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We study controlled methods of preparing vortex configurations in atomic Bose-Einstein condensates and
their use in the studies of fundamental vortex scattering, reconnection processes, and superfluid sound emis-
sion. We explore techniques of imprinting vortex rings by means of coherently driving internal atomic transi-
tions with electromagnetic fields which exhibit singular phase profiles. In particular, we show that a vortex ring
can be prepared by two focused co-propagating Gaussian laser beams. More complex vortex systems may also
be imprinted by directly superposing simpler field configurations or by programming their phase profiles on
optical holograms. We analyze specific examples of two merging vortex rings in a trapped two-species 8Rb
gas. We calculate the radiated sound energy in the reconnection process and show that the vortex relaxation and
the redistribution of sound energy can be controlled by the imprinting process. As another creation technique,
we study engineering pairs of two-dimensional point vortices in the condensates using a ‘light roadblock’ in
ultraslow light propagation. We show how this can be used to study vortex collisions in compressible super-
fluids and how these collisions result in energy dissipation via phonons and, sometimes, annihilation of vortex

pairs.

DOI: 10.1103/PhysRevA.72.063626

I. INTRODUCTION

One of the advantages of atomic Bose-Einstein conden-
sates (BECs), as compared to more traditional quantum flu-
ids, is the dramatic flexibility of experimental preparation.
Both the internal and the center-of-mass states of ultracold
atoms can be manipulated and controlled in diverse ways
using electromagnetic (em) fields. In this paper we explore
the possibilities of using the present day atomic physics tech-
nology as a sophisticated state engineering tool, in order to
construct highly nontrivial superfluid states in atomic many-
particle systems. In particular, such a ‘field-theory engineer-
ing’ may be useful in preparing topological defects, studying
their interactions, and the decay of superfluid turbulence [1].
We consider controlled methods of creating vortex systems
by means of directly imprinting phase singularities on the
BECs from em fields and by means of inducing density de-
fects via the ultraslow light propagation inside the BEC. In
the case of the phase imprinting techniques, we focus on the
preparation of vortex rings and we show, as an example, how
the method could be applied to the studies of the time evo-
lution and the reconnection process of two merging vortex
rings. For the case of ultraslow light propagation we demon-
strate, again by numerical examples, how it can be employed
in the studies of the collision of point vortex pairs and their
sound emission.

In the phase imprinting process we consider em field con-
figurations which exhibit phase singularities in the field
amplitude. When such a field is used to drive internal atomic
transitions, the nonuniform phase profile of the em field
amplitude may be imprinted on the matter wave, resulting in
a topologically nontrivial phase profile in the atomic conden-
sate. We show how a reasonably simple em field configura-
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tion of two phase-coherent Gaussian laser beams could be
used to imprint a vortex ring in atomic BECs by simulta-
neously controlling the position, the orientation, and the
radius of the ring. More complex vortex structures, such
as knotted vortex lines, may be imprinted using optical
holograms.

Moreover, we study in detail the application of this tech-
nique to the imprinting of a pair of vortex rings and study
their reconnection dynamics in a trapped two-component
87Rb condensate, using experimentally feasible parameters.
Such reconnections have escaped experimental observation
in BECs to date. The two rings merge together and the re-
sulting turbulent dynamics generate an effective local dissi-
pation in the gas, allowing the vortex configuration to relax
to lower energy without an explicit damping term in the dy-
namics. This mechanism is also analogous to the dynamical
formation of a vortex lattice in a rotating zero temperature
BEC [2]. We qualitatively analyze the redistribution of sound
energy in the trapped cloud due to the vortex reconnection
processes. The energy is first concentrated towards the trap
center and later emitted outwards as sound and transformed
to surface excitations. Here the excitation of kelvin waves
and the radiated sound energy can be controlled by changing
the parameters of the em fields. Although vortex rings, as
localized singular defects which are detached from superfluid
boundaries, are interesting in their own right, they can also
form a building block of energetically stable localized par-
ticle like solitons [three-dimensional (3D) Skyrmions] in a
two-component °’Rb BEC [3-5], providing a link between
ultracold atom physics, elementary particles, and cosmology.

As another method of engineering systems for studying
fundamental vortex interactions, we consider the generation
of a ‘light roadblock’ [6] by abruptly distorting the ultraslow
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light propagation [7-9] in a BEC. The strong nonlinear co-
herent light-matter coupling is based here on the method of
electromagnetically induced transparency (EIT) [10], which
allows propagation of light pulses through the BEC due to
the lack of absorption. If the probe and the coupling beams
are propagating in orthogonal directions and the coupling
field is varied quickly to zero over a short distance near the
BEC center, the probe field is abruptly compressed and
stopped inside the atom cloud. This results in a large transfer
of atom population between the internal states and the emer-
gence of a very narrow density defect inside the BEC, which
subsequently generates solitons via quantum shock waves [6]
and then vortex pairs via the snake instability [11-13]. In
Ref. [14] it was noted that this can be used to create a “gas”
of multiple vortex particles, of both circulations, which are
out of equilibrium and subsequently interact. Here we show
that in a 2D geometry the generation of the defects can be
controlled to yield desired configurations of point vortex
pairs whose collisions and sound emission can be investi-
gated in detail. In order to demonstrate the usefulness of the
preparation scheme we analyze some sample cases of point
vortex pair creation and the resulting vortex collision dynam-
ics. In particular, we focus on a regime in which the size of
the vortex pairs is comparable to the healing length in the
superfluid. In such a case, collisions of vortex pairs are more
complicated than they are in the incompressible limit [15], as
the collisions can cause energy to be dissipated in the form
of phonons. This dissipation alters the collision dynamics
and can lead to annihilation of vortex pairs, another interest-
ing phenomenon which has hitherto been unobserved experi-
mentally. We present a numerical study of this and show how
the light roadblock may allow its observation.

The quantized vorticity in atomic superfluids has inspired
considerable experimental and theoretical activity in recent
years [16]. There have been several theoretical proposals to
imprint vortex line singularities on atomic BECs by means of
transferring angular momentum on atoms from em fields
[17-25] and some of the techniques have already been ex-
perimentally realized [26-29]. In Ref. [26], a vortex line
with one unit of circulation was imprinted on a pair of con-
densates occupying different internal levels of 8’Rb using a
Raman coupling which was set locally resonant in a small
region by rapidly rotating laser beams. In Refs. [27-29], sin-
gular singly quantized and doubly quantized, as well as non-
singular coreless vortex lines were created by adiabatically
inverting the magnetic bias field along the trap axis. Also
dark solitons have been imprinted on atomic BECs, e.g., by
imaging the atom cloud through an absorption plate [30,31].
Such 7 phase kink planes have been observed to decay into
a hybrid of vortex rings and lines through the dynamical
“snake” instability [6,13,32]. A controlled method of creating
vortex rings and particlelike solitons was proposed in Ref.
[3], where it was shown that a topological phase singularity
forming a closed circular loop may be imprinted on the mat-
ter field while changing the internal state of the atoms. Ring
defects in spinor BECs may also form from simpler core
structures as a result of dissipation [33]. The defect genera-
tion using a light roadblock was realized in Ref. [6]. More
complicated defect configurations were recently produced by
superposing multiple roadblocks [32]. It has also been pro-

PHYSICAL REVIEW A 72, 063626 (2005)

posed that the strong light-matter coupling of the ultraslow
and stopped light [34-36] could be used to efficiently trans-
fer vortex states between light and atomic BECs and to store
light modes with orbital angular momentum inside the BECs
[25], as well as to use a vortex lattice to create a photonic
band gap [37].

In Sec. I we show how em fields containing phase sin-
gularities can be used to imprint vortex rings on BECs. We
discuss several examples of how the required fields can be
generated by superpositions of plane and/or Gaussian laser
fields. In Sec. III we apply the method to generate two vortex
rings and to study their ensuing reconnection dynamics. In
Sec. IV we then turn using the light roadblock to generate
systems of multiple vortex point particles in a 2D geometry,
focusing on collisions of vortex pairs, which dissipate energy
via phonons and sometimes leads to vortex annihilations.

II. CONTROLLED PREPARATION OF VORTEX
RINGS

A. Coupled two-component condensate

A vortex ring can be engineered by using an em field to
imprint topological phase singularities on the matter field
while changing the internal state of the atoms [3]. Here we
consider a two-component BEC where the two internal states
are coupled by means of the em fields with the Rabi fre-
quency (r). The dynamics of the BECs with the Rabi cou-
pling between the levels |i) and |j) follow from the coupled
Gross-Pitacvskii equation (GPE):

ay; *
iha_lfl=<HO+5i+EKik|¢k|2)¢i+hQwj' (1)
k

We assume the two-component condensate, with the total
number of N atoms and the atomic mass m, to be confined
in a perfectly overlapping, isotropic trap with the trap
frequency w:

h? 1
- —V?+ —mw’r. (2)

H
0 2m 2

The parameter J,(r) incorporates the detuning of the em
fields from the resonance of the internal transition as well as
em field-induced level shifts which may be nonuniform in
the case of a spatially varying field intensity. We have also
defined the interaction coefficients Kl-jE47Th2aijN/ m, with
the intraspecies and the interspecies scattering lengths de-
noted by a;; and a;; (i #j), respectively. Such a system has
been experimentally realized using, e.g., the [2)=|S,,,F
=2,Mp=+1) and [1)=|S,,,,F=1,Mp=-1) hyperfine spin
states of 5’Rb. The two hyperfine levels were coupled by
means of a two-photon transition (one microwave and one rf
photon). For the %Rb components the interaction strengths
are nearly equal, with a;;:a5;:a5,::1.03:1:0.97 and a,,
=5.50 nm [38]. Since the scattering lengths satisfy a3,
=a,,a,, the two species experience dynamical phase sepa-
ration and can strongly repel each other [38]. In the absence
of the em coupling between the different components the
interatomic interactions of the two %’Rb components do not
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mix the atom population and the atom numbers of both spe-
cies are separately conserved.

The phase profile of the driving em field can be imprinted
on the matter wave by means of transferring the atomic
population between the two different internal levels. We as-
sume that all the BEC atoms initially occupy one of the
hyperfine states, let us say |2). Some population is then trans-
ferred from |2) to |1) by means of a Rabi pulse Q(r, 7). After
the pulse, the relative phase between the BECs in the two
levels is proportional to the phase profile of the Rabi field, as
indicated by Eq. (1). We may construct a phase profile for the
em field, where the node points of the field amplitude may
correspond to the topological singularities of the phase of the
em field. The em coupling provides then a method for im-
printing these topological singularities on the condensate. In
order to imprint a vortex ring on the z=0 plane, centered at
the z axis, we require the em field to exhibit a closed circular
phase singularity in such a way that in the close neighbor-
hood of the circular node the field is of the form

Q(r,1) = R(0[(p - po) +ivz] = R(1) 7e’”, (3)
where p= (x>+y?)"? and p, denotes the radius of the ring.
Here we have also defined n=[(p-py)*+7°z?]"* and @
=arctan[ yz/(p—po)]. The field amplitude (3) vanishes at the
ring (p=py,z=0) with the desired 277 phase winding along
any closed loop encircling the ring, representing one unit of
quantized circulation around the ring. The parameter y de-
scribes the anisotropy of the vortex core and y=1 corre-
sponds to an isotropic core. Once the phase is imprinted on
the BEC, the superfluid velocity of the atoms is obtained
from

V() = % Vo, @)

and the parameter y also determines the anisotropy of the
velocity field. For instance, close to x=p,, we have v(x,y
=0,z=0)=y/(x—py)€, and v(x=py,y=0,z) =1/(yz)€,. The
condensate excitations are reduced for the case of an isotro-
pic core y=1.

B. Imprinting a vortex ring

A technique to imprint a vortex ring on the BEC was
proposed in Ref. [3] by means of constructing an em field
amplitude which exhibits the desired form (3). This was ob-
tained using

O(r) = Qpla - f(x,y) +iB sin(kz)], (5)

Here the Rabi amplitude represents a coherent superposition
of a standing wave along the z axis, a constant field «, and
the field f(x,y), which could be a Gaussian field focused
weakly on the xy plane or, alternatively, a superposition of
two standing waves along the x and the y directions:

2
£ ) 6)

fle,y) = eXP<— z
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flx,y) = %(cos 2zx+ cos 2%) (7)

We assume p/ &~ 1 —a<1. Then by expanding Eqgs. (5) and
(7) to first order in p/& and k|z| <1, we obtain Eq. (3) with
po=&Vl—a and y=B&%k/2p,. Hence, a constant field with
three orthogonal standing waves, or, alternatively, with a
standing wave and a parallel Gaussian beam, are sufficient to
imprint a vortex ring on an atomic BEC. Moreover, this re-
sults in an isotropic vortex core with y=1 when we choose
a=1-(B&k/2)%.

The field configuration (5) is most suitable for microwave
(or longer wavelength) em fields for which the wavelength
N=2m/k is longer than the typical radius R of the BEC. For
optical fields A <R the em coupling would create multiple
copies of the ring, displaced from each other by \/2. How-
ever, even for optical fields it should be possible to shape the
wave fronts of the coupling lasers in order to avoid rapid
phase variation at the length scale N. This could be done,
e.g., by using microlens arrays [39], laser beams copropagat-
ing in the direction of the standing wave z, or beams with
the wave vectors nearly perpendicular to z. Here we show
that another alternative is to consider two-photon transitions
via some intermediate level |3) and use slightly different
wave numbers for the lasers. Consider the first transition
|2) —|3) to be induced by four copropagating laser beams,
one of which is weakly focused on the xy plane,

O, (r) = Qz (a— e—pzléz)eikz + g(ei(lﬁk')z _ ei(k—k’)z) .

(8)

Here we assume that k' <k and the coupling frequency
Q,=dy;-E3/h is in this case determined in terms of the
atomic dipole matrix element d,; of the transition |2)—|3)
and the positive frequency component of the driving electric
field E}. The second transition |3)— (1) is driven by a non-
focused copropagating field Q,(r)=0, exp(ikz), which can-
cels the rapid phase variation of (), along the z axis. In the
limit of large detuning A of the laser Q,(r) from the reso-
nance of the |2) —|3) transition, the effective Rabi frequency
for the |2) — |1)transition then reads

20,(NQ(r) 20,0,
A A

[a- eI iBsink'z].

)

This has the desired form (5). In addition, even though we
may have kR>1, it should be possible to choose k' <k, so
that k’'R=1. This allows us to create precisely one vortex
ring in the BEC.

In a more challenging scheme, one may construct an op-
tical lattice with a long periodicity [19] by means of super-
posing two separate two-photon transitions

Qy(r) =

| . o
sin[(kl _ kz)Z] — ;(elklze—lkzz _ e_’klzelkZZ)’ (10)
l

such that (k; —k,)R= 1. Here each exponent factor represents
a running wave transition by one photon.
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In the following, we demonstrate how the vortex ring
could also be imprinted using only two Gaussian laser beams
providing an experimentally simple scheme for a controlled
creation of vortex rings.

C. Imprinting a vortex ring using Gaussian beams

Here we show that a vortex ring defect can also be im-
printed on an atomic BEC in a controlled way by means of
two parallel Gaussian laser beams. The advantage of this
scheme, as compared, e.g., to Eq. (8) is the obvious simplic-
ity of the field configuration and the common experimental
availability of the beams. The complete expression of the
Gaussian laser beam reads

2
G(r,wg) = % exp[ikz —i arctanzz—0 + ikZII;(z)}
2
p
Xexp[— W(Z)z] (11)

where w(z)EwO\r’1+22/zg and R(z)Ez(1+z(2)/z2). Here w
represents the minimum beam waist and zp= wwé/ N is the
Rayleigh range, the distance over which the focusing is in-
creased to \2w, due to diffraction. In a weakly focused
beam, for p<wy, |z| <zo, G(r,w,) =exp(ikz—p>/w}).

We take the two Gaussian beams as a phase-coherent su-
perposition:

Q,(r) = Qo[ G(r,wo) + cG(r,wy)], (12)
for some complex c. It is straightforward to see that by
choosing

1 1
c=—exp[—p§(—2——,2>}, (13)
Wo Wo

the field configuration (12) exhibits a circular node at
(p=py,z=0) with the 27 phase winding around the ring. The
complete destructive interference of the two Gaussian beams
does not occur outside the plane of the minimum beam focus
size due to diffraction. By modifying the relative amplitude
and the focusing of the beams, the size of the ring can be
changed in a controlled way. The anisotropy of the core is
determined by

2 1 2,122
_ WoWg = (wg+ w7 Py

wowo’pok (4

In order to avoid the rapid phase variation of the Gaussian
laser along the z axis to be imprinted on the BEC, it is again
advantageous to consider a two-photon transition via some
intermediate level |3) using copropagating lasers, so that,
e.g., the field Q,(r) in Eq. (12) drives the transition
|2)—3) and a nonfocused copropagating field )5, exp(ikz)
drives the transition |3)—|1). In the limit of large detuning
A, the effective Rabi frequency for the |2)—|1) transition
then reads 2€)3,Q,(r)exp(-ikz)/A. The corresponding
spatially nonuniform laser-induced level shifts are
51(1‘) =3 | Q3l(r)|2/A+ 512 and 52(1‘) =7 | Qr(l‘)|2/A, where
Oy, is the effective two-photon detuning from the resonance
of the internal transition |2)—|1).
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FIG. 1. (Color online) The amplitude of the superposition of two
Gaussian laser beams at z=0 (on the left). The cylindrically sym-
metric amplitude exhibits a node point at py=1.5/. The constant
surface plot of a vortex ring in an atomic BEC (on the right) with
the phase profile imprinted from the two Gaussian laser beams. The
Rabi frequency e *23().. Here the beam parameters are wy=3.01,
wo=4.51, kI="1, k,1=6.86, and the radius of the ring py=1.51. As a
result of the imprinted phase pattern, the vortex ring slowly moves
along the beam axis.

In Fig. 1 we show an example of a vortex ring in a two-
component BEC, obtained by imprinting the phase profile of
the two Gaussian laser beams from Eq. (12). We use the
parameters of 3’Rb with the nonlinearity K51 =500 ol and
the radius of the ring py=1.51, where /=Vh/mw. The ring
occupies the level |1) with the atom numbers N,/N,=6.2.
For the chosen parameters, the vortex core is noticeably an-
isotropic with y=0.06. A more isotropic core, and a less
excited vortex, may be obtained, e.g., by decreasing the ra-
dius of the ring by means of changing the value ¢ according
to Eq. (13). For py=1.0/ we obtain y=0.12 and for
po=0.51, y=0.27. As a result of the nonlinear evolution and
dissipation, an anisotropic vortex core in an atomic BEC is
generally expected to relax towards an isotropic core shape.

Experimentally, one could prepare the phase-coherent
field configuration (12) using a single laser source which is
split in two and later recombined after appropriately modify-
ing the relative amplitude and the beam focusing. One pos-
sible experimental limitation might then be a slight misalign-
ment of the two recombined Gaussian beams. We also tried
field configurations with the propagating axes of the two
beams displaced. It is quite easy to show that the vortex ring
singularity Eq. (12) is robust against perturbations where the
two Gaussian beams are slightly modified.

D. Multibeam superpositions

Two beam configurations, such as Eq. (12), or more com-
plicated multibeam superpositions can also be prepared using
diffractive optical components. In particular, computer-
generated holograms and spatial light modulators may be
used to prepare the desired optical field superpositions which
are required to imprint the vortices on the atomic BECs. By
using a third Gaussian beam in Eq. (12) we may better opti-
mize the field parameters according to a steady-state vortex
ring solution, or, alternatively, to engineer some desired ex-
citations in the ring. With the superposition:

Qr(l‘) = Qo[g(r,WO) + Clg(r,Wl) + C2g(r,W2)], (15)

we may, e.g., choose the parameters ¢; and ¢, according to
the given vortex ring radius and the core isotropy, while w,
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wy, and w, may be optimized to determine the spatial profile
of the BEC wave function.

E. Knotted vortex lines

More complicated field superpositions than the one shown
in Eq. (15) have been successfully created using spatial light
modulators. In Refs. [40,41] a field configuration of four
optical Laguerre-Gaussian beams, with each exhibiting zero,
one, or two units of orbital angular momentum, were gener-
ated using a liquid crystal array acting as a phase mask and
controlling both the field amplitude and the phase. Such a
field superposition possesses a phase singularity forming a
closed knotted loop [42,43] (a torus knot) in a paraxial field
and, in principle, could also be imprinted inside a BEC, pro-
vided that the hologram has a sufficient spatial resolution in
order to allow the beams to be focused inside the atomic
cloud.

III. ENGINEERING VORTEX RECONNECTIONS
A. Preparing multiple vortex rings

We may also use the techniques described in the previous
section to imprint multiple vortex rings on the BEC. Gener-
ally this can be done by using multiphoton transitions, where
the effective Rabi pulse is of the form

Q) =ROIT[(p? = pf) + iz =25, (16)
j=1

where we write p(f)=[(x0)—xg))2+(y0)—yg))2]”2, represent-
ing n vortex rings on the plane z/'=0, centered at
(x(i)=xg),y(j)=yg) ,ZU)=Z(()j)), with the radius given by p(()j). All
the vortex rings in Eq. (16) do not need to have the same
orientation, but the axis r" may involve different spatial
rotations with respect to some fixed axis r. The exponent p;
in Eq. (16) denotes the topological charge of the vortex
ring j.

We numerically studied the preparation of two nonover-
lapping vortex rings by integrating the coupled GPE (1) in
the presence of the em coupling. In Fig. 2 we show an
example of two vortex rings with the radii p,=0.9/ prepared
on the z=0 plane. Both rings are displaced from the trap
center in opposite directions by 1.5/. Here the vortex rings
are created by means of the em field Q(r-r;)Q(r-r,) (for
r;=-r,=1.5y) with Q(r) determined by Egs. (5) and (6)
The wavelength =26/, 8=8.3X107, and the width
£=30l. We use the parameters of °’Rb with the atoms
initially occupying the level [2). The nonlinearity is
Ky =430hwl®. A short pulse tw=0.1 is applied to transfer
population to the level |1) in order to prepare the vortex
rings. This could be, e.g., a two-photon transition via some
intermediate level |3), where the field Q(r—r,) drives the
transition |2) — |3) and the field Q" (r—r,) drives the transi-
tion |3)—|1). Alternatively, we could have used the Gauss-
ian laser beams (12), e.g., driving a two-photon A three-level
transition, where the beams inducing the second transition
are copropagating with the first pair of beams, but are mul-
tiplied by the phase factor (—1) and displaced in space by the
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FIG. 2. (Color online) The snapshot images of the isosurface
plots during the time evolution of two merging vortex rings in a
trapped two-component BEC. We show the BEC component con-
taining the two vortex rings, while the other component exhibits a
uniform phase profile. The initial state was prepared by means of an
em coupling field between the two BEC components, which im-
prints the desired phase singularities on the matter field while
changing the internal level of the atoms. In order to relax the energy
of the initial state, we integrated the wave functions in imaginary
time for the duration of rw=0.06 before the real time evolution. We
show the isosurface plots at times tw=0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
1.0, and 1.4.

amount of 3/. By modifying the strength and the duration of
the Rabi pulse we can control the excitation of the vortex
ring pair. This allows us to study the dynamics of the vortex
ring interactions for different initial conditions.
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B. Vortex ring reconnections

Vortex reconnections represent basic vortex-vortex inter-
actions. These are of fundamental interest in their own right,
as well as providing a useful model to investigate superfluid
turbulence which can be considered as being due to the dy-
namics of a dense tangle of quantized vortex filaments [1].
The evolution of such a tangle crucially depends on the vor-
tex reconnections. The vortex reconnections also have an
analogy with the models describing the evolution of cosmic
strings in the early Universe cosmology [44]. At very low
temperatures, with negligible normal fluid fraction, the su-
perfluid turbulence and the vorticity is expected to decay as a
result of sound emission [45]. Sound emission may occur
due to the vortex motion or reconnection.

The proposed techniques of vortex imprinting provide a
useful tool in investigating vortex reconnections in superflu-
ids. Atomic BECs can be cooled down to very low tempera-
tures with negligible normal fluid component. By modifying
the pulse parameters of the imprinting process we may also
control the level of excitation in the system. Moreover, vor-
tices in two-component BECs offer several additional advan-
tages. First, it is possible to monitor the system in real time:
The filling of the vortex cores by the other BEC significantly
increases the core size, as compared to vortices in a single-
component BEC, and makes them observable in situ, even
without a ballistic expansion. Second, the nonlinearity of the
vortex excitations can be easily controlled by varying the
relative density in the two components (via the strength and
the duration of the coupling laser fields).

The vortex reconnections have previously been numeri-
cally studied using the GPE for the parallel and crossed
line vortices [46,47] and for colliding vortex rings [48,49] in
a homogeneous single-component BEC. In Refs. [48,49]
two vortex rings with an initial relative velocity were scat-
tered from each other, varying the angle of intersection and
the impact parameter. As a result, a substantial loss of vortex
line length was observed, which was attributed to sound
emission.

As an application of the multiring imprinting techniques,
we have shown here how to create two initially static vortex
rings in a trapped inhomogeneous two-component BEC,
which will later interact and collide. The two vortex rings on
the same z=0 plane were imprinted using em fields, as ex-
plained in the previous section. Due to the filling of the vor-
tex core by the second BEC component, an isolated vortex
ring would approximately remain in the same location in the
trap on the time scale of the trap period. If the initial sepa-
ration of the rings is sufficiently small, the vortex rings are
attracted to each other and merge locally, after the em cou-
pling fields have been turned off.

Qualitatively, the long-range interaction energy between
vortex filaments s and s” with the vorticity « and " may be
obtained, analogously to the magnetostatics, from [50]

nkk' ds - ds’

87 J |r(s)—r(s)| (17)

Two antiparallel vortex filaments are attracted to each other.
Once the vortex cores are close enough, they merge at the
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point of the closest approach. Since the facing segments of
the two similarly circulating rings on the same plane repre-
sent vorticity with the opposite circulations, these segments
are attracted to each other and eventually they annihilate.
Consequently, the two rings are joined together. By integrat-
ing Eq. (17) with an appropriate cut-off, we may also obtain
the energy of an isolated vortex ring as Exnpg[In(epy)—2],
where n denotes the density and the parameter € depends,
e.g., on the core thickness [47,51] and where p, denotes the
ring radius. Close to equilibrium the reduction of the vortex
core length can indicate the emitted sound energy [52].

In the numerical studies of the two-component BEC dy-
namics, we use initial states corresponding to different
strengths of excitation. These could be created by changing
the strength and the duration of the em pulse in the imprint-
ing process. However, for computational simplicity, here we
always use the same pulse parameters, but relax the initial
state by means of varying length of imaginary time evolution
before the actual dynamics.

In Figs. 2 and 3 we show the snapshot images of the real
time evolution of the two vortex rings after they were pre-
pared by means of the Rabi coupling, as explained in the
previous section. The images were obtained by numerically
solving the coupled GPE (1) for the trapped two-component
BEC in the absence of the coupling fields (). The integration
was performed using the split-step method [53] on a spatial
grid of 1283, The 3D mean-field dynamics correspond to the
parameters of *’Rb experiments, as described in the previous
section. The number of atoms in the two components
N,=0.86N and N;=0.14N, where the total atom number
N=4301/(4ma,,).

In Fig. 2 the initial state, obtained from the numerical
integration of the Rabi coupling, was relaxed by means of
imaginary time evolution of duration w=0.06 before the dis-
played real time evolution. In Fig. 3 the initial imaginary
time evolution was tw=0.02 and the merging process of the
two rings is more violent. During the imaginary time evolu-
tion we separately normalized both wave functions ¢; and
i, corresponding to the separate conservation of the atom
number in each BEC component in the absence of the cou-
pling field. We also show the total condensate energy density
€,, averaged over the spherical angles,

e(r)=— f de d(cos 6) X, wZ‘<Ho+%‘|¢f,~|2> i,

1
4 ij=12

(18)

as a function of the BEC radius and evolution time in Fig. 4
for the cases shown in Figs. 2 and 3, as well as for cases
without the initial imaginary time evolution and for the
imaginary time propagation of duration tw=0.1. In Fig. 5 we
show the contribution €; to the energy density which only
depends on the atom density in the component |1) containing
the vortex rings:

K1)

1 .
El(V)E_jd(Pd(COS ﬁ)wl(Ho+7|¢1|2>lﬂ1- (19)

4
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FIG. 3. (Color online) The same system as in Fig. 2, but the
initial state of the real time evolution was obtained by means of
propagating the wave functions in imaginary time for tw=0.02. The
resulting reconnection process is more violent than the one dis-
played in Fig. 2. We show the isosurface plots at times tw=0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.8, and 1.0.

In Figs. 2 and 3 the vortex rings are attracted to each other
as their motion is also bent downwards. It should be empha-
sized that in the two-component BEC the vortex rings are
initially static, there is no thermal atom component, and, af-
ter the preparation of the initial state, the dynamics is purely
Hamiltonian with conserved total energy and no added dis-
sipation term. In order for vortex rings to merge, they need to
lose energy. In Figs. 4 and 5 we can clearly identify the
released excess energy as sound, radiated outwards, and
transformed into surface excitations. It is the turbulent dy-
namics triggered by the reconnection process which locally
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FIG. 4. The BEC energy density €,(r,r) averaged over the
spherical angles during the reconnection process. The initial imagi-
nary time evolution wr=0 (top left), wr=0.02 (top right), wr=0.06
(bottom left), and wr=0.1 (bottom right). The white color indicates
a high value of the energy density. The sound waves first propagate
towards the trap center when the vortex cusp is generated as the two
rings merge. The energy is then radiated outwards and is trans-
formed to surface excitations. The straight vertical stripes are an
artifact of the numerical averaging procedure over the spherical
angles.

produce an effective dissipation mechanism for the vortex
configuration to relax. We can enhance the sound emission
and the reconnection dynamics by considering a more rapid
imprinting process. It is interesting to compare the merging
vortex rings to the formation of a vortex lattice in a rotating
BEC. In the latter case turbulent dynamics are triggered by
the rotating potential and the vortex lattice can locally relax
in the classical mean-field dynamics, even at 7=0 and with-
out any explicit damping term [2].

1.5

1.0
wt
0.5

FIG. 5. The energy density €;(r,t) averaged over the spherical
angles, depending only on the density of the BEC component con-
taining the vortex ring. We show the same cases as in Fig. 4. In the
second and the third figure one may clearly recognize the energy of
the emitted sound pulses in the fifth and the sixth images of Figs. 2
and 3.
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The reconnection process in Fig. 4 begins with a signifi-
cant concentration of energy towards the trap center, as en-
ergy is propagated towards r=0. The vortex motion and the
vortex reconnection process excite kelvin modes, resulting in
a gradually decreasing vortex line length. The kelvin mode
excitations of the vortex cores are clearly observable in the
first snapshot images of Figs. 2 and 3. The generated vortex
cusp at the reconnection region detaches from the merging
vortex rings and is emitted as sound radiation. In the process
the vortex energy is converted into a sound pulse which
propagates away from the vortex. We observe large emission
of vortex rings and/or rarefaction waves [54] at the recon-
nection region, e.g., in Fig. 2 at time rw=0.6 and in Fig. 2
around 0.5<tw=0.6. The emission events can also be seen
in Fig. 5 as high energy regions close to the origin. The
emitted sound energy results in strong surface excitations of
the BEC (displayed in the last two images of Figs. 2 and 3
with the fastest sound pulses (shortest wavelength phonons)
reaching the surface first.

IV. USING ULTRASLOW LIGHT IN THE STUDIES OF
VORTEX COLLISIONS

We now turn our attention to an alternative method of
vortex engineering, the light roadblock [6], which relies on
imprinting density rather than phase modulations. In this
study, we consider a two-dimensional geometry, where the
vortices act as point particles, and consider the creation and
subsequent interaction of multiple vortices. Due to the ab-
sence of absorption in the EIT, light is able to propagate in a
sufficiently narrow geometry. We propose a method of using
the light roadblock to create in a BEC two vortex pairs (two
closely spaced vortices of opposite charge), which will col-
lide and exhibit interesting dissipative dynamics and annihi-
lations, hitherto unobserved experimentally. To understand
the behavior quantitatively, we present a numerical study of
vortex pair collisions in a regime in which the dissipation
becomes a dominant mechanism.

A. Dissipation in vortex pair collisions

One of the fascinating aspects of vortices in current BECs
is the fact that the relatively small nonlinearity leads to many
finite compressible effects. In geometries where the system is
essentially two dimensional, due to tight confinement in one
direction (we will label y here), vortices act as point par-
ticles. In an incompressible fluid, they are indestructible par-
ticles that interact via conservative potentials, moving al-
ways according to the velocity fields created by neighboring
vortices. For example, two vortices of like charge will orbit
each other at some constant radius, while oppositely charged
vortices will form pairs which travel along straight lines
maintaining the same distance d between them [15]. In either
case, the velocities are inversely proportional to the distance
to the neighboring vortices. However, when the distances
between vortex pairs become comparable to the healing
length (which is the characteristic size of vortex cores), this
picture breaks down. For example, in the case of corotating
vortices of like charge, the pair will emit sound radiation and
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slowly drift to larger distances, lowering their energy [55].
The radiation occurs due to acceleration of the vortices as
they undergo circular motion. Finite compressibility effects
have also been important in explaining discrepancies be-
tween experimental and theoretical descriptions in excita-
tions of vortex lattices [56].

The dynamics of multiple vortex configurations, particu-
larly ones containing vortices of both circulations, can be
particularly rich. For example, scattering between vortex
pairs has been studied [57] as well as the existence and be-
havior of solitonlike structures in 2D geometries, and how
they can dynamically form from closely spaced vortex pairs
[58]. Previous studies have emphasized small perturbations
of vortex motion due to compressibility effects. The dissipa-
tion is analogous to the length shortening and sound emis-
sion which occurs with colliding rings in 3D geometries
studied above and in Refs. [48,49]. When the dissipation is
sufficiently strong, the vortex motion can be strongly af-
fected and the qualitative behavior will change. However,
this has not been studied extensively in 2D geometries, and
such effects have yet to be observed experimentally. We will
see how the light roadblock allows us to engineer vortex pair
collisions where this dissipation is strong and annihilations
result in certain regimes.

B. Ultraslow light propagation and the light roadblock

We briefly review here the method of the light roadblock,
based on slow light, to create large amplitude, small wave-
length excitations, and outline our modeling of this system.
Slow light is based on EIT [10], a quantum interference ef-
fect that permits the propagation of light through an other-
wise opaque medium. A coupling laser, resonant with some
initially unoccupied hyperfine state |2) and an optically ex-
cited state |3), is used to create the interference resulting in
transparency (vanishing resonant absorption), a very large
dispersion, and ultraslow group velocity of a probe pulse,
resonant with an initially occupied state |1) and |3). Probe
light pulses have been slowed down and spatially com-
pressed (compared to their free space propagation values) by
up to eight orders of magnitude [7-9]. As the probe propa-
gates through the BEC, it puts the atoms into spatially de-
pendent superpositions of |1) and |2) with the relative phase
and amplitude of the wave functions (the atomic coherence)
reflecting the amplitude and phase pattern of the input probe.
As we will see below, combining this technique in BECs
with the recently developed experimental technique of the
light roadblock [6], whereby a fast spatial variation of the
coupling field is introduced, provides an efficient method of
inducing phase singularities on matter waves.

Here we focus on the case of a strongly anisoptropic trap,
leading to essentially 2D dynamics. In Ref. [6], the geometry
was truly 3D and in Ref. [32] the 3D aspects of the resulting
topological structures in a similar system were investigated.
We specifically consider the BEC occupying two hyperfine
levels |1) and |2). These are connected, respectively, to a
common excited state |3) by orthogonally propagating, reso-
nant laser fields: the +z propagating probe ()5 and +y propa-
gating coupling (),3, each of wavelength A. The excited state
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|3) decays at I, forming a A three-level structure. In the
slowly varying envelope (SVE) approximation for the light
fields ;3 (with the rapid phase rotation at the optical fre-
quencies and optical wave numbers factored out) the Max-
well’s equations read [59]

<_ " Z_)QB = — f130N[ Q3| [* + Qs hpe 7],
(20)

J 140 " ik(a—y
((9 + __)923 == f30N[ Q3| * + Q391 ]
y cdt

(21)

Here N is the initial total number of BEC atoms, k=27/\, fi3
are dimensionless oscillator strengths, and o= 3N\%/27r is the
resonant cross section. In Egs. (20) and (21) we have adia-
batically eliminated 5 by assuming that the dynamics of the
internal atomic degrees of freedom and the light are much
faster than the external dynamics [59,60]. The BEC wave
functions ¢, ¢, evolve according to generalized GPEs:

) ih * —ik(e—e€;
ihy;= (Ho + % Kik|lﬂk|2> Wi— F[|Qi|2¢i+ 0, Qe Keime)],

(22)

where i=1,2,j#i and €,=z, €=y. The last term in Eq. (22)
results in both coherent exchange between |1),]2) as well as
absorption into |3). The phase factors assure that atoms co-
herently coupled into |2) experience a two-photon momen-
tum recoil relative to the nearly stationary |1) component. In
our model, atoms which populate |3) and then spontaneously
emit are assumed to be lost from the BECs.

If one were to input a weak (|Q;] <|Qy]|) free space
pulse of some length L, into a BEC, simultaneous solution
of Egs. (20) and (22) reveals that the pulse is compressed
to a length (V,/c)L, where the group velocity is
V,=[Qp3*/Tf130N| % as it propagates through the BEC.
Any phase and amplitude features along the longitudinal di-
rection are similarly compressed while the transverse fea-
tures are unaffected. While the usual description of slow
light propagation depends on the weak probe assumption
(]3] <|Qs3|), the basic transfer of amplitude and phase
patterns works even when this assumption is not strictly
satisfied [59].

Spatial modulation of the input coupling field along z is
then used to vary the speed and length of slow light pulses as
they propagate through the BEC. In Ref. [6] this variation
was accomplished by using a razor blade to block the cou-
pling field from the BEC in the z>0 region so near z=0 the
coupling intensity quickly varied from some large value to
zero. In this region, the probe beam is slowed to zero group
velocity and the length becomes arbitrarily small. At the
same time the probe to coupling intensity ratio becomes
large in this region, and so the fraction of atoms coupled into
|2) becomes large. The result is a very narrow, large ampli-
tude, density defect in the original condensate internal state
[1), with the atoms in this region coupled into the other
stable internal state |2). Because of the large photon recoil in
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the orthogonal geometry, atoms transferred to |2) leave the
defect region in =<1 ms, leaving an empty hole in a single
component BEC. This method is particularly useful for in-
ducing density features in BECs smaller than the experimen-
tal optical resolution of the system, as the spatial compres-
sion at the roadblock occurs due to the slow light
propagation effects and not focusing. This is particularly
valuable in creating topological defects, since their charac-
teristic length scale, the healing length, is typically <1 um.
Numerical simulation of the >’Na experiment in Ref. [6] in-
dicates that density defects~2 wm long (and nearly 100%
depth) were being created even though the spatial variation
of the coupling field (which is limited by optical resolution)
was about ~10 um. This interpretation was further sup-
ported by the fact that the density defects of the features
were unobservable in in-trap absorption images but were
clearly visible after 1 ms of free expansion.

C. Inducing vortex pair collisions with a light roadblock

In the original experiment [6] the imprinted density de-
fects were seen to subsequently break up into a series of a
solitons, due to the superfluid analog of shock waves. These
solitons, in turn, broke up into pairs of vortices via the snake
instability [11-13]. We now use our model to see how these
pairs of vortices will collide with each other, providing a
system in which to observe dissipative vortex dynamics.

We show an example of how this comes about in Fig. 6.
In this example we consider a BEC with repulsive interac-
tions in a trap with much stronger confinement along the y
axis, with the trap frequencies satisfying w,> w,, @, so that
the 2D limit of the GPE is valid. We assume that the defect
has been created using the light roadblock technique, as ex-
plained earlier. Moreover, after the light fields have been
turned off, we assume that the BEC component |2), which is
initially filling the density defect in |1), is instantaneously
coupled out of the trap due to the photon-induced recoil, as
in the original experiments [6]. Then the BEC dynamics ap-
proximately follows from the single-component 2D GPE for

#(x,z), when we write ¢,(r)= ¢(y)i(x,z), in terms of the
ground state harmonic oscillator wave function ¢(y) along
the y axis:
Y W’ o om0, 5, 2|7
ih | EV + E(wzz + 0 x?) + k| |,
(23)

where i,p=k11/1,\2, with I,=\h/mw,. The additional
density-dependent contribution to the scattering length in 2D
is negligible when 2l ,/a>In(87"*;nypa) [61], where

nop=N| > denotes the 2D density. In the numerics, we
choose w,/w,=3.81 and the nonlinearity K2D=2360hwzl§
(I.=Vh/mw,). The numerical results depend on the dimen-
sionless nonlinearity K,,= «,p/ hwzl§=2\«’%Na/ Ly, so our
results are unchanged in any rescaling of the parameters
which maintains constant Na/l, and [,/1,, provided that the y
confinement remains large enough for the 2D GPE (23) to be
valid.
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FIG. 6. The evolution of a 3 um (1/e half-width), full depth
defect in a sodium BEC at the times indicated. Qualitative features
of the evolution are explained in the text. The density scale refers to

the normalized 2D density |i(x,z)|?.
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We then remove atoms from the relaxed ground state to
create a narrow (~0.71, half width) density hole, with 100%
of the density removed along the central z=0 axis. The GPE
(23) was propagated with a Crank-Nicholson algorithm with
an equal spaced grid (300 points in x and 600 in z), with time
steps 1.65X 107"/ w_. Both were varied to assure the results
were not effected.

To make the connection with experimental parameters, we
quote our results in terms of **Na parameters, which have a
scattering length a=2.75 nm, and choose a trap w,=2m
X21 Hz, giving [,=4.6 um and defect size ~3 um. The
ground state BEC in this trap has a central peak density of
nyp=1.5x10""%cm™ and the superfluid healing length at

the cloud center is £~ h/(2muyp| 41?2 =0.4 um.

In the limit of small amplitude and large wavelength, the
imprinted defect would split into two counter-propagating
sound waves [62]. However, due to the nonlinearity of the
excitation (and the small length scale) [6] it here sheds off a
series of a gray solitons [63], as seen in the snapshot at 5 ms.
In addition, the slowest, and deepest soliton has begun to
curl due to the snake instability, and vortices have begun to
form. Because angular momentum is not being imparted to
the system, vortices are formed in pairs of opposite charge.
Investigation of the phase shows that all the vortices formed
are singly quantized.

At 15 ms each quadrant contains a line of three vortices
(alternating in the sign along each line). Note that here they
are closely spaced so their density profiles overlap, and the
identification of the vortices is done by finding singularities
in the phase profile. Each vortex induces a circular velocity
field about it, with the magnitude falling off as the inverse of
the distance from the vortex center, and the direction is de-
termined by its charge. The motion of each vortex is gov-
erned by the velocity field of the condensate, which is typi-
cally dominated by the velocity field induced by nearby
vortices. In our example, this causes each of these lines to
spin in pin-wheel fashion. In the 17.5 ms frame, this motion
has induced collisions between pairs of vortices (from x>0
and x <0), resulting in annihilation of the vortices, with the
energy carried off in sound waves, (seen as curved density
defects) which quickly propagate towards the condensate
edge and break up. What remains are four vortices, as seen at
39 ms. At 53 ms these vortices form two vortex pairs, that,
due to the small distance between each pair, move very
quickly towards the condensate center, on a collision course.
Upon close approach with the other pair, the vortices make
very sudden 90 degree turns and switch partners. Associated
with this collision is a rather noticeable sound pulse resulting
in a ringlike shape, seen at 57.5 ms. However, the four vor-
tices survive and due to their interaction with the BEC edge,
are sent around the edge of the BEC (79 ms) and eventually
back along the same collision course (116 ms). This time the
pairs are so close together that their density profiles greatly
overlap (compared with the first approach, 53 ms). Upon the
second collision, at 122 ms, rather than make the 90° turn,
the vortices are destroyed (no phase singularities are visible
after the collision) and the density defects propagate through
each other and continue along the z axis (123 ms).

This sequence of vortex dynamics demonstrates a myriad
of interesting features associated with the finite compressibil-
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ity of the superfluid. In the limit of no compressibility, there
is no sound emission and the vortex dynamics are completely
conservative. In the absence of effects associated with the
background condensate density, a vortex pair collision would
look much like the collision at 57.5 ms, but with no associ-
ated sound emission, and with the size of the outgoing vortex
pairs d (at 57.5 ms), the same as the incoming size
(53.0 ms). However, due to the finite speed of sound, the
vortices can exchange energy with phonons, dissipating
some of their energy, as in the first collision of pairs at
57 ms, and in some cases annihilating, as in the second col-
lision at 122 ms. In fact, the dissipation experienced during
the first collision is what ultimately lowered the energy of
each vortex pair, causing the pairs to be even smaller as they
entered the second collision.

We note that the number of vortices created with the light
roadblock and their subsequent dynamics can be controlled
both by the size of the defect (which is ultimately controlled
by the number of photons in the input probe pulse) and an-
isotropy in the x-z plane. For example, in Ref. [14] it was
shown how a more circular shaped BEC leads to the produc-
tion of many more vortices in each soliton. This geometry
would be more favorable for minimizing effects due to BEC
density variations. A sufficiently elongated trap would pro-
duce only two vortices per soliton, and may be more useful
for tightly controlling the vortex trajectories and thus ensur-
ing that a direct collision is induced.

D. Numerical study of dissipation
in vortex pair collisions

To study this collision induced dissipation more system-
atically, we performed a series of numerical calculations
of vortex pair collisions in a homogenous BEC. This
was accomplished by first relaxing a condensate in a trap
consisting of a large square flat potential surrounded by
steep trapping walls. The product of the homogenous nor-

malized 2D density and the nonlinearity x,p| /”)|? determine
the characteristic length scale (the healing length) ¢

=h/Q2myp| P2, speed of sound co=(kyp | P02/ m)2,

and time scale fo="h/k,p| #¥|%. The 2D GPE (23) can then
be renormalized into dimensionless form and we quote our
results for this section in these units. Our homogenous trap
region was chosen by 78X 78¢, and for numerical calcula-
tions, the trap was broken up into a grid with spacing 0.21¢.
Because the system is much larger than the vortex spacings
we expect { to be the only important physical scale in the
problem.

After relaxation we then impose four vortices: positive
charge ones (clockwise velocity circulation) at (x=7.4¢,z
=14.70) and (-7.4¢,-14.7() and negative ones at
(=7.4£,14.7%) and (7.4£,-14.7{). In each case we impose
the ¢*'® phase and a numerical estimate for the density pro-
file [15]. This configuration is then relaxed further. As it
relaxes, each vortex pair shrinks (i.e., the vortices drift to-
wards x=0 and towards each other); bringing vortices of
opposite charges together lowers the overall energy. We then
stop this relaxation at various times and begin a real time
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FIG. 7. Examples of vortex pair collisions, with each row show-
ing two snapshots of a separate simulation with different initial pair
distances d;,. Note that here white indicates high density (in con-
trast to Fig. 6). The left (right) hand column shows the vortices
before (after) the collision of the pair. The initial distances of the
pairs are, from top to bottom, d;,/{=7.0, 5.4, 4.6, and 3.3. The
arrows in the top row indicate the vortex direction.

evolution of the GPE. The circulations of the vortices are
such that the pairs move towards each other and collide. In
this way we can systematically study how vortex pairs of
various initial sizes d, act upon collision. For both relaxation
and propagation of the GPE we used a Crank-Nicholson al-
gorithm, with time steps 0.01¢,.

Several examples of collisions are shown in Fig. 7. In the
top example, d;,=7.0{ and the vortices travel along the paths
indicated by the arrows. Upon collision the vortices turn 90°
and switch partners. There is barely a perceptible sound
wave upon the collision. This sound radiation is due to the
sudden acceleration experienced by the collision. In the sec-
ond row d;;=5.4{, and a noticeably larger sound wave is
generated (due to the larger acceleration experienced by a
smaller, and therefore faster, pair). Even though the density
profiles of the pairs significantly overlap, the phase singulari-
ties remain in the wave function ¢, after the collision as the
vortices travel out. This example is analogous to the first
collision in Fig. 6 (57 ms). In the third row, d;,=4.6¢. In this
case, the sound wave is bigger still, and the outgoing vortices
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FIG. 8. (Color online) (a) The trajectories (specifically of the
phase singularities) followed by the upper-right vortex for several
different input sizes d;,. The arrow lengths are proportional to the
observed velocity of the pairs at z=10{ (with the longest arrow
corresponding to 0.48c¢). In four of the cases the vortices annihi-
lated at the locations indicated with the dots. In the other cases, the
phase singularities survived the collision. (b) For a series of cases,
we plot the incoming pair size d;, (calculated when they are at
z==x10¢) versus the outgoing size d;, (when they reach x=x10¢).
(c) The energy of the vortex pairs versus the input distance d (black
dots), calculated by taking half the energy of the two vortex pair
configuration above the ground state energy. The horizontal line
indicates the point at which the phase singularities disappear. The
open circles (blue) then indicate the pair energies, calculated via the
observed dy.

have completely merged. Examining the phase indicates also
that the phase singularities annihilate shortly after the colli-
sion. These structures bear resemblance to the “lumps” stud-
ied in [58]. In the bottom case, d;,=3.3¢, the vortices anni-
hilate early on in the collision, before the trajectories of the
vortices have been significantly altered, and the remaining
density waves simply pass through each other. This is similar
to what happened in the second collision of Fig. 6 (122 ms).

It is interesting to observe how the sound wave energy
emission pattern is strikingly different between the third and
fourth cases of Fig. 7, with the energy emission primarily
horizontal in the former and vertical in the latter. During the
collision, sound is constantly emitted, but the majority of the
energy is released at the moment of annihilation. In the
former case, the annihilation occurs after the vortices have
made a nearly 90° turn and the residual energy propagates in
this direction. In the latter case, the annihilation occurs be-
fore a significant change in direction, thus sending most of
the energy away in the original (vertical) direction. We also
observed an intermediate case (d;,=4.2¢), in which the sound
energy propagated away with near perfect cylindrical sym-
metry.

In Fig. 8(a) we plot a series of trajectories followed by the
vortices during these pair collisions (due to the symmetry, we
only plot the vortex in the x>0,z>0 quadrant in each case).
Initially all are following a trajectory almost purely in the —z
direction, with velocities proportional to the arrow lengths in
the figure. The input size of the vortex pairs d,, is twice the
initial x position. For sufficiently large vortex pairs d> ¢ the
velocity varies as 1/d, in agreement with the theory of an
incompressible fluid, however, as d becomes comparable to {
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the velocity begins to saturate, reaching a value 0.48c¢, for
the smallest pair we observed, d;,=2.18{. The phase singu-
larities disappeared when the GP relaxed the vortex pair sizes
smaller than this and became akin to 2D-soliton structures
[58]. As each vortex approaches the counter-propagating pair
near the origin, it begins to feel the pair’s influence and turn
to the +x direction, eventually forming a new pair with its
counterpart in the other pair. Again, for d;,> { vortices, the
system is conservative and the new vortex pairs propagate
out with the same size d,,=d;,. However, as we saw in Fig.
7, large sound waves emit energy for smaller vortex pairs,
and as a result, the outgoing pairs have lower energy and
thus d,,<d,. The outgoing versus incoming sizes are plot-
ted for a series of cases in Fig. 8(b) and the trend towards
more dissipation for smaller d;, is clearly seen. For the four
smallest d;, plotted in Fig. 8(a), the dissipation is sufficient to
induce an annihilation event at the locations indicated by the
dots [thus these cases are not plotted in Fig. 8(b)].

Since the fundamental mechanism here is energy dissipa-
tion via sound emission, it is useful to analyze the results
from an energy point of view. The power dissipation from
vortices is proportional to the acceleration squared. This fol-
lows from the equivalence of the GPE superfluid dynamics
to (2+1)-dimensional electrodynamics, with vortices re-
placed by charges and sound by electromagnetic radiation
[55,64,65] and can also be demonstrated numerically [66]. A
rough estimate of the scale of the acceleration can be ob-
tained in the incompressible limit. The incoming velocity is
Uin~ Colld;, and, due to the 90° turn this sets a scale for the
total velocity change. The time of the interaction (the time
during which acceleration is taking place) will be roughly
d;,/v;,. Combining these considerations we estimate the time
integration of the acceleration squared to be ~{3c3/d;,, thus
we expect a strong dependence of the energy dissipation on
d;, once it is comparable to {. Meanwhile, the energy of a
vortex pair appears as u In(ad/{), where a is a constant of
order unity [15]. When the dissipation is large enough so that
the outgoing pair size would be d,,<2.18¢, the phase sin-
gularities will disappear during the collision. While this
gives us an order of magnitude estimates, numerical analysis
is required to get the correct coefficients and also because the
incompressible results begin to break down in the interesting
regime.

To calculate the energy dissipation in our results, we cal-
culate the energy of our relaxed wave function at the begin-
ning of each simulation. By subtracting from this the ground
state energy (without vortices) and halving the result (since
there are two vortex pairs), we obtain a vortex pair energy
as a function of size E,;,(d). This quantity is plotted for each
dy, as black dots in Fig. 8(c). The horizontal line indicates
the point at which no phase singularity was observed
(d<2.18¢). We then plot, using the observed outgoing size
d,: and our numerically calculated energy dependence
Eir(d), the outgoing pair energy and plot it versus dj, as
open circles. The difference between the dotted curve and the
curve denoted by open circles thus indicates the energy car-
ried off by phonons in each case. Fitting to the above ex-
pected dependence shows a dissipation rate Su({*/ dfn) with
£=0.0033 but we note that a fit to a 1/d;, behavior works
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better (presumably because the scaling slightly changes as
d;,~ £). For the four smallest incoming pairs, the energy dis-
sipation was large enough so that the pair energy fell below
the horizontal line and the vortex phase singularity was
eliminated. Because ¢ is the defining scale in the problem,
this threshold for annihilation d;,~4¢ should hold for any
head-on collision of two vortex pairs. In general, the angle of
collision will play a role in this threshold.

V. CONCLUSIONS

We investigated methods for imprinting desired patterns
of phase singularities on atomic matter waves by means of
em fields inducing transitions between different hyperfine
levels of the atom as well as by means of controlling the
ultraslow light propagation inside the atomic cloud. By ap-
propriate field superpositions one may construct phase sin-
gularities around the node points of the em field amplitude
which can then be imprinted on the BECs using coherently
driven atomic transitions. In particular, we showed that a
simple superposition of two Gaussian laser beams, which
exhibit a different beam waist, is sufficient to imprint a phase
singularity forming a closed circular loop with a 27 phase
winding around the loop. This provides a controlled method
of creating vortex rings on atomic superfluids, where the
size, the position, and the orientation of the ring can be en-
gineered by modifying the parameters of the beam superpo-
sition. Moreover, we showed that the imprinting techniques
can be generalized for imprinting vortex ring pairs and mul-
tivortex systems which are especially interesting in the stud-
ies of vortex reconnections. The experimental technology of
diffractive optical components, such as optical holograms,
may be particularly useful in generating the light beams with
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the desired phase and the amplitude profiles. We investigated
in detail one specific example of vortex reconnections result-
ing from the imprinted phase profile by considering two
merging vortex rings in a trapped, two-component atomic
BEC. We used the parameters of *’Rb experiments and cal-
culated the energy distribution in the atom cloud during the
reconnection process.

In addition to direct imprinting of phase singularities on
the BECs, we also explored the recently developed experi-
mental technique of preparing defects by means of abruptly
distorting the ultraslow light propagation in atomic BECs
with light roadblocks. We showed that in a tightly confined
2D configuration this technique is particularly useful in the
studies of point vortex collisions. Similarly to the reconnec-
tion dynamics of the vortex rings in an isotropic trap, we
explored the role of sound emission in the collision processes
of the point vortices and showed how the binding energy of
the pair can be dissipated during close range collisions. Suf-
ficiently large energy dissipation leads to the interesting phe-
nomenon of vortex annihilation.

Our results point the way towards a number of experi-
ments that can be implemented with present day cold-atom
and laser technology, and that could allow controlled experi-
mental investigation of complicated vortex interactions.
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