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We present the classical and quantum theory of time refraction in a generic nonstationary medium. The
classical approach leads to expressions for the temporal refraction coefficient, and the temporal Fresnel laws
are given. The quantum formulation leads to the derivation of instantaneous Bogoliubov transformations and
the evaluation of the number of photon pairs created from vacuum by the temporal changes in the medium. The
influence of boundary conditions, the connection of this model with the dynamical Casimir effect, and radiation
from superluminal nonaccelerated optical boundaries is also discussed.
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I. INTRODUCTION

In recent years there has been an increasing interest in the
properties of the electromagnetic vacuum and, in particular,
on the not yet experimentally observed effects of vacuum
photon creation. Various specific models, driven by different
physical motivations, have been explored, such as the dy-
namical Casimir effect �1–3�, the Unruh-Davies radiation
�4,5� and time refraction �6,7�. The first one results from an
extension of the double plate geometry of the famous Ca-
simir effect �8�, which reveals on a macroscopical scale the
energetic contents of vacuum. The Unruh-Davies radiation
�more often simply called Unruh radiation� explores the
equivalence between gravitation and acceleration, and dem-
onstrates the existence of a thermal radiation spectrum pro-
duced by an accelerated boundary, in the same way as the
gravitational field at the horizon of a black hole produces the
Hawking radiation �9�. On the other hand, time refraction
results from the symmetry between space and time, and ex-
tends the usual concept of refraction into the time domain. It
can also be seen as the basic mechanism behind the pro-
cesses of photon frequency shift, which are well known in
plasma physics and non-linear optics, and are often called
photon acceleration processes �10�.

These various models and concepts explore in different
ways the same physical properties of vacuum, even if the
relation between them has not yet been completely estab-
lished. Recently, Guerreiro et al. �11� have shown using the
time refraction concept, that an non-accelerated but super-
luminal boundary would emit radiation that is similar to �but
distinct from� the Unruh radiation. In the present work we
explore the time refraction model even further, by consider-
ing an arbitrary optical medium. The most relevant specific
feature of time refraction, as compared with the other two
models for active vacuum, is that it is independent of bound-
ary conditions. In that sense, it is a purely temporal effect, in
contrast with the dynamic Casimir or the Unruh models
which essentially depend on the spatial boundaries.

We study here the spectral changes due to an arbitrary
time variation of the refractive index of the medium. We start
with a classical description, and determine the temporal
Fresnel formulae as well as the temporal Snell’s law. By
doing so we generalize our previous results, which were only
valid for sudden changes of the refractive index as deter-
mined by one or several step functions �6,7�. We then con-
sider the quantum description for an arbitrary temporal
change of the medium, establish the associated instantaneous
Bogoliubov transformations and calculate the number of
photon pairs emitted from vacuum. We apply our generic
results to physically relevant situations corresponding to ir-
reversible and reversible changes in the medium. We also
discuss the influence of the boundary conditions and estab-
lish a precise link with the dynamical Casimir effect. Finally,
we revisit the problem of vacuum radiation from superlumi-
nal optical boundaries, by extending our previous results for
sharp boundaries �11� to the case of superluminal boundaries
with an arbitrary spatial profile.

II. CLASSICAL DESCRIPTION

Let us then consider an unbounded and nonstationary op-
tical medium. Conversion to a bounded medium, is straight-
forward. The case of time refraction inside an optical fiber
has already been discussed �12�, and the case of a cavity will
be discussed below. Let us also assume that the refractive
index of the medium starts to change at time t=0. We can
describe the variation of the refractive index by a generic
function of time, n�t�, which can be approximated by a se-
quence of discrete steps of duration �, where the continuous
limit of �→0 can be taken afterwards. This discretization
process can be analytically described by n�t�=nj, for
�j−1��� t� j�, with j integer, where we can determine
the successive values of the refractive index as
nj =nj−1+ �dn�t� /dt��, for �→0. For a given mode of the
electromagnetic waves propagating along the arbitrary
Ox-direction in the medium, we can describe the electric
field by

E� �x,t� = �E� �t�e−i��t� + E� ��t�ei��t��eikx + c.c., �1�

with the phase function defined by*Electronic address: titomend@ist.utl.pt
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��t� = �
0

t

��t��dt�. �2�

Here, E� and E� � are the field amplitudes for waves propagat-
ing in the positive and negative Ox-directions, respectively.
The time dependent value for the mode frequency � will
have to obey the linear instantaneous dispersion relation

��t� = kc/n�t� . �3�

This expression can be seen as the temporal Snell’s law �6�,
because it relates the wave frequencies at two different times,
��t1�n�t1�=��t2�n�t2�, whereas the usual Snell’s law for
�space� refraction relates the wavevectors in two different
media. Now, in order to establish the temporal evolution of
the mode electric field, we consider the above discretized
model for the refractive index, which corresponds to the al-
ternative expression

E� j�x,t� = �e� j�t� + e� j��t��e
ikx + c.c., �4�

where we now use

e� j�t� = E� j exp�− i� jt�, e� j��t� = E� j� exp�i� jt� �5�

and � j =kc /nj. These expressions are valid inside the interval
tj−1� t� tj, with tj = j�. Validity of Maxwell’s equations for
all times, including the discontinuity times t= tj, implies the

continuity of the displacement field D� =�0n2E� , and of the

magnetic induction field B� =−����E� �dt. Following the ap-
proach outlined in our previous work �7�, we can derive

ej = �Aj−1ej−1 − Bj−1ej−1� �e−i�j�,

ej� = �Aj−1ej−1� − Bj−1ej−1�e+i�j�, �6�

where we have assumed that the fields ej and ej� were evalu-
ated at the instant t= tj −0, and the fields ej−1 and ej−1� at the
instant t= tj−1−0. The coefficients Aj−1 and Bj−1 are deter-
mined by

Aj−1 = 1 −
3

2

�

nj−1

dn

dt
, BJ−1 =

1

2

�

nj−1

dn

dt
. �7�

Let us now use

ej = ej−1 +
de

dt
�, ej� = ej−1� +

de�

dt
� . �8�

Taking the limit �→0, and noting that

lim
�→0

1

�
�exp�±i� j�� − 1� = ± i� j , �9�

we finally arrive at the evolution for the fields e�t� and e��t�
propagating with the same wave number k and a time depen-
dent frequency ��t�, but in opposite directions

de

dt
= −

1

2n

dn

dt
�3e + e�� − i�e ,

de�

dt
= −

1

2n

dn

dt
�3e� + e� + i�e�. �10�

We can also express these coupled equations in terms of the
electric field amplitudes E�t� and E��t�, using the relations

e�t� = E�t�exp�− i�t

��t��dt�� ,

e��t� = E��t�exp�+ i�t

��t��dt�� . �11�

This leads to the following equations:

dE

dt
= −

1

2n

dn

dt
	3E + E� exp�+ 2i�t

��t��dt��
 �12�

and

dE�

dt
= −

1

2n

dn

dt
	3E� + E exp�− 2i�t

��t��dt��
 . �13�

In order to understand the physical meaning of these
equations, let us consider the special case where initially we
have a wave propagating along the positive direction that
dominates over the wave propagating in the opposite direc-
tion, �E�	 �E��, and also that the temporal changes in the
medium are very slow, which means that there is a weak
coupling between these two waves. We can approximate the
previous two equations by

dE

dt
� −

3

2n

dn

dt
E �14�

and

dE�

dt
� −

1

2n

dn

dt
E exp�− 2i�t

��t��dt�� . �15�

Integration of the first of these equations leads to

E�t� � E�0�exp	−
3

2
�

0

t 1

n�t��
dn

dt�
dt�
 . �16�

For a very slowly varying medium, this can be expanded to
give

E�t� � 	1 −
3

2
�

0

t 1

n�t��
dn

dt�
dt�
E�0�  T�t�E�0� , �17�

where the temporal transmission coefficient is T�t��1. Con-
sidering now Eq. �15�, and assuming that E�t��E�0�
=const, we can easily obtain the reflected field resulting from
the nonstationarity of the medium, of the form

E��t� = R�t�E�0� , �18�

with
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R�t� � −
E�0�

2
�

0

t 1

n�t��
dn

dt�
exp�− 2i�t�

��t��dt��dt�.

�19�

This expression for the temporal reflection coefficient R�t� is
formally analogous to the well known reflection coefficient
for stationary by nonhomogenous media R�x� �13�, with the
space coordinate along the gradient of the refractive index
replaced by the time coordinate, which demonstrates the ex-
istence of symmetry between space and time, or between
nonstationarity and nonhomogeneity.

III. QUANTUM THEORY

Instead of a classical field, let us now consider the electric
field operator valid in the quantum description of the optical
phenomena. For a uniform and stationary medium this field
operator can generally be written as

E� �x,t� = i� �
�k/2nk
2�a�k,t�eikx���k� − a†�k,t�e−ikx��*�k��

dk

2�
,

�20�

where ���k� is the unit polarization vector, nk the refractive
index for the field mode k, and �k=kc /nk is the correspond-
ing mode frequency. Here we use the one-dimensional
propagation along some generic axis Ox, but the generaliza-
tion to three dimension is straightforward. We have also used
the time dependent destruction and creation operators

a�k,t� = a�k�e−i�kt, a†�k,t� = a†�k�ei�kt. �21�

From the above general operator, we can extract the electric
field operator associated with a specific field mode k, as

E� �x,k,t� = �e�t� + e��t�����k�eikx, �22�

where we have used the following property of the polariza-
tion vector ���k�=��*�−k�, which is valid for both the linear
polarization and the circular polarization photon states. We
have also used the following field operators:

e�t� = i�
�k

2nk
2 a�k,t�, e��t� = − i�
�k

2nk
2 a†�− k,t� .

�23�

This expression is formally analogous to that of the classical
fields discussed in the previous section.

Let us now consider a time varying medium. In this case,
the field operator �22� has to obey the same evolution equa-
tions �and thus the same continuity relations� as the classical
field. This means that, for a nonstationary medium taking
different values of the refractive index n=nj in different time
intervals between t= �j−1�� and t= jt, for j=0,1 ,2 , . . . we
can establish the same kind of relations between successive
field operators. Following the procedure of our previous
work �7�, we can establish the relation between the field
operators valid at the beginning and at the end of the elemen-
tary time slab with duration �, in the form

aj = �Aj−1aj−1 + Bj−1aj−1
† �exp�− i� j�� ,

aj
† = �Aj−1aj−1

† + Bj−1aj−1�exp�i� j�� , �24�

where we have assumed, to simplify the notation, that
aj a�k , tj −0�, and aj

†a†�k , tj −0�, and used similar nota-
tions for aj−1 and aj−1

† . The expressions defining the coeffi-
cients A and B, to the lowest order of the elementary time
interval �, can be written here as

Bj−1 �
�

2nj−1

dn

dt
, Aj−1 � 1 +

1

2
� �

2nj−1

dn

dt
�2

. �25�

We can easily verify the hyperbolic character of the transfor-
mation �24�, as stated by the relation

�Aj�2 − �Bj�2 = 1. �26�

This means that we can define squeezing parameters rj such
that Aj =cosh rj, and Bj =sinh rj. Let us now consider the
limit �→0, for which we can write

aj = aj−1 +
da

dt
�, aj

† = aj−1
† +

da†

dt
� . �27�

Taking the limit �→0, we can transform the discrete rela-
tions �24� into the following differential equations for the
time evolution of the destruction and creation photon opera-
tors

da

dt
= − i��t�a +

1

2n�t�
dn

dt
a†,

da†

dt
= i��t�a† +

1

2n�t�
dn

dt
a . �28�

This is again quite similar, but not formally identical to the
evolution equations for the classical field �10�. In these new
evolution equations, the first terms on the right hand side
represent the rapid oscillations associated with the wave field
with the frequency ��t�. The second term represents the
slowly varying part of the operators associated with the
change in the background medium. Notice that, in order for
the concept of a wave mode k to make sense, the temporal
changes in the refractive index n�t�, and consequently on the
mode frequency ��t� have to take place on a long time scale,
much longer than the period 2� /��t�. This means that our
present quantum field theoretical model is only physically
meaningful if the second term in the above evolution equa-
tions is much smaller than the first one. In order to focus our
attention on the slowly varying part of the operators a�k , t�
and a†�−k , t�, it is then useful to define

a�t� = a0,k�t�exp�− i��t��, a† = a0,−k
† �t�exp�i��t�� ,

�29�

where a0,k�t� and a0,−k
† are now the slowly varying operator

amplitudes, and the phase is determined by Eq. �2�. Replac-
ing these new definitions in the coupled evolution equations
�28�, we simply get

d

dt
a0,k = ��t�a0,−k

† ,
d

dt
a0,−k

† = �*�t�a0,k, �30�

where the coupling coefficient ��t� is determined by
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��t� =
1

2n�t�
�dn

dt
�exp�2i��t��  f�t�exp�2i��t�� . �31�

Before solving these equations we should notice that they
describe the field operator changes on a time scale much
longer than 2� /��t�. This means that only the slowly vary-
ing terms in the coupling coefficient ��t�, and its complex
conjugate will contribute to the physically relevant solutions
of the coupled equations. It is then appropriate to replace in
the above equations, the quantity ��t� by its average over the
fast time scale �̄�t�, as determined by

�̄�t� =
1

T
�

t

�t+T�

f�t��exp�2i��t���dt�. �32�

The natural choice for the period of integration will be the
instantaneous wave period T=2� /�, which can be consid-
ered constant over the integration interval. The resulting av-
eraged coupling coefficient �̄�t� will preserve its time varia-
tion over periods much faster than T. Notice that, for optical
field modes, the period is of the order of one femtosecond,
which means that the “slow” time variation that is retained
after the averaging process can be as fast as a few tens of
femtoseconds. So, very fast time varying processes that can
occur in experiments using very short laser pulses can still be
described by �̄�t�.

In order to obtain an explicit expression for this averaged
coupling coefficient, we should notice that, inside the aver-
aging interval, we can use ��t�=�0+�t�, where � can be
considered constant. After integration by parts, we can easily
obtain

�̄�t� =
1

2��t�
�df

dt
�exp�i�2�0 + 3�/4�� . �33�

Using the definition of f�t� as stated in Eq. �31�, choosing for
convenience the arbitrary phase as �0=−3� /8, and neglect-
ing the second derivative of the refractive index �which is
valid in the slow time scale approximation considered here�,
we get

�̄�t� � −
1

2��t�
� 1

n�t�
dn

dt
�2

. �34�

Notice that this coefficient is always real and negative, inde-
pendently of the sign of the derivative of the refractive index.
This will have an importance physical significance, as dis-
cussed below. The coupled equations can then be replaced by
a more physically relevant form, valid on time scales much
larger than the wave mode period

d

dt
a0,k = �̄�t�a0,−k

† ,
d

dt
a0,−k

† = �̄�t�a0,k. �35�

The solution of these coupled equations, satisfying the ap-
propriate initial conditions, are

a0,k�t� = Ak�t�a0,k�0� − Bk�t�a0,−k
† �0� ,

a0,−k
† �t� = Ak�t�a0,−k

† �0� − Bk�t�a0,k�0� , �36�

with

Ak�t� = cosh�r�t��, Bk�t� = sinh�r�t�� �37�

and

r�t� = �
0

t

�̄�t��dt� = �
0

t 1

��t��n2�t��
� dn

dt�
�2

dt�. �38�

Equations �36� take the form of a time-dependent Bogoliu-
bov transformation with coefficients Ak�t� and Bk�t�, with the
instantaneous squeezing parameter r�t�. These solutions can
now be used to calculate the number of photon pairs created
from vacuum by the time evolution of the medium. At any
time t, we can define the number operator for the photon
mode k, as

Nk�t� = ak
†�t�ak�t� = a0,k

† �t�a0,k�t� . �39�

We can also define a time dependent vacuum state �0�t, such
that ak�t��0�t=0. But, if we consider the initial vacuum
�0�t=0�0�, we will get

ak�t��0� � 0, ak�t = 0��0� = 0. �40�

We can therefore define the average number of photons cre-
ated from vacuum at time t, in the usual way, as

�Nk�t�� = sinh2�r�t�� . �41�

This has the usual hyperbolic-sine square shape, but the im-
portant thing here is that the argument r�t� is given by an
integral over the arbitrary temporal evolution of the un-
bounded medium, and results from a consistent exploration
of the concept of time refraction �6�.

Notice also that, for each photon created with wave num-
ber k along the arbitrary Ox-direction, there will be another
one created with wave number −k, in order to preserve the
total vacuum momentum: �Nk�t��= �N−k�t��. Integrating over
all the possible directions, we get the total number of pho-
tons created from vacuum at time t

Ntot = 2�
k�min�

k�max�

�Nk�t��
dk�

�2��3 , �42�

where the factor of two accounts for the two possible polar-
ization states, and the upper and lower wave number cutoffs
k�min� and k�max� are imposed by physical constraints. If
the medium is isotropic, this integration is simplified and the
triple integration over dk� is replaced by a simple integration
over 4�k2dk.

IV. DYNAMICAL CASIMIR EFFECT

Let us apply the results of the previous results to the case
of a finite medium. Our aim here is to establish a link be-
tween our time refraction model and the dynamical Casimir
effect that can take place inside an optical cavity. Such a link
can be established in two steps, where the first one general-
izes the usual dynamical Casimir effect to an arbitrary tem-
poral change of the internal optical medium.

First of all, it should be remarked that the main difference
of time refraction processes in a finite medium with that
considered above of a homogeneous and unbounded medium
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is that the range of allowed photon modes is reduced, be-
cause of the boundary conditions, and the dispersion relation
is modified. The extension of time refraction to an optical
fiber or a waveguide can be made in a straightforward way
�12�, where the axis Ox is no more arbitrary but coincides
with the fiber axis, and the photon modes have a well defined
transverse structure. Furthermore, if the optical fiber or
waveguide has a finite length with reflecting boundaries, the
continuum of modes k along this axis is reduced to a discrete
set of cavity modes. The integration appearing in Eq. �42� is
simply replaced by a summation over a discrete set of photon
modes. In this sense, the time refraction model allows for an
alternative view on the time varying optical cavity. In order
to illustrate this, let us consider two cases, one where the
refractive index of the medium inside the cavity changes
from an initial value n0 to a different value n1 over a given
time scale �, and the other where the perturbation of the
medium is reversible. These two cases were previous consid-
ered in the limit �→0 �6,7�. They can be described by the
following evolution for the refractive index

n�t� = n0 + �n1 − n0�
1

2
�1 + tanh�t/��� �43�

and

n�t� = n0 + n sin�t/�� �0 � t � �/2� . �44�

The resulting photon number creation is represented in Figs.
1 and 2. These figures clearly show that the most interesting
case is the second one, because the probability for photon

creation accumulates, as long as the refractive index changes
with time, irrespective of the sign of that change. An oscil-
lating perturbation will then lead to an enhancement of the
photon creation mechanism, as shown in Fig. 3. In the most
favorable situations, the number of photons will increase ex-
ponentially with time, as discussed below. But, notice that
the present discussion is only valid on a slow time scale. This
means that the refractive index oscillations considered here
have a characteristic frequency much smaller than the photon
frequency. The case of fast time oscillations will be consid-
ered next.

The link between time refraction and the dynamical Ca-
simir effect can easily be established by noting that a change
in the refractive index is equivalent to a change in the optical
length of an empty cavity, as illustrated in Fig. 4. This means
that the two previous models are equivalent to the case of an
empty cavity with a length that follows a similar temporal
law. However, the traditional dynamical Casimir effect cor-
responds to an empty cavity with a rapidly oscillating optical
length. In order to consider this case we have to modify the
expression of the coupling coefficiente �̄, because Eq. �34�
was derived by assuming a slowly varying refractive index
�equivalent to a slowly varying cavity length�. Let us then go
back to Eq. �31� and consider the Fourier transformation of
the auxiliary function f�t�= �dn /dt� /2n. We can then write

FIG. 1. Number of photon pairs created by an irreversible per-
turbation of the refractive index �in bold�. The refractive index is
also shown. We have taken �=1.

FIG. 2. Number of photon pairs created by a reversible pertur-
bation of the refractive index �in bold�. The refractive index is also
shown. We have taken �=1.

FIG. 3. Number of photon pairs created by a periodic perturba-
tion of the refractive index �in bold�. The refractive index is also
shown. We have taken �=1.

FIG. 4. Equivalence between a static cavity with a nonstationary
medium with refractive index n�t� �a� and an oscillating empty cav-
ity with varying length L�t� �b�.
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��t� = f�t�e2i��t� =� f����exp�− i��t + 2i��t��
d��

2�
.

�45�

Noting that ��t���t, it can easily be realized that the domi-
nant term in ��t� will be determined by the Fourier compo-
nent of the perturbation function f�t� such that ��=2�, be-
cause all the other terms will strongly oscillate in time and
will give negligible contributions. So, for the rapidly oscil-
lating cavity, we will have to replace Eq. �34� by

�̄�t� = f��� = 2��t�� , �46�

where the time variation only occurs on a long time scale. In
the usual dynamical Casimir effect, the optical length on the
cavity oscillates with a frequency �, which means that cou-
pling to the photon field will only efficiently occur for
�=2�. In this case, and for very long times, the hyperbolic-
sine can be approximated by an exponential, and we get from
Eqs. �38� and �41�

�Nk�t�� = 12 exp�2r�t�� �
2�n�2

�n0
2�t��

t , �47�

where n is the amplitude of the perturbation of the refrac-
tive index n0 at a frequency �. This shows an exponential
growth of the number of photons created inside the cavity,
which corresponds to the well known parametric instability
predicted for the dynamical Casimir effect �1,3�. This result
clearly states that that the dynamic Casimir effect of an os-
cillating cavity can be seen as a special case of the time
refraction model. However, this model has much broader im-
plications and can be used to describe many other physical
configurations. Of particular interest is the case of super-
luminal moving boundaries, to be considered next.

V. SUPERLUMINAL OPTICAL BOUNDARIES

We have shown above how the state of light is altered by
a generic nonstationary medium, where the refractive index
varies uniformly, in unbounded space or inside a cavity. Re-
cently, Guerreiro et al. �11� have demonstrated that a sharp
optical boundary, moving with constant superluminal veloc-
ity would emit light from vacuum. It is therefore only natural
to investigate whether a generic superluminal boundary pro-
file would also give rise to a similar result, using the method
introduced in this work.

Let us now consider an optical profile moving with an
apparent velocity u along the Ox-direction, which changes
the refractive index from n0 to n1, in a way similar to that
considered in Ref. �11�, but with a smooth shape as described
by

n�x,t� = n0 + nh��t − x/u�/�� , �48�

where n=n1−n0, and h is a continuous function in the range
�0,1�. In this context, the apparent velocity u simply de-
scribes a delay in the change of refractive index between
different points of space and does not refer to the actual
velocity of the particles in the medium. Henceforth u can
take arbitrarily large values, even larger than c. If this appar-

ent velocity u is larger than c, we can always change from
the laboratory frame S into a new frame S�, with relative
velocity v�=−c2 /u�c where this moving optical boundary
will be perceived as moving with an infinite velocity

u� = lim
v→v�

u + v
1 + �vu�/c2 = � �49�

and Eq. �48� becomes formally analogous to Eq. �43�. This is
an important point, because, in the moving frame S� the su-
perluminal boundary is perceived as a simple temporal
change with spatial uniformity.

In this new frame S�, the time boundary can be described
as a four port device �7�, coupling two initial electromagnetic
field modes, evolving as exp�iki�x�� and exp�ika�x��, existing
for t��0, with two final modes exp�ikt�x�� and exp�ikr�x��,
existing for t��0. In this moving frame, the wave numbers
of the two couples of modes are completely symmetrical,
ka�=−ki�, and kr�=−kt�. This is a consequence of the total mo-
mentum conservation associated with purely temporal
changes in the optical properties of the medium. But the
same is not true in the laboratory frame S, where an asym-
metry is introduced by different Doppler shifts, leading to

kt�x,t� = ki
1 − si�/n0

1 − st�/n�x,t�
�50�

and

kr�x,t� = − ki
1 − si�/n0

1 − sr�/n�x,t�
, �51�

where �=−v� /c=−c /u�1, and we have introduced the
signs si=ki / �ki�, st=kt / �kt�, and sr=kr / �kr�. This means that, if
in the frame S� the change of the refractive index occurs
simultaneously at all points of space, in the frame S there is
a delay between different points of space, which then intro-
duced a delay in the change of the wave number, as ex-
pressed by the space and time dependence of the transmitted
and reflected wave numbers, kt and kr.

Moreover, in the S� frame the refractive index has a dif-
ferent value as a direct consequence of the relativistic phase
invariance �see �14�� and will be given by

n��t�� = s�n�t��
s − �/n�t��
1 − s�n�t��

, �52�

where s=k / �k�, s�=k� / �k��, and k and k� are the wave num-
bers of a given field mode expressed in the S and S� frames,
respectively. We should then write the refractive index pro-
file in the S� frame as n��t��=n0�+n�h�t� /���, with ��=��,
and �= �1−�2�−1/2. For small variations of the refractive in-
dex n, we can write

n� = s�s
1 − �2

�1 − s�n0�2n + O�n2� . �53�

The above equations �30� can now be written in the frame S�,
as
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d

dt�
a0,k = ���t��a0,−k

† ,
d

dt
a0,−k

† = ��*�t��a0,k, �54�

with

���t�� =
1

2n��t��
dn�

dt�
exp�2i��t��� �

n�

2n0

dh�t��
dt�

exp�2i��t��� .

�55�

The relative change in the refractive index, appearing in this
expression, is given by n� /n0�=�n /n0 with

� =
1 − �2

�1 − s�n0��s − �/n0�
. �56�

Finally, we can write ���t��=���t−x /u�, which implies
for the squeezing parameter that r��t��=�r�t−x /u�. The
number of photons produced from vacuum will then be de-
termined by �Nk�t−x /u��=sinh2��r�t−x /u��. Notice that, for
s�n0→1, or for �→sn0, the change in the refractive index
n� can, in principle, be arbitrarily large, as well as the num-
ber of photons emitted from vacuum. These resonant condi-
tions are specially interesting for experimental purposes.
Since the number of photons is a relativistic invariant, the
same occurs in any reference frame, including the S frame.
The existence of such resonances suggests that the quantum
properties of the vacuum can be strongly enhanced by super-
luminal boundaries, increasing the prospects for future ex-
perimental evidence.

VI. CONCLUSIONS

In this paper we have described the phenomenon of time
refraction in a nonstationary optical medium. The medium
was considered uniform, but arbitrary temporal changes in
the refractive index were considered. Both the classical and
quantum theoretical descriptions were presented. The classi-
cal formulation allowed us to describe the effects of photon
frequency shift that can be considered the basis for photon
acceleration �14�. It also describes the coupling between
counterpropagating waves, and confirms that �space� reflec-
tion is always associated with time refraction. Coupled mode
equations for the counterpropagating signals were obtained.
Under certain simplifying assumptions these equations lead
to an expression for the temporal reflection coefficient that is
the temporal analogue of the usual reflection coefficient in a

nonhomogeneous but static medium. A clear symmetry is
shown to exist between nonhomogeneity and nonstationarity,
or between space and time changes in the optical medium.

However, such a symmetry is somewhat subtle, due to the
nonexistence of time reflection, or reflection backwards in
time. This means that, if the time refraction phenomena con-
sidered here always imply the occurrence of �space� reflec-
tion, the symmetric case of wave refraction due to spatial
nonhomogeneity will never produce time reflection. Even so,
a deep symmetry still holds because, if the first effect �time
refraction� conserves momentum but not energy, the second
one �the usual space refraction� conserves energy but not
momentum.

On the other hand, the quantum theoretical description
allowed us to derive temporal Bogoliubov transformations
between time-dependent destruction and creation operators.
The possible creation of photon pairs from vacuum was es-
tablished for arbitrary time changes in the medium. This
completes our previous derivation of time refraction, which
were only valid for simple sudden changes in the medium
�6,7�, and extends this concept to more general temporal evo-
lution laws.

The relation between time refraction and the dynamical
Casimir effect in an oscillating cavity was also clarified. The
usual conditions for a parametric instability in the time vary-
ing cavity were recovered. Our treatment allowed us to see
these two different models in a more global perspective, and
to demonstrate that the dynamical Casimir effect can be re-
duced to a special case of time refraction. Our approach is
equally well suited for other physical configurations, such as
that of reversible and irreversible changes in an optical fiber
or in a cavity, as illustrated by numerical examples.

Finally, the results were extended to the case of an optical
boundary with an arbitrary spatial profile and moving with a
constant but superluminal velocity, generalizing our previous
results for a sharp boundary �11� and showing that resonant
excitation of photon pairs from vacuum can also in this case
eventually occur. This new radiation process can be seen as a
kind of Unruh radiation for superluminal boundaries. The
existence of resonances in vacuum response to superluminal
boundaries, as shown by Eq. �56�, suggests that time refrac-
tion is an interesting candidate for experimental research,
and can eventually be more favorable for evidence of
vacuum radiation than the Unruh or the dynamical Casimir
effects. In particular, the configuration first proposed by
Yablonovich �15� to study the vacuum radiation processes
can easily be adapted to the case of time refraction.
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