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A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex
frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord
with Fermi’s “golden rule.” We show for various models �spin damped by harmonic-oscillator or random-
matrix baths, quantum diffusion, and quantum Brownian motion� that upon increasing the coupling up to a
critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation
regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes
overdamped. Our results call into question the standard belief that overdamping is exclusively a strong cou-
pling feature.
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I. INTRODUCTION

The dynamics of an isolated and finite quantum system
consists of a reversible superposition of oscillations with
�real� Bohr frequencies �S. In order to understand the irre-
versible processes occurring in finite quantum systems, such
as relaxation to equilibrium or decoherence, one needs to
take into account the interaction between the system and its
environment. The weak-interaction limit together with the
Markovian approximation already allow a good understand-
ing of such irreversible processes and has some universal
features. The generator of the evolution of the �reduced� den-
sity matrix of the system obtained by second-order perturba-
tion theory �often called the Redfieldian� is not an anti-
Hermitian generator any more. Its eigenvalues �+i� acquire
a real part � describing irreversible decay to equilibrium.
The imaginary parts of the eigenvalues are shifted Bohr fre-
quencies �=�S−��. The two shifts � and ��, normally
increase �quadratically� as the strength of the coupling
grows.

We show here that Markovian perturbative master equa-
tions such as the Redfield equation �1–7� allow for more than
just describing the well known normal damping just men-
tioned. When the coupling strength is increased, it can hap-
pen that, at a critical value, a shifted frequency � vanishes
and for yet stronger coupling goes imaginary. The pertinent
eigenvalues �− ��� are real and, interestingly, decrease with
growing coupling. The resulting relaxation is nonoscillatory,
i.e., overdamped. The principle purpose of this paper is to
show that contrary to common belief the transition to over-
damping is still compatible with perturbative treatment. In
brief, overdamping can be a weak-coupling effect.

All models to be studied here have Hamiltonians such as

Ĥ = ĤS + ĤB + ŜB̂ , �1�

where ĤS and ĤB, respectively, generate the free motion of
the system and the environment �bath� while the interaction

involves respective coupling agents Ŝ and B̂.

It may be well to emphasize that the so-called rotating-
wave approximation �7,8�, extremely useful as it may be for
very weak damping, in particular in quantum optics, is defi-
nitely not allowable for strong damping and overdamping.
Indeed, the rotating-wave approximation is based on the as-
sumption that the Bohr frequencies of the system are very
large compared to the system damping rate such that all “an-
tiresonant” terms can be time averaged out when writing the
master equation in the interaction picture. But overdamping
occurs precisely when the Bohr frequencies of the system
become of the order of or smaller than the system damping
rate. In a recent study of low-quality resonators �9�, the
rotating-wave approximation was shown to still be afford-
able for overlapping resonances. But the Hamiltonians to be
employed in the present paper must retain the antiresonant
terms that the rotating-wave approximation would suppress.

A word on physical contexts where overdamping shows
up is in order. One is diffusion, a topic to be dealt with below
�Sec. III�. Another is temporal fluctuations in critical phe-
nomena, described by time dependent Ginzburg-Landau
equations without inertial terms �10�; Ref. �11� describes a
derivation of such a Ginzburg-Landau equation from an un-
derlying unitary evolution of a “larger” system.

The plan of the paper is as follows: In Sec. II, we solve
the Redfield master equation for a two-level system interact-
ing with a general environment. When the environment is
made of harmonic oscillators �spin-boson model�, we show
in Sec. II B that the transition from normal damping to over-
damping occurs at a critical value of the coupling which can
be made arbitrarily small and therefore accessible to pertur-

bation theory. For environment operators ĤB and B̂ modeled
by random matrices from the so-called Gaussian orthogonal
ensemble �spin-GORM model�, we show in Sec. II C that
weak-coupling overdamping is compatible with the exact dy-
namics computed numerically. In Sec. III, we show that the
transition from a nondiffusive to a diffusive regime, identi-
fied for a particle traveling in a spatially extended system
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while interacting with an environment, corresponds in fact to
a transition from normal damping to overdamping; that tran-
sition will turn out amenable to perturbative analysis. Finally,
in Sec. IV we study the transition from normal damping to
overdamping for a central harmonic oscillator interacting
with a large collection of harmonic oscillators �quantum
Brownian motion�. We show that overdamping again allows
for perturbative treatment, by comparison with the exact re-
sults known for this model. Conclusions are drawn in Sec. V.

II. DAMPED SPIN

A. Hamiltonian and Markovian master equation

Any two-level system has the Pauli matrices �̂x, �̂y, and
�̂z �together with unity� as a complete set of observables. If
such a “spin” interacts with a general environment we may
choose the Hamiltonian as

Ĥ =
q�0

2
�̂z + ĤB + �̂xB̂ . �2�

Inasmuch as the interaction �̂xB̂ does not commute with the
Hamiltonians for the uncoupled spin and bath, it allows for
transitions between the unperturbed energy levels. Denoting
the means of the spin observables by

x�t� = Tr�̂�t��̂x, y�t� = Tr�̂�t��̂y, z�t� = Tr�̂�t��̂y , �3�

we write the Redfield equation as �see �5,6��

ż�t� = 2��z�	� − z�t�� , �4�

ẋ�t� = − �0y�t� ,

ẏ�t� =
��2 + �2�

�0
x�t� − 2�y�t� ,

with the time dependent damping rate ��t� and frequency
��t� and the stationary inversion z�	�

��t� =
2

q2�
0

t

d
 cos��0
�C�
� , �5�

��t�2 + ��t�2 = �0
2 +

4

q2�0�
0

t

d
 sin��0
�C�
� ,

��t�z�	� =
2

q2�
0

t

d
 sin��0
�D�
� .

Properties of the bath are represented by the functions C�t�
and D�t�, respectively, the real and imaginary parts of the

equilibrium autocorrelation function ��t�= �B̂�t�B̂�0�� of the

bath coupling agent B̂ �for a definition and properties see
Appendix A�.

The Markovian approximation consists of taking the up-
per bounds of the time integrals in �5� to infinity, such that
the damping constant and frequency become time indepen-
dent, ��	�	� , ��	�	�. That approximation is legiti-
mate when the spin dynamics characterized by the rates �0,
�, and � is much slower than the decay of the bath correla-
tion function ��t� and requires that we restrict the further

discussion to times much larger than the bath correlation
time. We may then rewrite �5� as

� =
�

q2 ��̃��0� + �̃�− �0�� , �6�

�2 + �2 = �0
2 +

4

q2�0
2� d� P �̃���

�0
2 − �2

,

z�	� =
�̃�− �0� − �̃��0�
�̃�− �0� + �̃��0�

,

with �̃��� the Fourier transform of ��t�. The solutions of
Eqs. �4� in the Markovian limit read

z�t� = z�	� + �z�0� − z�	��e−2�t, �7�

x�t� =
x�0�� − y�0��0

�
sin��t�e−�t + x�0�cos��t�e−�t

y�t� =
x�0����2 + �2�/�0� − y�0��

�
sin��t�e−�t

+ y�0�cos��t�e−�t.

The reduced density matrix �= 1
2 +x�̂x+y�̂y +z�̂z can thus be

written as a superposition of four modes,

�̂�t� = 


=1

4

c
�0��̂
es
t. �8�

For normal damping, s1=0, s2=−2�, s3=−�+i�, and
s4=−�−i�. Overdamping occurs when

�2 � 0, �9�

and then the rates of �8� are given by s1=0, s2=−2�,
s3=−�+ ���, and s4=−�− ���.

B. The spin-boson model

Taking the bath as a collection of harmonic oscillators
�5,12� we have for its free Hamiltonian and coupling agent

ĤB =
1

2

n=1

N

�P̂n
2 + �n

2Q̂n
2�, B̂ = 


n=1

N

�nQ̂n. �10�

We assume a quasicontinuum of bath frequencies �n, employ
a spectral function ����=
n�n

2���n−��, and adopt Ullers-
ma’s choice �see �13� and Appendix A�,

���� =
2

�

��2�2

�2 + �2 , �11�

where � is the decay rate of the autocorrelator of the bath
coupling agent and � an overall coupling strength. Thus
equipped we can evaluate the rates in �5�. In the limits of
high temperature, i.e., �q�0	q�0 /kBT�1, we get
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� =
�→0

2
��2

�q2��2 + �0
2�

=
��0/��→0 2�

�q2 , �12�

�2 + �2 =
�→0

�0
2 + 4

���0
2

�q2��2 + �0
2�

=
��0/��→0

�0
2, �13�

�z�	� = −
��2�0

q��2 + �0
2�

=
��0/��→0

−
��0

q
; �14�

here the limit �0 /�→0 has been taken to remain consistent
with the Markovian approximation; note that in the present
section, �, has the dimension of an action such that � is a
rate.

The critical value of � at which overdamping occurs is
now found with the help of Eq. �9� by subtracting Eq. �12� to
the power of 2 to Eq. �13�. We find

�c =
�→0q2��0

2
. �15�

If ���c, and if �c is small enough to be treated by pertur-
bation theory we have a self-consistent theory of overdamp-
ing. Clearly, high temperatures are favorable for that theory
to apply since the pertinent �c is suppressed by the factor
�q�0�1.

One might fear that our way of obtaining �c is not com-
pletely consistent if solely restricted to the second-order per-
turbation theory because �2 is of the order �2 while �2+�2

is of the order � and does not include the �2 corrections. That
fear will be eased by the following argument. If we were to
add O��2� corrections to the right-hand sides of Eqs. �12�
and �13�, the results �15� for the critical coupling would be
generalized to a series in powers of the leading terms dis-
played in �15�. �In fact, Jang et al. Ref. �14� found �2+�2

=�0
2�1+4�2 /q2�; by recalculating �c, we again find Eq. �15�

if �q�0�1.�
Another look at the high-temperature rates reveals an in-

teresting feature of overdamping. We have from �8�

s1 = 0, �16�

s2 = −
4�

q2�
,

s3 = −
2�

q2�
+

2�

q2�
�1 − ��c

�

2

,

s4 = −
2�

q2�
−

2�

q2�
�1 − ��c

�

2

.

Most remarkably, the slowest relaxation rate of the spin,
�Re�s3��, decreases when the coupling to the environment in-

creases. For strong overdamping, �c /��1, we even have

s3 = −
��0

2

4�
+ O�q2�3�0

4

�3 
 . �17�

This is in contrast to the normal-damping case, accessible
from the above by replacing �−1→ + i, where the two slow-
est rates �Re�s2�� and �Re�s3�� increase as the coupling be-
comes stronger.

C. The spin-GORM model

We retain the overall Hamiltonian �2� but modify the en-

vironment so as to let the free-bath Hamiltonian ĤB and the

coupling agent B̂ be represented by random matrices from
the Gaussian orthogonal ensemble �GOE�. The resulting
spin-GORM model was studied in Refs. �6,15�. We use the
results of that work; in particular, we adopt a unit of time that
makes the Hamiltonian dimensionless and the bath correla-
tion time of order q �see Eq. �19� below�. Specifically, we
write

ĤB =
X̂

�8N
, B̂ = �

X̂�
�8N

; �18�

here X̂ and X̂� are random �N /2�� �N /2� GOE matrices with
mean zero. Their nondiagonal �resp. diagonal� elements have
standard deviation �ND=1 �resp. �D=�2�. The parameter �
serves as a coupling strength.

To study this model it is convenient to assume that the
environment is initially in a microcanonical distribution with
the �dimensionless� energy �. The autocorrelator of the bath
coupling agent then reads

���,t� =
N→	

�2J1�t/�2q��
4t/q

ei�t/q �19�

and has the Fourier transform

�̃��,�� =
N→	�2q

2�
�1

4
− �� + q��2. �20�

It is worth noting that here we meet Wigner’s semicircle law
for the mean level density of the GOE.

The general rates of the Markovian Redfield equation
given in Eq. �6� can be evaluated and read

���� =
�2

2q
��1

4
− �� − q�0�2 +�1

4
− �� + q�0�2�

�21�
and

����2 + ����2 = �0
2 + �2�0

2 −
�2

q
�0

��� + q�0�2 − 1
4

�
arctan� �� + q�0� + 1

2

��� + q�0�2 − 1
4


 −
�2

q
�0

��� + q�0�2 − 1
4

�
arctan� �� + q�0� − 1

2

��� + q�0�2 − 1
4



+

�2

q
�0

��� − q�0�2 − 1
4

�
arctan� �� − q�0� + 1

2

��� − q�0�2 − 1
4


 +
�2

q
�0

��� − q�0�2 − 1
4

�
arctan� �� − q�0� − 1

2

��� − q�0�2 − 1
4


 . �22�
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If �2�0, we have overdamping. To discuss that case, we
momentarily set �2=A−B where A=�2+�2 and is given by
�21� and B=�2 by �22�. When � is large we could have
overdamping because B�A, but then the perturbation theory
may fail and our approach will lose self-consistency. How-
ever, since all terms in A �but none in B� carry explicit fac-
tors �0 or �0

2, and since the other quantities containing �0
�i.e., �. and arctan�.�� are bounded away from zero in the
limit �0→0, it is always possible to choose �0 sufficiently
small such that A�B for small �. This is illustrated in Fig. 1.

The dependence of the smallest rates on the coupling
strength is similar as in the spin-boson model. The rates
�Re�s3�� and �Re�s4�� �see Eqs. �8��, grow with the coupling
constant � in the normal-damping regime, have a cusp at the
transition, and then decay into the regime of overdamping, as
illustrated in Fig. 2.

We have numerically solved the exact dynamics in order
to verify that the perturbative equation predicts the correct
dynamics for normal damping as well as for overdamping.
The agreement is excellent as illustrated in Fig. 3. We can
conclude that the spin-GORM model allows for overdamp-
ing at weak coupling.

III. DIFFUSION MODEL

We now consider a particle moving on a one dimensional
closed loop while interacting with an environment. The per-
tinent dynamics has been studied recently in Refs. �6,16,17�
by using the Redfield equation. A transition from nondiffu-
sive to diffusive relaxation has been identified. We shall use
the results of this study to show that the transition men-
tioned, in fact, is one from normal damping to overdamping.

The Hamiltonian of the loop constituting the subsystem is
represented by an N�N matrix

ĤS =�
E0 − A 0 0 … 0 − A

− A E0 − A 0 … 0 0

0 − A E0 − A 0 0

� � � � �
0 0 − A E0 − A 0

0 0 … 0 − A E0 − A

− A 0 … 0 0 − A E0

�
N�N

�23�

taken in the site basis �l�, where l=0,1 ,… ,N−1 labels the N
sites on the loop. The diagonal elements of ĤS are the on-site

energies of the particle while the off diagonal elements gen-
erate hopping to neighboring sites.

A weak interaction with an environment is described by
the Redfield master equation. The correlation time of the
environment is assumed much shorter than all characteristic
time scales of the loop and therefore the correlation function
of the environment can be modeled by

�ll��
� = 2Q��
��ll�. �24�

By using the Bloch theorem, the Redfield generator �contain-
ing N4 elements� can be simplified in N independent sectors
�with N2 elements�, each corresponding to a given value of
the Bloch number q. For our finite loop, periodicity yields
q=n2� /N, where n=1,2 ,… ,N. By diagonalizing a given
sector we get N eigenvalues depending on q. The complete
spectrum of the Redfield generator then consists of the N2

eigenvalues obtained by varying q.
As already mentioned, two relaxation regimes have been

identified in this model. In the nondiffusive regime all eigen-
values are complex with real parts of similar magnitude, pro-
portional to the coupling constant Q,

Re�s� � −
2Q

q2 + O� 1

N

 . �25�

However, in a given sector �therefore at a given q� when
the coupling term is increased beyond the value Q
=2qA sin�q /2�, one of the N eigenvalues separates from the
other N−1 ones. This eigenvalue is always real and is called
the diffusive one. The diffusive branch is made of the diffu-

FIG. 1. �=0.2, �=0, and q=1. This figure shows that the con-
dition for overdamping can be satisfied at weak coupling if �0 is
sufficiently small. This is still true for any generic choice of �.

FIG. 2. �0=0.01, �=0, and q=1. The upper figure shows that
for a fixed and small value of �0 there exists a critical and small
value of the coupling �c�0.14 above which overdamping occurs.
The lower figure illustrates the qualitative change of the coupling
dependence of the slowest relaxation rates when going from the
normal damping regime to the overdamped regime.
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sive eigenvalues of the different sectors. These eigenvalues
have a smaller magnitude than the real parts of the nondif-
fusive eigenvalues. They therefore control the long time re-
laxation of the subsystem. The diffusive eigenvalues are
given by

s = −
2Q

q2 +
2Q

q2 �1 − �2qA

Q
sin

q

2

2

. �26�

Lets define Qc	2qA sin�� /N��2�qA /N. For Q�Qc no
diffusive eigenvalues are present in the spectrum and the
relaxation regime is nondiffusive �see Eq. �25��. As soon as
Q�Qc, at least two diffusive eigenvalues exist in the spec-
trum and the relaxation regime is called the diffusive regime.
The two smallest diffusive eigenvalues controlling the long
time scale relaxation are

s = −
4�2A2

QN2 . �27�

Notice that the perturbative approach is consistent, because
Qc can be made as small as desired by choosing A /N small.

It is already clear at this point that the nondiffusive �resp.
diffusive� regime implies normal damping �resp. overdamp-
ing�. Indeed, as for normal damping �resp. overdamping�, the
smallest relaxation rates increase �resp. decrease� with grow-
ing coupling in the nondiffusive �resp. diffusing� regime.
Furthermore, as in the normal-damping �resp. overdamping�
regime, the small Redfield eigenvalues are complex �resp.
real� in the nondiffusive �resp. diffusing� regime. We can
make that association even clearer if we assume the environ-
ment made of harmonic oscillators which we model by using
Ullersma’s spectral density �see Appendix A�. In this case,
we find that at high temperature, the zero-frequency limit of
the Fourier transform of the environment correlation function
is given by

lim
�→0

�̃��� = lim
�→0

J���
�

=
�

��
. �28�

Since our instantaneous-decay assumption �24� implies

�̃�0� =
Q

�
, �29�

we conclude

Q =
�

�
�30�

and thus find the diffusive-branch eigenvalues

s = −
2�

q2�
+

2�

q2�
�1 − �4qA sin�q

2

 �

2�
�2

= −
�A2

�
q2 + O�q2�3A4

�3
q4
 . �31�

The similarity between these diffusive eigenvalues and the
smallest eigenvalue of the spin-boson model in the over-
damping regime �s3 in Eq. �16�� is obvious as is similarity
between the real part of the small nondiffusive eigenvalues
��25� with �30�� and the real parts of the small eigenvalues of
the spin-boson model in the normal damping regime �s3 and
s4 in �16��.

IV. QUANTUM BROWNIAN MOTION (QBM)

A. Hamiltonian

In this section we study overdamping in an exactly solv-
able model of the Brownian motion. The model is made of a
central harmonic oscillator interacting with an environment
which itself is a collection of harmonic oscillators �see, e.g.,
�7,13,18,19�; these references will lead the reader to earlier
work�. The exact solution proves extremely valuable for our

FIG. 3. �Color online� Transition from normal
damping to overdamping in the spin-GORM
model. The full lines represent the exact dynam-
ics of the three spin observable x�t�, y�t�, and z�t�
obtained numerically by diagonalizing the full
Hamiltonian and the dashed lines represent the
dynamics predicted by the Redfield equation
�second order perturbation theory�. The two re-
sults give curves which are so close to each other
that the dashed lines are almost invisible. The
situation depicted here is the same as in Fig. 2,
where � varies and �0=0.01, �=0, and q=1. As
predicted by Redfield theory, the transition occurs
at �c�0.14. The initial condition is x�0�=

�8
3 ,

y�0�=0, and z�0�= 1
3 . For the exact dynamics we

have taken N=3000 and a width of the initial
energy shell ��=0.025.
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endeavor since it will be seen to yield, in the Markovian
limit, precisely the same condition for overdamping as the
perturbative treatment.

We write the total QBM Hamiltonian as �see �20��

Ĥ =
1

2
�P̂2 + �0

2Q̂2� +
1

2

n=1

N �P̂n
2 + �n

2�Q̂n −
�n

�n
2Q̂
2�

�32�

and thus have the system and bath parts

ĤS =
1

2�P̂2 + ��0
2 + 


n=1

N
�n

2

�n
2
Q̂2� , �33�

ĤB =
1

2

n=1

N

�P̂n
2 + �n

2Q̂n
2� . �34�

The coupling agents of the system and bath read

Ŝ = Q̂0; B̂ = − 

n=1

N

�nQ̂n. �35�

The QBM Hamiltonian �32� is a sum of squares and thus
manifestly positive. A not manifestly positive variant of that
Hamiltonian �13,19�, discussed in Appendix B, can be
mapped onto the QBM Hamiltonian by a renormalization of
the bare frequency of the central oscillator. That observation
allows us to use the exact results of Ref. �19� for our present
study of QBM.

B. Exact treatment

The Hamiltonian �32� generates the Heisenberg equations
of motion

P̂
˙ �t� = − ��0

2 + 

n=1

N
�2

�n
2
Q̂�t� − 


n=1

N

�nQ̂n�t� ,

P̂
˙

n�t� = − �n
2Q̂n�t� − �nQ̂�t� ,

Q̂
˙ �t� = P̂�t� ,

Q̂
˙

n�t� = P̂n�t� . �36�

The solution of �36� can be written as

Q̂��t� = 

�=0

N

�Ȧ���t�Q̂��0� + A���t�P̂��0�� , �37�

P̂��t� = Q̂
˙

��t�;

the indices � and � step from 0 to N and Q̂0	 Q̂ , P̂0	 P̂. All
A���t�’s can be expressed in terms of the function

g�z� = z2 − �0
2 − 


n=1

N
�2

�n
2 − 


n=1

N
�n

2

z2 − �n
2 . �38�

The zeros of g�z� yield the eigenfrequencies of Eqs. �36�.

Assuming the bath frequencies form a quasicontinuum we
employ a spectral function ����=
n�n

2���n−�� to replace
the sum in �38� by an integral,

g�z� = z2 − �0
2 − �

0

	

d�
����
�2 − �

0

	

d�
����

z2 − �2 . �39�

We adopt an initial condition with statistical independence
of the central oscillator and bath without restriction for the
density operator ��0� of the central oscillator,

�̂tot�0� = �̂�0�
e−�ĤB

ZB
. �40�

The time dependent density operator of the central oscillator
then obeys the exact master equation

�̇̂�t� = −
i

2q
�P̂2 − fpq�t�Q̂2, �̂�t�� +

i

q
fpp�t�†Q̂,�P̂, �̂�t��+‡

−
1

q2dpp�t�†Q̂,�Q̂, �̂�t��‡ +
1

q2dpq�t�†P̂,�Q̂, �̂�t��‡ ,

�41�

with �· , · �+ the anticommutator. The drift and diffusion coef-
ficients fpq�t�, fpp�t�, dpp�t�, and dpq�t� can be found in �19�;
they can all be expressed in terms of the quantity A�t�
	A00�t�. To get an explicit result for that amplitude we adopt
Ullersma’s spectral function,

���� =
2

�

��2�2

�2 + �2 , �42�

where � and � are the decay rate of the autocorrelator of the
bath coupling agent and an overall coupling strength, both
now of the dimension of a frequency. For that choice the
amplitude in question takes the form

A�t� =
2�

�2 + �2 + �2 − 2��
�e−�t − e−�t cos��t��

+
�2 + �2 − �2

�2 + �2 + �2 − 2��

1

�
e−�t sin��t� . �43�

Here, the three rates �� ,� ,�� control the exact dynamics;
they are connected to the three model parameters ��0 ,� ,��
by the characteristic equations

� = � − 2� ,

�0
2 + �� = �2 + �2 + 2�� ,

�0
2 = ��2 + �2���/�� . �44�

The coupling between the central oscillator and bath is thus
seen to shift the unperturbed frequency as �0→�+ i� and
the unperturbed bath decay rate as �→�.

We should mention that �the diffusion coefficients� dpp�t�
and dpq�t�, in contrast to �the drift coefficients� fpq�t� and
fpp�t�, also depend on the temperature.

As a final comment on the exact solution of the model we
would like to add that, due to the initial condition �43�, we
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have �P̂n�= �Q̂n�=0 and therefore get the mean displacement
of the central oscillator from �37� as

�Q̂�t�� = Ȧ�t��Q̂�0�� + A�t��P̂�0�� . �45�

Turning to the Markovian limit we assume that environ-
ment correlations decay fast relative to the time scales of the
central oscillator. In technical terms, we require

�,� � �� + i�� . �46�

That Markovian limit does not imply weak coupling. The
characteristic equations �44� now become

� = � ,

�0
2 + �� = �2 + �2 + 2�� ,

�0
2 = ��2 + �2� , �47�

and entail the explicit results

� =
�

2
, �2 = �0

2 −
�2

4
, � = � . �48�

The master equation now reads, for times t��−1,

�̇̂�t� = −
i

2q
�P̂2 + �0

2Q̂2, �̂�t�� −
i

q
�†Q̂,�P̂, �̂�t��+‡

−
2

q2��P̂2�eq†Q̂,�Q̂, �̂�t��‡ +
1

q2 ��0
2�Q̂2�eq

− �P̂2�eq�†P̂,�Q̂, �̂�t��‡ . �49�

The exact expressions for the stationary second moments

�Q̂2�eq and �P̂2�eq are lengthy and can be found in �19�; they
are completely characterized by the three rates �� ,� ,�� and
by the temperature.

In the Markovian limit under study, the amplitude A�t� in
�43� also simplifies to

A�t� =
1

�
e−�t sin��t�, t � 1/� . �50�

We can now see that overdamping arises when � becomes a
pure imaginary number or equivalently when �0��. The
transition between normal damping and overdamping occurs
at �=0, for the critical coupling

�c = 2�0. �51�

That critical coupling will have to be compared with the one
obtained perturbatively.

C. Perturbative treatment

In order to compare exact and perturbative results we now
look at the Redfield master equation for the QBM Hamil-
tonian �18�

�̇̂�t� = −
i

2q
�P̂2 + ��p

2 + �p
2�Q̂2, �̂�t�� −

i

q
�p†Q̂,�P̂, �̂�t��+‡

−
2

q2�p�P̂2�eq†Q̂,�Q̂, �̂�t��‡ +
1

q2 ���p
2 + �p

2��Q̂2�eq

− �P̂2�eq�†P̂,�Q̂, �̂�t��‡ , �52�

where

�p =
1

q
�

0

t

dt
sin �0t

�0
D�t� ,

��p
2 + �p

2� = �0
2 + �

0

	

d�
����
�2 +

2

q
�

0

t

dt cos �0t D�t� ,

2�p�P2�eq = �
0

t

dt cos �0t C�t� ,

��p
2 + �p

2��Q2�eq − �P2�eq = �
0

t

dt
sin �0t

�0
C�t� . �53�

The Markovian approximation consists in taking the upper
bounds of the time integrals of �53� to infinity and is justified
when the free motion of the central oscillator �characterized
by the frequency �0� is much slower than the characteristic
decay rate � of the correlation function of the environment
��0 /�→0�. Again using Ullersma’s spectral function �42�
we get the foregoing rates as

�p =
��2

2��2 + �0
2�

=
�

2
+ O��0

2

�2
 , �54�

��p
2 + �p

2� = �0
2 + �� −

��3

�2 + �0
2 = �0

2 + O���0
2

�

 ,

�P2�eq =
q�0

2
coth

�q�0

2
=

�→0 1

�
,

��p
2 + �p

2��Q2�eq − �P2�eq =
�→0

,

��

���2 + �0
2�

=
�

��
�1 + O��0

2

�2
� .

To be consistent with the Markovian assumption, all terms of
order �0 /� or smaller should be disregarded. When using the
lowest-order master equation �52� we recover the mean dis-
placement �Q�t�� of the rigorous treatment; in fact, we even
get coinciding results for the nonperturbative and the pertur-
bative rates in the Markovian limit �0 /�→0, i.e., �=�p
=� /2 and �=�p=�0

2−�2 /4. In particular, therefore, the
transition to overdamping occurs at the same critical value of
the coupling, given by Eq. �51�. We conclude that the over-
damping regime in the QBM model in the Markovian limit
can be described by second-order perturbation theory and
therefore is a weak-coupling overdamping. It is worth men-
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tioning that this result was anticipated by Cohen-Tannoudji
in �21�.

We finally note that for strong overdamping the slowest
decay rate of the QBM model reads

s = −
�

2
+

�

2
�1 − ��c

�

2

= −
�0

2

�
+ O��0

4

�3 
 , �55�

in obvious similarity to the corresponding limit for the other
models studied above �see �16� and �31��.

V. CONCLUSION

For four different models, made of a system weakly inter-
acting with its environment, we have studied the transition
from normal damping to overdamping. Normal damping has
the slowest relaxation rates that increase with growing cou-
pling strength and is characterized by exponentially damped
oscillations. In the overdamped regime the smallest relax-
ation rates decrease with growing coupling and the dynamics
displays nonoscillatory exponential decay. The critical value
of the coupling at which the transition from normal damping
to overdamping occurs can often be made sufficiently small
�by tuning model parameters� in order to be described by
weak-coupling master equations such as the Redfield equa-
tion. One way to make the critical coupling small is to de-
crease the bare frequencies of the system, but other param-
eters like the temperature or the system size can also enter
the game. The compatibility of weak coupling and over-
damping is counter to intuitive and widely spread expecta-
tions.
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APPENDIX A: HARMONIC OSCILLATOR
ENVIRONMENTS

We briefly recall some properties of the equilibrium auto-
correlator of the environment coupling agent B,

��t� = �B̂�t�B̂� = C�t� + iD�t� = TrB�̂B
eqe−iĤBt/qB̂eiĤBt/qB̂ ,

�A1�

�̂B
eq = e−�ĤB/ZB. �A2�

The real and imaginary parts of ��t� obey C�t�=C�−t� and
D�t�=−D�−t�. Their Fourier transforms �defined as �̃���
= �1� / �2���−	

	 dt ei�t��t�= C̃���+ iD̃���� are related by the
fluctuation-dissipation theorem

C̃��� = 2i
E����

q�
D̃��� , �A3�

where

E���� =
q�

2
coth

�q�

2
�A4�

is the thermal energy of an oscillation with frequency �. As
a consequence, we can write our correlator as

��t� = �
0

	

d� qJ����coth
�q�

2
cos �t − i sin �t
 ,

�A5�

thus introducing the spectral strength J��� of the environ-
ment often used in the literature,

J��� =
2i

q
D̃���, � � 0. �A6�

It is, in fact, customary to use that spectral strength only for
positive frequencies; an extension to real frequencies could
be to require J to be odd in �.

For an oscillator bath with

ĤB =
1

2

n=1

N

�P̂n
2 + �n

2Q̂n
2�, B̂ = 


n=1

N

�nQ̂n

the correlator becomes

��t� = 

n=1

N

�n
2TrB

e−�ĤB

ZB
Q̂n�t�Q̂n�0�

= 

n=1

N
q�n

2

2�n
�coth

�q�n

2
cos �nt − i sin �nt


= �
0

	

d�
����q

2�
�coth

�q�

2
cos �t − i sin �t
 ,

�A7�

and has the Fourier transform

�̃��� =
������q

4�
�coth

�q�

2
+ 1
 . �A8�

A comparison of the general form �A5� with the oscillator-
bath form �A7� of the correlator ��t� shows that the two
spectral strengths J��� and ���� �which are both common
currency� are related as

J��� =
����
2�

, � � 0. �A9�

Ullersma’s choice �13� �also called Drude strength�

���� =
2

�

��2�2

�2 + �2 �A10�

corresponds to an Ohmic environment because at small fre-
quencies J������ /�.

At high temperatures, the real part of the environment
correlator is given by
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C�t� =
�→0�

0

	

d�
����
��2 cos �t =

��

�
e−��t�. �A11�

The imaginary part of the environment correlation function
is independent of temperature and reads

D�t� = − �
0

	

d�
����
2�

sin �t = −
q��2

2
e−��t�sgn�t� .

APPENDIX B: ULLERSMA’S HAMILTONIAN

Ullersma �13�, Haake and Reibold’s �19� work with a
modified Hamiltonian of the oscillator model,

Ĥ =
1

2
�P̂2 + �0

2Q̂2� +
1

2

n=1

N

�P̂n
2 + �n

2Q̂n
2� + Q̂


n=1

N

�nQ̂n.

The potential-energy part

V�Q̂,�Q̂n�� =
1

2
��0

2Q̂2 + 

n=1

N

�n
2Q̂n

2
 + Q̂

n=1

N

�nQ̂n

has a minimum of the potential created by the other har-
monic oscillators on the central oscillator given by

� �V�Q̂0,�Q̂n��

�Q̂n

�
Q̂n=Q̂n�min�

= �n
2Q̂n�min� + �nQ̂0 = 0.

The central oscillator thus “feels” the potential

V�Q̂0,�Q̂n�min��� = ��0
2

2
− 


n=1

N
�n

2

2�n
2
Q̂0

2.

Clearly, then, positivity is not manifest; rather, in order to
have bound states, we have to impose the condition

�0
2 − 


n=1

N
�n

2

�n
2 = �0

2 − �� � 0. �B1�

Ullersma’s Hamiltonian can be mapped onto the QBM
Hamiltonian by renormalizing the frequency �0 as �0

2→�0
2

+
n=1
N ��2� / ��n

2�=�0
2+��. That mapping was extensively

used above in transcribing the rigorous results of Ref. �19� to
the dynamics generated by the QBR Hamiltonian.

Needless to say, we could have based our study of the
transition from normal damping to overdamping on Ullers-
ma’s model. Only one subtlety about that alternative treat-
ment is worth being mentioned here. To leading order in
�0 /� the critical value �c of the coupling turns out to coin-
cide with the border �max=�0

2 /� to positivity loss following
from �B1�.
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