
of N� at rest, T1� �s� the lifetime of this level, and the �’s
�m3 s−1� are the cross sections of the corresponding transi-
tions. Since the response time T1� of the saturable absorber is
very fast with regard to T1 and 1/��, the so-called adiabatic
approximation can be used, which leads to N�=N�0 / �1

FIG. 2. �a� Mode-locking versus �b� cw operation. The parameters used are a=2, �=1.3, �1=0, �3=0.2 and Dr=0.2.

FIG. 3. Multiple pulsing operation. The parameters are the same
as in Fig. 2 except for the pumping parameter a=1.2.

THEORETICAL ANALYSIS OF THE OPERATING… PHYSICAL REVIEW A 72, 063811 �2005�

063811-3



+����I�. In order to write down the resulting equations using
the same dimensionless variables as above, we define the
normalized gain as G=�TaN /2, a loss coefficient as
=Ta���+��N�� /2, a=Ta��P /2, and b=���t /Ta. In the
case of the fiber laser, it will be useful to consider the energy
J=�I d�. Here it is related to the intensity I assuming that the
latter is constant, as J= ITa /�t. Then Eqs. �3� and �4� reduce
to

J̇ = 2�G − �J , �6�

�gĠ + �G − a� = − bGJ , �7�

where �g=T1 /Ta, and the dot denotes the derivative with
respect to �=z /L= t /Ta.

Let x=ln�J /Jst� where the index “st” stands for the sta-
tionary solutions of systems �6� and �7�. Combining �6� and
�7� allows us to obtain an equation for x:

ẍ +
1

�g
�1 + bJste

x + 2
d

dx
	ẋ +

2

�g
��bJste

x + 1� − a� = 0.

�8�

Equation �8� is equivalent to the equation of motion of a
particle in a potential well

U�x� =
2

�g

�x

�bJste
x� + 1��x��dx� − ax� �9�

with the friction coefficient

f =
1

�g
�1 + bJste

x + 2
d

dx
	 , �10�

which depends on x. For positive f , the particle undergoes
damped oscillations in the well, which correspond to the
damped spikes of the laser intensity during the transient pro-
cess of the laser operation. However, due to the saturable
absorber effect, N� is a decreasing function of the intensity I.
Hence d /dx is negative, and if it is large enough, f can be
negative. Then undamped oscillations are possible, which ac-
count for Q-switching regimes.

In the case of the fiber laser, the master equations have the
following form:

�E

��
= �Dr + iDi�

�2E

��2 + �G + i�E�2�E , �11�

En+1��� = − ��cos�pIn + ��cos��1 − �3�

+ i sin�pIn + ��sin��1 + �3��En��� , �12�

FIG. 4. Hysteresis dependence of the number of pulses in the cavity N, versus the orientation angles of the phase plates. The parameter
used are a=2, �1=2, �3=0.2, and Dr=0.2. All angles are in radians.

FIG. 5. Evolution of the integrated intensity J as a function of the round trip number �. �a� Undamped spike regime, �b� cw operation.
The parameters used are a=2.5, �=0.1, �1=−1.9, �3=0.2, and Dr=0.2. The difference exists only on initial conditions.
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�g
�G

��
+ �G − a� = − Gb� I d� . �13�

We assume that the variations of the field in the cavity are
slow enough so that the dispersion and the gain filtering can
be neglected. Then it follows from Eq. �11� that the intensity
evolves as I= I�0�e2G�. Equation �12�, which account for the
effect of the nonlinear polarization rotation and polarizer,
expresses for the intensity as In+1�0�=�In�1� with

� = �2�cos2��1 − �3� − cos 2�1 cos 2�3 sin2�pIn�1� + ��� .
�14�

In+1�0�, and In�1� are the intensities at the beginning of the
�n+1�th and at the end of the nth roundtrip, respectively.
Taking into account both the gain and the nonlinear polariza-
tion rotation we get In+1�0�=�In�0�e2G. Integrating formally
Eq. �6�, and comparing this expression, it is seen that J
obeys an evolution equation formally identical to �6� with
=−ln � /2, � being given by �14�. Since the value of the
intensity involved by �14� is taken at the end of the round
trip, its expression should involve the gain G. We restrict it
to the case where the effect of the gain on one roundtrip is
negligible, which was already assumed in the derivation of
�12�. Thus we take G0 in the expression of �, which be-
comes

� = �2
cos2��1 − �3� − cos 2�1 cos 2�3 sin2� p�t

Ta
J + �	� .

�15�

Hence the laser dynamics is governed by the same sys-
tems �6� and �7� as in the case of the solid-state laser, the
only difference is the expression of the losses  as a function
of the energy J.

The decrease of nonlinear losses with increasing intensity
induces an additional amplification of the field in the maxi-
mum of a spike. As a result, the peak intensity becomes
greater and the spikes become undamped if the nonlinear
loss is large enough. The intensity of radiation in the spike
regime cannot be less than the intensity of spontaneous ra-
diation. For models, which neglect the spontaneous emis-
sion, the undamped spike operation transforms into se-
quences of giant pulses with a repetition rate equal to the
inverse of the relaxation time of the gain. For correct de-
scription of laser operation, the spontaneous emission must
be taken into account �18�.

For the investigated laser, a variation of intensity �I= I
− I0 produces a variation of the transmission ��=���I with

�� = − 1
2B�2 sin 4�3 cos 2�1 sin 2�pI0 + �� . �16�

The nonlinear transmission �� depends on the intensity I0.
As a result, the loss nonlinearity depends also on intensity
�for clarity, pI is associated to the nonlinear losses while p is
the loss nonlinearity�. Thus, for spike operation, the intensity
is large, the loss nonlinearity is also large, and the regime of
undamped spikes is realized. In the case of operation in the
vicinity of the stationary regime, the peak intensity and the
loss nonlinearity are small, and the regime of damped pulses

is realized leading to a cw operation. This mechanism in-
duces the dependence of the established regime on initial
conditions, that is, bistability: the spike operation versus the
cw regime.

In the case of passive mode-locking, the peak intensity
becomes very large and the negative feedback is realized: the
greater intensity produces the greater losses. As a conse-
quence, the spike becomes again damped. With a large nega-
tive feedback this damping is aperiodic. Thus, three different
regimes can be realized for the same laser parameters: the cw
operation, the spike operation, and passive mode-locking.

B. Results of numerical simulations

First of all we consider bistability between the cw and
spike operation. This is demonstrated in Fig. 5, which repre-
sents the evolution of the integrated intensity J versus the
round trip number �. The difference between Figs. 5�a� and
5�b� is only on the initial conditions. Hysteresis behavior on
the pumping parameter is demonstrated in Fig. 6. When the
laser is turned on, it is first continuous and then switches
towards a Q-switch regime. The switching values of the
pumping parameter are different depending on whether the
pump is increased or decreased. This bistable behavior is in
very good agreement with experimental results presented in
Fig. 4�a� of Ref. �17� which concerns the ytterbium-doped
double-clad fiber laser passively mode-locked through non-
linear polarization rotation. For the range of pumping rates
investigated, the mode-locked regime is stable. However, it
is not self-starting since there is no switch from the cw or
spike regimes. In numerical experiments, the passive-mode-
locked regime is obtained by a suitable choice of the angle �
which is then adiabatically changed to its value correspond-
ing to Fig. 6. The distribution of the field in the cavity ob-
tained by such a procedure is shown in Fig. 7: a bunch of
two pulses is shown. Although it is not possible to be ex-
haustive because of the great number of degrees of freedom,
our results demonstrate that there is coexistence of several
stable attractors and this is in very good agreement with what
is observed in passively-mode-locked fiber lasers.

Other features commonly observed in passively-mode-
locked fiber lasers are irregular spikes and unstable passive-

FIG. 6. Hysteresis dependence of the operating regime of the
laser as a function of the pumping parameter a. The parameters
used are the same as in Fig. 5. QS, Q-switch operation; PML,
passive-mode-locking regime.
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mode-locking regimes �17�. Our aim is to demonstrate that
the model developed in this paper is also able to reproduce
these unstable regimes. Since the stable Q-switch regime ap-
pears to be essentially incompatible with mode-locking, we
have chosen parameters which are suitable for realization of
passive mode-locking �when regular Q-switching is almost
impossible�, i.e., parameters which give the greater value for
the nonlinear loss. Figure 8 demonstrates an irregular
Q-switch operation. The signal consists in a train of irregular
bursts containing a number of spikes varying from 1 to 12.
Each burst is finished by a giant pulse in comparison with the
amplitude obtained in regular spiking regime. After giant
pulses we observed the extended interval during which the
gain of the medium relaxes. Numerical results of Fig. 8 can
be favorably compared with experimental data reported in
Fig. 6 of Ref. �17�. We focus now on a distinctive feature. In
the case of Fig. 8 the realization of sufficiently powerful
dynamic fluctuations in spatiotemporal distribution of radia-
tion within the cavity manifests itself as the spike with ordi-
nary duration but with considerably greater peak intensity. In
the experimental case, the peak intensity of the last spike in
a sequence is standard �or slightly less� but its duration is
considerably extended. This difference is explained as fol-
lows. In the experimental case, the initial power fluctuation
in the spatiotemporal field distribution is a very small frac-
tion of the total intracavity energy. As a result, the time of the
increase of this fluctuation and of suppression of other field

components is sufficiently large. That is, the increase of the
resonator Q factor is a slow adiabatic process. Consequently,
the spike is extended but its amplitude does not increase. In
the case of numerical simulations we can only model a small
part of the resonator �about ten ultrashort pulses�. In the rest
of the resonator, the field is assumed to be the same or equal
to zero. As a result, the initial power fluctuation contains a
considerable fraction of the total intracavity energy and
hence the time of increase of this fluctuation is small, the Q
factor is switched quickly, and a spike with great amplitude
is realized. The nonlinear losses amplify the fluctuation in
the peak intensity distribution for intracavity ultrashort
pulses. In turn, these amplitude fluctuations amplify the fluc-
tuation of the nonlinear losses. Consequently, the energy of
spikes together with their amplitude are strongly affected.
This process is considerably weaker in the case of laser pa-
rameters denoted in Fig. 5. For the parameters of Fig. 8,
when the pumping parameter is decreased the evolution
transforms into regular undamped spikes. Further decreasing
a leads to cw regime after the transient behavior.

We now consider stable passive mode-locking and sta-
tionarity of average intensity. Figure 9�a� shows the transient
evolution of the average intensity J as a function of the round
trip number for stable passive mode-locking. Figure 9�b�
shows the corresponding time distribution, which is a bunch
of two pulses. Figure 10 demonstrates the evolution of the
average intensity under unstable multiple pulses passive-

FIG. 7. Passive mode-locking obtained for a=1.15. The param-
eters used are the same as in Fig. 5.

FIG. 8. Evolution of the integrated intensity as a function of the
round trip number: irregular spikes. The parameters used are a
=2.1, �=0.5, �1=−1.8, �3=0.1, and Dr=0.2.

FIG. 9. �a� Evolution of the integrated intensity and �b� temporal field distribution in the passive-mode-locking regime. The parameters
used are a=2.7, �=0.5, �1=−1.8, �3=0.1, and Dr=0.2.
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mode-locking conditions. After intense spikes the multiple
pulse passive mode-locking is realized. The pedestal located
after the intense spike corresponds to this passive mode-
locking. However, this multiple pulse passive mode-locking
is unstable because the level of pumping is not high enough
to support the generation of several ultrashort pulses, and
hence the lasing operation is interrupted. After the relaxation
of the gain this process is repeated again and again until the
realization of a mode-locking with a single pulse in the cav-
ity. After that, stable operations with single ultrashort pulse

are established. For this operation, the averaged intensity J is
stationary. The duration of the pedestal decreases with the
increasing number of pulses in the unstable bunch state.

V. CONCLUSION

In summary, we have developed and investigated a theo-
retical model for a fiber laser passively mode-locked through
nonlinear polarization rotation. The model takes into account
the nonlinear losses resulting from the combination of the
optical Kerr nonlinearity, the wave plates, and the polarizer
and also, the group velocity dispersion, the saturable gain,
and the finiteness of the relaxation time of the gain. The final
form of the model contains three equations: one for the non-
linear losses, another one for the propagation along a disper-
sive and amplifying medium, and the last one, for the gain
dynamics. This model allowed us to obtain the main features
exhibited by passively mode-locked fiber lasers. We have
demonstrated a strong hysteresis of the operating regime as a
function of the orientation of the phase plates. The three
different operating regimes commonly observed in such la-
sers have been numerically obtained: mode-locked, Q
switched, and continuous. Here again, a strong multistability
occurs versus the pumping parameter. Irregular spike opera-
tions and unstable passive mode-locking have been demon-
strated. Our numerical results are in good agreement with
typical experimental data reported in many passively-mode-
locked fiber lasers.
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