
Dissociation dynamics of a Bose-Einstein condensate of molecules

Michael W. Jack and Han Pu
Department of Physics and Astronomy and Rice Quantum Institute, Rice University, Houston, Texas 77251, USA

�Received 25 February 2005; published 29 December 2005�

An unstable condensate of diatomic molecules will coherently disassociate into correlated pairs of atoms.
This dissociation process exhibits very rich quantum dynamics depending on the quantum statistics of the
constituent atoms. We show that in the case of bosonic atoms Bose enhancement can lead to stimulated
dissociation, whereas, in the case of fermions Pauli blocking of the available states and a buildup of coherence
between molecules and atom pairs can give rise to incomplete dissociation of the molecules and transient
association-dissociation oscillations.
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The ability to create quantum degenerate molecules com-
posed of fermionic �1–3� or bosonic �4,5� atoms by tuning a
molecular level into resonance with the atomic states via a
Feshbach resonance �6–8� or by photoassociation �9,10� has
opened up an exciting new area of physics for exploration.
The case of diatomic bosonic molecules coupled to bosonic
atoms �b↔bb� has been shown to undergo coherent
association-dissociation oscillations �11� and there are pre-
dictions of Bose-enhanced phenomena in this system that
may lead to a, so called, superchemistry �12–15�. The case of
diatomic bosonic molecules coupled to fermionic atoms
�b↔ f f� has also received a lot of attention lately due to the
possibility of realizing a BEC-BCS crossover �16–18�. For
positive detuning from resonance �where two-body theory
predicts unstable molecules� molecules can be stabilized by
Pauli-blocking of the atomic states �19� and coherent popu-
lation oscillations have also been predicted to occur in this
case �20–22�. In these systems quantum statistics obviously
play an important role and it is becoming clear that atom-
molecule coherence generated by their coupling is one of the
key elements to understanding their equilibrium and non-
equilibrium behavior �20,22–24�.

In this paper we consider the production of correlated
pairs of atoms by the spontaneous dissociation of a pure
Bose-Einstein condensate �BEC� of molecules �25–28�. This
highly nonequilibrium, spontaneous-dissociation regime can
be reached by first creating a stable BEC of molecules far
from the resonance, then rapidly tuning through to the other
side of the resonance, i.e., ��0→��0, where � is the de-
tuning of the molecular level from the atomic continuum and
depends on the applied magnetic field in the case of a Fesh-
bach resonance or the detuning of the coupling laser field in
the case of photoassociation-dissociation. Once the molecule
level is above the atomic continuum the molecules will be-
come unstable and begin to dissociate into atomic pairs. For
a condensate in a zero momentum state the atoms are created
in correlated pairs of equal and opposite momentum centered
at k=�2m� /�. Correlated pair production by this method has
been discussed previously in the case of bosonic atoms
�12,13� and recently also in the case of fermionic atoms �29�.
Here we present a unified treatment of the dissociation dy-
namics of a molecular condensate which includes both the
boson �b→bb� and fermion �b→ f f� case.

Assuming the momentum spread of the molecular con-
densate is negligible compared to the mean momentum of
the emitted atoms, the Hamiltonian of the system can be
approximated by

H = ��a0
†a0 + ��

k
�k�bk↑

† bk↑ + bk↓
† bk↓�

+ �g�
k

�a0
†b−k↓bk↑ + a0bk↑

† b−k↓
† � , �1�

where a0 is the bosonic molecular mode and bk↑ and bk↓ are
the annihilation operators of the atoms and either satisfy
bosonic or fermionic commutation relations. �k=�k2 /2m is
the dispersion relation of the atoms and g is the coupling
between the closed channel �molecules� and the open chan-
nel �free atoms� of the coupled channels scattering problem
�6�. We have assumed that the atoms are in different internal
states denoted by ↑ and ↓ but the conclusions can be straight-
forwardly applied to the case of only one bosonic atomic
species. The total number of atoms, N=2a0

†a0+�k�nk↑+nk↓�
is conserved, where nks=bks

† bks is the number operator for the
atoms. As atoms of opposite spin and momentum are created
and destroyed as pairs, the number difference, nk↑−n−k↓, is
also conserved. In the boson case the correlation between the
atoms created via molecular dissociation is analogous to that
between photons created in a non-degenerate parametric am-
plifier �see �30� and references within�. Quite recently, the
pair correlations between fermionic atoms with opposite mo-
menta have been observed in the noise spectrum of photo-
dissociated cold molecules �31�, following the theoretical
proposal of Ref. �32�. This pair correlation does not require
the presence of a molecular condensate as it is simply a
consequence of the form of the Hamiltonian and arises even
in an incoherent dissociation process �such as from thermal
molecules�. On the other hand, only coherent molecular dis-
sociation, such as from a condensate, can give rise to atom-
molecule coherence and the related phenomena of coherent
association-dissociation oscilations �11�. This coherence—
characterized by a nonzero value of �a0

†b−k↓bk↑�—plays an
important role in the present work.

Given that the atoms are created in pairs, we can take
advantage of a formal mapping between pairs of fermion
operators and spin-1 /2 Pauli matrices to write the Hamil-
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tonian in a more natural form. This mapping has been ex-
ploited to determine the phase diagram of the BCS-BEC
crossover and to predict non-equilibrium atom-molecule
oscillations �20–22�. A similar mapping can be made
for boson pairs and we treat the two cases in parallel. We
define new operators by �k−=b−k↓bk↑, �k+=bk↑

† b−k↓
† and �kz

= 1
2 �nk↑+n−k↓�1�. It is easy to check that these operators

satisfy the commutation relations: ��k± ,�k�±�=0, ��kz ,�k�+�
=�k,k��k+, ��kz ,�k�−�=−�k,k��k− and

��k+,�k�−� = ± 2�k,k��kz, �2�

where the upper �lower� sign in Eq. �2� corresponds to fer-
mions �bosons�. The seemingly insignificant sign difference
in the commutation relations in the two cases leads to com-
pletely different dynamics.

Writing the Hamiltonian �1� in terms of these new opera-
tors we have �minus a constant�

H = ��
k

�2��k − ���kz + g�a0
†�k− + �k+a0�� , �3�

and N=2a0
†a0+�k�2�kz±1�. In the fermion case, this Hamil-

tonian describes an ensemble of independent two-level sys-
tems interacting with a single bosonic mode. The case of
identical two-level systems: �k=�0, is called the Dicke
model and is an exactly solvable model that has been exten-
sively studied in the quantum optics literature �see Ref. �33�
and references within�.

In the special case where the population in each mode is
small, ��nk↑+nk↓�	1�, throughout the dissociation process,
due to a large number of available states, we can make the
approximation that ��k− ,�k�+�	�k,k�, independent of
whether the operators describe bosons or fermions. In other
words, the underlying quantum statistics of the atoms are
unimportant and the Hamiltonian describes the coupling of a
single mode to a continuum of bosonic modes with a qua-
dratic dispersion relation. This model has been studied pre-
viously in the context of an atom laser �34�. Under the Born-
Markov approximation, which holds for weak coupling and
large � �35�, the molecules will experience a rather trivial
exponential decay and the final frequency distribution of the
atom pairs will be the standard Lorentzian.

To proceed further in the general case we note that we are
interested in the spontaneous dissociation of an initially large
molecular condensate, so we make a mean-field approxima-
tion for the molecular mode by replacing the operator a0�t�
with a c-number 
�t� �taken to be real without loss of gen-
erality�. This approximation will break down when the popu-
lation of molecules approaches zero and quantum fluctua-
tions of the molecular mode become important. Under the
mean-field approximation, the atom-molecule coherence re-
duces to �a0

†b−k↓bk↑�=
�b−k↓bk↑�=
��k−� and the equations
of motion for the averages ��ks� can be written as

dSk

dt
= 
 0 − 2��k − �� 0

2��k − �� 0 �2g
�t�
0 2g
�t� 0

�Sk, �4�

where Sk= ���kx� , ��ky� , ��kz��t is the column vector of
averages and we have defined �kx= ��k++�k−� /2 and �ky

= ��k+−�k−� /2i. In addition, 
�t� is coupled to these vari-
ables via number conservation and is given by


�t�2 = N/2 − �
k
���kz�t�� ±

1

2
 . �5�

Assuming an initial vacuum state for the atoms, �vac�, we
have ��kx�0��= ��ky�0��=0 and ��kz�0��= �

1
2 . For fermions

�upper sign� Eqs. �4� are the Bloch equations describing the
dynamics of a two-level system driven by the classical field

�t�. For each k the motion is confined to the surface of the
Bloch sphere defined by ��kx�2+ ��ky�2+ ��kz�2=1/4 and is
an expression of the underlying Fermi statistics �see Fig. 1�.
On the other hand, for bosons �lower sign� the motion is
confined to the surface of a one-sided three-dimensional �3D�
hyperboloid defined by ��kz�2− ��kx�2− ��ky�2=1/4 and
��kz��1/2, and the population for each k is unbounded
�see Fig. 1�.

It is instructive to consider the case when 
�t�=
0 is a
constant. In this case, Eq. �4� can be easily solved for the
above initial state to yield

��kz�t�� ±
1

2
= ±

�g
0�2

2�k±
2 �1 − Ck±�t�� , �6�

where �k±
2 = �g
0�2± ��k−��2 and Ck+�t�=cos�2�k+t� and

Ck−�t�=cosh�2�k−t�. Again, the upper �lower� signs corre-
spond to fermions �bosons�. In the boson case this solution is
unstable for 
0�0 as it leads to exponential growth at the
rate 2�k− for all �k−

2 �0. However, in the fermion case, the
atom population is oscillatory about the Lorentzian-shaped
mean value: �g
0�2 /2�k+

2 and, in fact, we can find a self-
consistent solution for 
0 by substituting Eq. �6� back into
Eq. �5� and assuming the oscillations eventually dephase for
different �k �this procedure is compared to the numerical
solution in Fig. 3�. This solution is only valid when there is
very little molecular decay, but it does indicate that a consis-
tent solution can be found where the molecule population

FIG. 1. Example trajectories of Sk�t� for fermions �a� and
bosons �b�.
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does not completely decay away, and the numerical results
presented below confirm this.

For illustrative purposes, we now confine our analysis to
the case where � is large so that the density of states is
approximately flat across the region into which the mol-
ecules tend to decay. In this case, any deviation from expo-
nential decay can be directly attributed to the quantum sta-
tistics of the atoms rather than any structure in the density of
states �cf. �34��. Taking the continuum limit of Eq. �5� and
evaluating the density of states at � we can write


�t�2 	 N/2 − ����
−�

�

d����z��,t�� ±
1

2
 , �7�

where ���=V�� /2�m /��3/2 /�2 is the density of states at �
for a uniform 3D box of volume V. Since the equation of
motion for the �’s only depends on �=�k−� we have pa-
rametrized them by � instead of k. As discussed above, in the
regime where there are ample states available to the atoms,
the molecules decay exponentially and the atoms populate
the frequencies � with a Lorentzian distribution of width
�g2���. A measure of the number of available states is
therefore given by this width multiplied by the density of
states: ���. Motivated by this, we introduce the dimension-
less quantity �=N / �g����2, such that the exponential-decay
regime is given by �	1. It follows that when this condition
does not hold, we expect the behavior of the dissociation
process to be altered by the quantum statistics of the atoms.

In Figs. 2 and 3 we have plotted the results of a numerical
solution of Eqs. �4� and �5� for �=4 and �=100, respec-
tively. Already for �=4 these plots show a marked deviation
from the usual exponential decay. In particular, the molecular
population in the fermion case does not decay to zero. For
�=100 we see the accelerated decay that occurs due to
bosonic stimulation in the boson case, whereas for the fer-
mion case, a large population remains in the molecular state.

The behavior of the fermionic atoms can be qualitatively
understood as follows: The molecular population initially un-
dergoes a rapid decay into pairs of fermions. However, if
��1, the states close to resonance, �	0, become filled and
begin to undergo coherent association-dissociation oscilla-
tions, effectively halting the molecular decay. After a few
oscillations the molecular population settles into a quasi-
stationary state, 
0

2 �which we have only been able to deter-
mine numerically�, leaving the spin vectors S��� precessing
about the effective “field” B���= �2g
0 ,0 ,2��t, i.e.,

Ṡ���=B����S���. This results in the fringes in the distribu-
tion over � �see insets in Figs. 2 and 3� which become more
dense with time. The oscillation in the atomic population
associated with this precession reacts back on the molecular
field leading to an amplitude modulation of the molecular
population which damps slowly due to the dephasing of the
spins with different �. In the final state the spins are com-
pletely dephased and no net dissociation or association can
occur. This behavior is reminiscent of the processes of opti-
cal nutation, where an intense laser pulse excites an inhomo-
geneous media of two-level atoms �36�. Unlike the soliton-
like oscillations predicted in Refs. �20�, the oscillations
described here are a transient phenomena, but have the ad-

vantage that they can be created in a straight-forward man-
ner, experimentally. The incomplete dissociation for the fer-
mion case was also found in Ref. �37� using a stochastic
wavefunction approach.

Due to the assumption that the molecular condensate can
be described by a mean field the atom pairs with different k
are uncoupled and the Hilbert space of the system can be
written as the tensor product H=�k � Hk, where Hk is the
Hilbert space of the pair �k↑ ,−k↓ �. We can write the unitary
evolution operator as

Uk�t� = exp�rk�t��ei�k�t�bk↑
† b−k↓

† − e−i�k�t�b−k↓bk↑�� , �8�

where rk�t� and �k�t� are real time-dependent functions and
are completely specified by the expectation values ��ks�t��.
Therefore, solving the Eqs. �4� enables us to determine not
only the expectation values ��ks�t��, but also the full quan-

FIG. 2. Molecular population as a function of time for �=4 in
the case where the decay products are pairs of bosons �dashed line�
and pairs of fermions �solid line�. For comparison the usual expo-
nential decay at the rate �=����g2 is shown �dotted line�. Inset:
normalized population distribution of atoms over �=�k−� at the
final time tg=21.2 for bosons �dashed line� and fermions �solid
line�. The dotted line is a Lorentzian of width � /4. Only the ��0
case is shown as the distribution is symmetric about �=0.

FIG. 3. Same as Fig. 2 but with �=100. The horizontal dotted
line shows the steady-state molecular population determined by a
self-consistent solution using Eqs. �5� and �6� �see text� which is a
good fit in this case.
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tum state of the atoms. In the case of bosons, Eq. �8� is
analogous to the generator of a two-photon squeezed vacuum
state �30�. In the case of fermions, when acting on the
vacuum, this evolution operator yields the state

��k�t�� = �cos rk�t� + bk↑
† b−k↓

† ei�k�t� sin rk�t���vac� , �9�

which has obvious similarities to the BCS state.
For short times we expect that the dynamics will be domi-

nated by the q=0 condensate of molecules. However, the
q�0 molecular modes, collisions and finite temperatures
that have been neglected from this treatment are expected to
lead to a slow redistribution of the atoms and a decay of the
correlations �38�. Determining the relaxation dynamics to the
new equilibrium state is beyond the scope of the present
work, however, we can understand some aspects of the re-
laxation dynamics by adding phenomenological phase
damping terms to the equations of motion: d��kj� / �dt�relax

=−��kj� /T2�, where j=x ,y. This relaxation process leads to a
loss of the atom-molecule coherence ���k−�→0� and will, in
turn, destroy the dynamic equilibrium reached in the absence
of damping. This intuition is confirmed by numerical simu-
lations which show that for finite T2� the molecular popula-
tion always decays to zero and clearly demonstrates the key
role played by the atom-molecule coherence, in combination
with Pauli blocking, in the incomplete molecular dissociation
in the fermion case.

Due to their narrow dissociation linewidth, narrow Fesh-
bach resonances are promising systems to observe the effects
described here and have the advantage that a magnetic field
can be quickly tuned across the resonance into the dissocia-

tion regime. In fact, the dissociation scheme considered here
has recently been used to measure the width of a number of
Feshbach resonances of 87Rb �39�. For the 912 G resonance
with a width of �B=1.3 mG, a detuning of ��=kB�1 �K
yields a ��3 for typical densities �n�1013 cm−3�. Similarly,
for the same parameters, the narrow 543 G resonance of 6Li
which has a width of �B=0.23 G �2�, yields a ��12, dem-
onstrating that the regime where quantum statistics play a
role are well within the reach of current experiments. Here
we have assumed a uniform 3D system but note that the
effects of quantum statistics can be significantly enhanced in
systems of reduced dimensionality �13�, or in the presence of
trapping potentials, due to the reduction in the density of
states �40�.

In summary, we have studied the effects of quantum sta-
tistics on the dissociation dynamics of a condensate of di-
atomic molecules formed either by two bosonic or fermionic
atoms. In the former case, the dissociation rate is Bose-
enhanced; while for the latter, Pauli-blocking in combination
with the coherence formed between the molecules and atom
pairs lead to a dynamic equilibrium between the molecule
and atom populations. Finally, we want to point out that we
have used a method borrowed from quantum optics, which
can serve as a powerful tool to treat other problems in the
coupled atom-molecule system, such as the BEC-BCS cross-
over.
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