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Multiconfigurational Hartree-Fock theory is presented and implemented in an investigation of the fragmen-
tation of a Bose-Einstein condensate made of identical bosonic atoms in a double-well potential at zero
temperature. The approach builds in the effects of the condensate mean field and of atomic correlations by
describing generalized many-body states that are composed of multiple configurations which incorporate
atomic interactions. Nonlinear and linear optimization is utilized in conjunction with the variational and
Hylleraas-Undheim theorems to find the optimal ground and excited states of the interacting system. The
resulting energy spectrum and associated eigenstates are presented as a function of double-well barrier height.
Delocalized and localized single configurational states are found in the extreme limits of the simple and
fragmented condensate ground states, while multiconfigurational states and macroscopic quantum superposi-
tion states are revealed throughout the full extent of barrier heights. Comparison is made to existing theories
that either neglect mean field or correlation effects and it is found that contributions from both interactions are
essential in order to obtain a robust microscopic understanding of the condensate’s atomic structure throughout
the fragmentation process.
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I. INTRODUCTION

Recent experimental realization of a trapped atom inter-
ferometer using a coherently split Bose-Einstein condensate
�BEC� �1,2� as well as the direct observation of tunneling
and self-trapping in weakly linked BECs �3,4� have provided
an impetus to formulate a comprehensive theoretical descrip-
tion of the zero temperature Bose gas confined to a trapping
potential that can be continuously deformed from a single
well into a double well with large barrier height. Such a
deformation of the trapping potential impels the BEC from a
single coherent entity to a fragmented condensate made up of
two coherent and potentially correlated moieties. The quan-
tum many-body physics governing this complex fragmenta-
tion process involves competition and balance between the
effects of the condensate’s mean field on the interacting
atomic gas and the correlations that emerge between atoms
in different Fock states.

Various theoretical descriptions of the simple and frag-
mented BEC exist in the literature today. At both low and
high barrier heights, the many-body ground state of the con-
densate is well approximated in mean field theory by a single
Fock state, which expresses a particular arrangement of at-
oms among one, two, or even many single-particle states
�5–7�. If only one single-particle state is involved, then mean
field theory reduces to the Hartree theory �8�, which further
reduces to the standard Gross-Pitaevskii formalism �9,10�
upon invoking the contact interaction approximation �11,12�.
More elaborate mean field theories, such as Hartree-Fock
�13�, are built by utilizing more than one single-particle state

and imposing the correct symmetrization due to the indistin-
guishability of identical particles. Where mean field equa-
tions specify the underlying single-particle states, we call the
single Fock state a single configuration �57�. However, more
complex many-body states exist, at all barrier heights, that
are made up of superpositions of multiple configurations.

As mean field theory describes only a single configura-
tion, it necessarily lacks all correlation effects that arise be-
tween configurations. To this end, multiconfigurational ap-
proaches have been attempted, which when applied to cold
atomic gases in a double-well trap geometry, are largely
based on two-well limits of continuum lattice models such as
the Bose-Hubbard model. Both atomic correlations and, to a
partial extent, mean field interactions are included automati-
cally in these theories. Correlations emerge between configu-
rations while mean field interactions occur in two places:
first, directly through the interaction term in the many-body
Hamiltonian, and second in the underlying single-particle
states that make up the matrix elements in the Hamiltonian
as well as each configuration. Previous multiconfigurational
efforts found in the BEC literature include only the first type
of mean field effect and therefore do not describe general
many-body states of the system by superpositions of con-
figurations but only those where the effects of atom-atom
interactions on the shape of the single-particle states are ne-
glected. In these works, the underlying single-particle states
have been chosen either to be solutions of the single-particle
Schrödinger equation �14� or parameters have been intro-
duced to replace the matrix elements in the Hamiltonian al-
together �15–19�. For example, in the Bose-Hubbard model
U is a site energy and J is a tunneling parameter, and neither
depends on N, the particle number, and neither is computed
from first principles. In other words, mean field effects are
not fully included in these treatments, the single-
configurational and multiple Fock state approaches are sepa-
rate and complementary.
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A more complete description should characterize a gen-
eral state of the system by a superposition of many configu-
rations in which the underlying single-particle states include
the effects of the condensate mean field. Such a theory would
be capable of illuminating the quantum many-body structure
of the BEC throughout the fragmentation process as well as
at the extreme simple and fragmented limits. It is the purpose
of the present paper to provide such a formulation.

The challenge to formulate such a theory has already been
partially fulfilled by several authors �5–7,14–19�. However,
to our knowledge, no satisfactory work has been presented in
the cold atom context that fully addresses this task. To this
end, we formulate a new approach that variationally com-
bines the Hartree-Fock mean field theory for N identical
bosons in two single-particle states with a full diagonaliza-
tion of the many-body Hamiltonian restricted to a basis of
N+1 generalized configurations stemming from each
Hartree-Fock configuration. This allows for a description of
the Bose gas at zero temperature where atomic correlations
emerge between configurations into which mean field effects
are built. Due to its composition, this approach incorporates
both types of interaction and serves as a didactic device for
elucidating where they become important in the fragmenta-
tion process as well as how these two intertwined but distinct
effects change the system. By choosing the atomic interac-
tion strength to be zero in the bosonic Hartree-Fock mean
field equations, our approach recovers the Schrödinger based
model developed in Ref. �14�, while limiting our generalized
many-body state to a single configuration recovers the mean
field theories of Refs. �5,6�. A preliminary investigation of
our formalism can be found in Ref. �20�. We acknowledge
that a fermionic analog of our model, called multiconfigura-
tional self-consistent-field theory, is widely known in quan-
tum chemistry and has been quite successful in accurately
describing atomic and molecular electronic structure and ge-
ometry both at equilibrium and at dissociation �21–23�. In
fact, a proper description of dissociation of polyatomic mol-
ecules in the Born-Oppenheimer approximation �21–23� is
closely related to the problem of fragmentation of a BEC
into two or more fragments. Related time-independent
�24,25� and time-dependent �26� multiconfigurational ap-
proaches have also been developed to treat molecular vibra-
tions at the Hartree level. In the spirit of these efforts, we
refer to the work developed in this paper as the multiconfigu-
rational bosonic Hartree-Fock theory.

To establish a consistent and general enough notation,
which can be extended to our multiconfigurational Hartree-
Fock approach, we organize the paper as follows. In Sec. II,
we review the many-body theory of a gas of N identical
bosons restricted to a finite model space. Ground and excited
eigenstates of the system are expanded onto a basis consist-
ing of N+1 Fock states made up of two single-particle states.
Model calculations, which lack the effects of atomic interac-
tions on the underlying single-particle states, are discussed
where the trapping potential is deformed from an initially
single-well to a double-well geometry. Section III is devoted
to a survey of Hartree-Fock mean field theory for N identical
bosons in two single-particle states. It is emphasized that
mean field theory describes only a single configurational
state and therefore lacks the correlations described by super-

positions of multiple configurations. Imaginary time integra-
tion is briefly discussed for efficient solution of the resulting
coupled nonlinear differential equations. While imaginary
time integration schemes are a standard method of solution
for the bosonic mean field equations with one single-particle
state, i.e., for the Gross-Pitaevskii equation �27�, or with
multicomponent spinors �28�, we highlight our method of
maintaining spatial orthogonality between two single-particle
states. Solutions of the mean field and Schrödinger equations
are compared at various barrier heights in the strongly inter-
acting limit.

In Sec. IV, we introduce the multiconfigurational bosonic
Hartree-Fock theory. For each individual energy level, mul-
ticonfigurational Hartree-Fock states of the system are con-
structed from the variationally optimal linear combination of
generalized configurations in which the underlying mean
field states are chosen so that the partitioning of atoms be-
tween its two states allows the corresponding energy to be
minimized. Last, in Sec. V, a systematic investigation of the
atomic structure of the BEC, as a function of barrier height,
throughout the fragmentation process is carried out. This is
followed in Sec. VI by a summary and an indication of fur-
ther work needed to describe ongoing experiments. An Ap-
pendix is devoted to an informal statement of the Hylleraas-
Undheim theorem, which justifies such a state-by-state use of
the variational theorem. In particular, we discuss our appli-
cation of this theorem to the optimization of BEC excited
states and their corresponding energies.

II. REVIEW OF MANY-BOSON THEORY
IN A RESTRICTED BASIS

The many-body Hamiltonian for a gas of N identical spin-
less bosonic atoms of mass m at zero temperature interacting
via a two-body potential V�x ,x���V��x−x��� is given by
�29�

Ĥ =� �̂†�x���− �2/2m��2 + Vext�x�	�̂�x�d3x

+ �1/2� � �̂†�x��̂†�x��V�x,x���̂�x���̂�x�d3xd3x�.

�1�

Here �̂ and �̂† are boson field operators which satisfy the

equal time commutation relations ��̂�x� ,�̂†�x���=��x−x��
and ��̂�x� ,�̂�x���= ��̂†�x� ,�̂†�x���=0. The external trap-
ping potential Vext that we have in mind throughout this pa-
per is one that can be continuously deformed from a single-
well to a double-well geometry.

A. Restriction to two single-particle states

The atomic structure of a BEC confined in a double-well
trapping potential at zero temperature can be reasonably de-
scribed in a basis of restricted Fock states of the form �14,16�

�N1,N2
 = �b̂1
†�N1�b̂2

†�N2�vac
/�N1!N2!, �2�

where Nk atoms are in each of the single-particle states ��k

= b̂k

†�vac
 for k=1,2 and the total number of atoms is fixed at
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N=N1+N2. Here, �vac
 is the vacuum state in which no at-
oms are present. The operators b̂k

† and b̂k are boson creation
and annihilation operators that add and remove single atoms
in the ��k
. They satisfy the basic commutation relations
�b̂k , b̂l

†�=�kl and �b̂k , b̂l�= �b̂k
† , b̂l

†�=0 for k , l=1,2. While �2�
is certainly not the most general eigenstate imaginable, we
are interested mainly in the zero temperature properties of
the condensate as its constituent atoms are exchanged be-
tween two macroscopically occupied single-particle states.
Where the effects of finite temperature and of fragmentation
into more than two condensates are negligible, the states �2�
provide a rich basis in which to explore the many-body phys-
ics of the BEC fragmentation process.

The set of all Fock states of the form �2�, with all possible
numbers of atoms in each of the two single-particle states,
exhausts the restricted N-boson Fock space. That is, the
model space is spanned by the collection

��N,0
, �N − 1,1
, �N − 2,2
, . . . , �0,N
	 , �3�

which is taken as a complete set having N+1 elements.
Therefore, it is possible to expand an eigenstate of the many-

body Hamiltonian �1� as a linear combination of N+1 indi-
vidual Fock states according to �14,16�

��N
� = �
N1=0

N

CN1

� �N1,N2 = N − N1
 , �4�

where the expansion coefficient CN1

� expresses the probabil-
ity amplitude for the �th excited state of the system to be in
�N1 ,N2
.

The many-body Hamiltonian that is associated with this
model space may be derived from �1� by substitution of the
two-state expansion of the boson field operator

�̂�x� = �1�x�b̂1 + �2�x�b̂2, �5�

where the expansion coefficients �k�x�= x ��k
 are coordi-
nate space single-particle wave functions that are, as yet,
unspecified. After some standard algebra, one obtains �29�

Ĥ = h11N̂1 + h22N̂2 + �1/2��V1212 + V1221�N̂1N̂2 + �1/2��V2121 + V2112�N̂2N̂1 + �h12 + V1112�N̂1 − 1� + V2221N̂2�b̂1
†b̂2

+ �h21 + V1112N̂1 + V2221�N̂2 − 1��b̂2
†b̂1 + �1/2��V1111�N̂1

2 − N̂1� + V2222�N̂2
2 − N̂2� + V1122�b̂1

†b̂1
†b̂2b̂2 + b̂2

†b̂2
†b̂1b̂1�� , �6�

where N̂k= b̂k
†b̂k is the occupation number operator for each

state ��k
 , N̂= N̂1+ N̂2 is the total particle number operator,
and

hkl =� �k�x���− �2/2m��2 + Vext�x�	�l�x�d3x ,

Vklmn =� �k�x��l�x��V�x,x���m�x��n�x��d3xd3x�, �7�

with k , l ,m ,n=1,2 are matrix elements of the single-particle
Hamiltonian h�x� and two-body interaction potential
V�x ,x��. Throughout this paper, the wave functions �1�x�
and �2�x� are real-valued functions so that

Vklmn = Vlknm = Vmnkl = Vnmlk = Vmlkn

= Vlmnk = Vknml = Vnklm. �8�

This Hamiltonian is more general than that, for example,
of Spekkens and Sipe �14� in that the external potential Vext
is not assumed to be symmetric a priori since we anticipate
the possibility for deformation of a single well into either a
symmetric or asymmetric double well. Exclusion of certain
nonlinear terms and the assumption of N-independent hkl and
Vklmn, reduces �6� to a two-state Bose-Hubbard Hamiltonian.
In the thermodynamic limit, Bose-Hubbard theory provides,
inter alia, the standard model for the description of zero

temperature quantum phase transitions �30,31� in atomic
gases confined to optical lattices �32�.

With the Hamiltonian �6� and associated eigenstates �4�,
the many-body Schrödinger equation

Ĥ��N
� = E���N
�, �9�

which is a linear equation, may be represented in the re-
stricted Fock state basis �3�. This results in the set of �N
+1�� �N+1� matrix equations

�
H00 H01 ¯ H0N

H10 H11 ¯ H1N

] ] � ]

HN0 HN1 ¯ HNN

��
C0

�

C1
�

]

CN
�
� = �

C0
�

C1
�

]

CN
�
�E� �10�

with matrix elements and overlap

HN1�N1
= N1�,N − N1��Ĥ�N1,N − N1
 ,

�N1�N1
= N1�,N − N1��N1,N − N1
 , �11�

for N1� ,N1=0 , . . . ,N. Once the wave functions �1 and �2 are
specified, the matrix elements hkl and Vklmn are defined and
can be used to build HN1�N1

. Then, the eigenvalue equations
�10� can, in principle, be solved to give the expansion coef-
ficients CN1

� and energies E� of the ground state and first N
excited states of the system. This computation may be re-

MULTICONFIGURATIONAL HARTREE-FOCK THEORY… PHYSICAL REVIEW A 72, 063624 �2005�

063624-3



peated as the external potential Vext is deformed from a
single well to a double well where the geometry encourages
break up into two condensate fragments. Following Penrose
and Onsager �33�, a fragmented condensate may be charac-
terized by the presence of at least two large eigenvalues of
the single-particle reduced density matrix �34,35�

���x,x�� = ��N��̂†�x��̂�x����N
�. �12�

Within this model space, the full diagonalization of �10�
has been found, in practice, to be achievable for systems
with a large number of atoms. This is facilitated by the sig-
nificant reduction of the Hamiltonian matrix in �10� to a
pentadiagonal form �14�. Standard linear algebra routines
�36� are well suited for the resulting banded eigenvalue prob-
lem.

B. Model calculations

The energies of the ground and first N excited states of the
Hamiltonian �6� have been mapped out as a function of the
single dimensionless parameter � in correlation diagrams by
Reinhardt and Perry �18� as illustrated in Fig. 1. In Ref. �18�,
it has been assumed that the single-particle energies and ma-
trix elements of the two-body potential V, in the standard
contact interaction approximation V�x ,x��=g��x−x��, can
be parametrized according to �58�

Vkkkk = hkk = �	 ,

Vkkkl = hkl = − �	 exp�− �� ,

Vkkll = �	 exp�− �� �13�

in terms of the harmonic oscillator energy �	 and length 

=�� /m	 for a symmetric double-well trapping potential
with k� l=1,2. Variation of the parameter � allows for a

continuous change between strong tunneling �small �� and
weak tunneling �large �� regimes. Within this simple ansatz,
where none of the parameters depend upon the particle num-
ber N, the wave functions �1 and �2 are not specified. The
ridge structure in Fig. 1 shows the boundary between simple
BEC for small � and fragmented BEC for large �. When
working in the Fock basis �2� where N1 and N2 are the num-
ber of atoms localized in the left-hand and right-hand wells
of a double-well potential, it has been found in Ref. �19� that
the distribution of Fock states contributing to the ground
state below the ridge is binomial in form, while the distribu-
tion of Fock states above the ridge reveals the existence of
macroscopic quantum superposition states. The study of the
correlation diagrams in Fig. 1 has led to the prediction that
many interesting highly excited states, such as Schrödinger
cats, exist in the weak tunneling regime and may be created
by phase engineering �19,37�.

Other authors �14� opt to approximate the single-particle
wave functions �1 and �2 for a given barrier height by solu-
tions of the single-particle Schrödinger equation

h�x��k�x� = �k�k�x� , �14�

where �k�hkk / �k ��k
 is the single-particle Schrödinger en-
ergy for state k and where the wave functions are indepen-
dent of the particle number N and value of g. The two-state
Hamiltonian �6�, which does depend upon N and upon g in
the contact interaction approximation, is then diagonalized.
Figure 2 presents the associated energy eigenvalues as a
function of barrier height, where �1 and �2 are computed
from �14�. A qualitatively similar energy correlation diagram
exists with ridge structure marking the phase transition be-
tween nondegenerate states and doubly degenerate states.

FIG. 1. �Color online� Parametrized model ground and excited
state energies for g=0.1�	
3 and N=20 as a function of �. Note
the energy level mergings and resulting ridge structure separating
BEC �small �� and fragmented states �large ��. The Fock states
below the ridge are delocalized and nondegenerate while the states
above the ridge are localized and doubly degenerate. The alterna-
tion of line style has been chosen to aid in visualization.

FIG. 2. �Color online� Schrödinger model ground and excited
state energies for g=0.1�	
3 and N=20 as a function of barrier
height. Note the qualitative similarities of this energy level correla-
tion diagram to that of Fig. 1. The solid curve beginning at 20�	 is
the single-particle Schrödinger energy while the remaining curves
are the eigenvalues of the Hamiltonian �6� built from the
Schrödinger solutions at each barrier height. Note that the
Schrödinger energy N1�1+N2�2 differs from the many-body eigen-
values E� because it includes no atom-atom interaction. The alter-
nation of line style has been chosen to aid in visualization.
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This approach is justifiable for weakly interacting atomic
gases where the effect of atomic interactions on the shape of
the wave functions is small, however, it breaks down wher-
ever atom-atom interactions are important enough to affect
the value of the parameters or matrix elements themselves.
This is the case in the experiments discussed in Refs. �1–4�,
where Thomas-Fermi mean field effects dominate the shape
of the atomic wave functions in a strongly N-dependent man-
ner.

C. Lack of mean field effects in the single-particle
wave functions

Diagonalization of the Hamiltonian �6� within the basis of
restricted Fock states �3�, furnishes a basis representation of
the ground state and N excited states due to exchanges of
atoms between the two single-particle states ��1
 and ��2
. As
no equations have been derived for these states, their func-
tional form is not specified by this approach and approximate
models have been chosen that either define the �1 and �2 as
solutions of the single-particle Schrödinger equation or pa-
rametrize the Hamiltonian matrix elements hkl and Vklmn di-
rectly. Neither method takes into account the effects of the
condensate mean field on the shape of the single-particle
wave functions, which becomes more important as the inter-
action strength between the constituent atoms becomes
larger. We will demonstrate, in Sec. IV, how to build atomic
interactions into the underlying single-particle states that en-
ter the matrix elements in the many-body Hamiltonian �6�.
But first, it is important to discuss mean field theory by itself
for identical bosons.

III. REVIEW OF MEAN FIELD THEORY
FOR IDENTICAL BOSONS

Single-particle wave functions �k were first introduced in
the Fock space approach of the preceding section. Within
that model, no equations were developed to determine these
functions. In this section, we derive a set of equations by
minimizing the energy associated with �6� to dictate the
functional form of the two �k. The equations that arise are
the bosonic Hartree-Fock equations.

A. Restriction to one single-particle state

The mean field theory in which all N atoms occupy the

same single-particle state ��
= b̂†�vac
 is known as the Gross-
Pitaevskii �GP� theory. The many-body wave function �N

restricted to the Fock state �N
= �b̂†�N�vac
 /�N! is approxi-
mated by the product

�H�1, . . . ,N� = ��1���2� ¯ ��N� �15�

of single-particle wave functions �. This particular type of
product is also called a Hartree product since it involves no
symmetrization whatsoever. Variation of the expectation

value of the many-body Hamiltonian �1� with �̂=�b̂ in
��H
��N
 with respect to � and subject to the constraint that
� is normalized to unity leads to the GP equation

��− �2/2m��2 + Vext + g�N − 1����2	� = �� �16�

provided that the contact interaction approximation has been
made. The chemical potential � enters �16� as a Lagrange
multiplier which enforces the normalization � ��
=1. While
this approximation provides an appropriate mean field de-
scription of the simple BEC, it is not flexible enough to
characterize the break up of a single condensate into multiple
fragments, where potentially several single-particle wave
functions are macroscopically occupied.

B. Restriction to two single-particle states

A mean field theory, which generalizes the GP �or Har-
tree� ansatz by adding a second single-particle state, is the
bosonic Hartree-Fock �BHF� theory. The BHF ansatz rests
on approximating the many-body wave function for N
bosons as a symmetric product of the two single-particle
wave functions �1 and �2 �6,38�. That is

�BHF�1, . . . ,N�

= S��1�1� ¯ �1�N1���2�N1� + 1� ¯ �2�N1� + N2��	 ,

�17�

where S= ��N!N1�!N2�!�
−1�PP is the symmetrization operator

and P is an operator that permutes the atomic coordinates.
We place primes on the occupation numbers N1� and N2� for
reasons that will become evident in Sec. IV. This BHF wave
function is also called a single permanental wave function in
contrast to the single determinantal wave function for fermi-
ons built from an antisymmetric product of single-particle
wave functions. If we had omitted the symmetrization opera-
tor S all together in �17�, then we would have a two-single-
particle state Hartree or GP theory �13�. Two-state Hartree
theory provides an alternative mean field theory that neglects
the quantum-mechanical exchange interaction associated
with identical particles. We note that the ansatz �17� has been
explored in a different context in Ref. �7�.

The coupled BHF equations may be determined by varia-
tion of the expectation value of the functional

K̂��1,�2� = Ĥ − �
kl=1,2

�klN̂k��kl − �kl� �18�

in the BHF state

��BHF
 � �N1�,N2�
 = �b̂1
†�N1��b̂2

†�N2��vac
/�N1�!N2�! �19�

with respect to the two wave functions �1 and �2, where Ĥ is
the many-body Hamiltonian �6� restricted to the model space

of two single-particle states, N̂= N̂1�+ N̂2� is the total particle
number operator, and kl��k ��l
 are the matrix elements of
the wave function overlap . The second term on the right-
hand side of this equation adds Lagrange multipliers �kl
whose purpose is to constrain the single-particle wave func-
tions to be orthonormal. This leads to the coupled two-
single-particle state BHF equations

h�1 + �N1� − 1��1�1 + N2��J2 + K2��1 = �11�1 + �12�2,
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h�2 + �N2� − 1��2�2 + N1��J1 + K1��2 = �21�1 + �22�2,

�20�

where h�x�= �−�2 /2m��2+Vext�x� is the sum of kinetic en-
ergy and external trapping potential, �k accounts for the in-
teraction of one atom in the kth single-particle state with the
mean field of Nk�−1 other atoms in the same state, Jl is the
direct interaction between a single atom in the kth single-
particle state and the mean field of Nl� atoms in the lth �l
�k� single-particle state, and Kl is the exchange interaction
between states k and l which arises due to the symmetriza-
tion of the BHF wave function. These equations have already
been derived by others �5,6,38� and have been further ex-
tended to treat identical bosons in arbitrarily many single-
particle states �7�. Similar equations have been derived for
distinguishable multicomponent �spinor� BECs �28,39–41�,
however, it is important to note that they are not the same as
the BHF equations �20�, which describe identical bosons.

The diagonal Lagrange multipliers �kk in �18� ensure the
proper normalization of the single-particle wave functions
while the off-diagonal �kl enforce their orthogonality. If the
external potential Vext is symmetric, then the off-diagonal
Lagrange multipliers are not necessary as the wave functions
are automatically spatially orthogonal by symmetry. The �kl
cannot in general be removed by unitary transformation as in
the fermionic case �5,6�. Consequently, arbitrary linear com-
binations of �1 and �2 are not solutions of the BHF equations
�20�. Koopmans’ theorem �22,23,42� is satisfied for the diag-
onal multipliers. Therefore �11=EBHF�N1� ,N2��−EBHF�N1�
−1,N2�� and �22=EBHF�N1� ,N2��−EBHF�N1� ,N2�−1� inherit the
roles of chemical potentials �5,6�, where the BHF energy is
given by

EBHF = �
k=1,2

Nk�hkk + �1/2� �
k=1,2

Nk��Nk� − 1�Vkkkk

+ �1/2� �
k�l=1,2

Nk�Nl��Vklkl + Vkllk� , �21�

and where hkl and Vklmn are matrix elements of the single-
particle Hamiltonian h�x� and two-body interaction potential
V�x ,x�� in �7�. The direct and exchange integrals in �20� are
defined as

�k�x��k�x� =� ��k�x��V�x,x���k�x����k�x�d3x�,

Jl�x��k�x� =� ��l�x��V�x,x���l�x����k�x�d3x�,

Kl�x��k�x� =� ��l�x��V�x,x���k�x����l�x�d3x� �22�

for k� l and k , l=1,2. Note that the potential �k is a direct
interaction that arises only for bosons. There is no analogous
term for fermions due to Pauli exclusion.

The BHF theory reduces to the GP theory in the extreme
limit of only one occupied single-particle state, i.e., when
N1�=N and N2�=0 or vice versa as demonstrated in Fig. 3.
However, unlike the GP equation �16�, the BHF equations

�20� offer additional freedom in that they accommodate the
possibility of various numbers of atoms in each of two
single-particle states. By choosing N1� atoms to be in the first
state and N2� atoms to be in the second, a set of BHF equa-
tions corresponding to that particular arrangement is ob-
tained. Each arrangement is associated with a symmetrized
BHF single-permanental wave function like �17�. Where
BHF equations specify the underlying single-particle wave
functions �1 and �2, we call the Fock state ��BHF

��N1� ,N2�
 a single configuration. These Fock states are dis-
tinguished from those in Sec. II, which were written without
primes as �N1 ,N2
, because the single-particle states that
make up each single configuration are determined by solving
BHF equations. It is then possible to vary the number of
particles in each of the single-particle states to find the low-
est energy single configuration for a particular trap geometry.
This flexibility gives rise to two very different physical
meanings for �1 and �2. In the first, N1��N and there are a
relatively small number of atoms in ��2
. In this regime, ��1

is a condensate state and ��2
 is a single-particle excited
state. The energetic cost of making excitations from ��1
 to
��2
 is macroscopically large due to the effect of bosonic
amplification �11�. In the second, fragmented, regime, N1� and
N2� are both on the order of N. In this case, both single-
particle states are condensate states. Single-atom excitations
between ��1
 and ��2
 also cost a macroscopic amount of
energy, but now there is also a macroscopic gain of energy as
the atom is added to a second macroscopically occupied state
�18�. This distinction, which is quite important, will be
elaborated on in Sec. V.

C. Numerical integration method

We numerically solve the coupled BHF equations using a
fast Fourier transform based pseudospectral grid method
�43,44� in quasi-one-dimension �45,46�. Note that quasi-one-

FIG. 3. �Color online� The BHF energy reduces to that of the
GP ground state when N1� /N=1 and to that of the first GP excited
state when N1� /N=0. This corresponds to all particles in the sym-
metric GP ground state and the first antisymmetric GP excited state,
respectively. A dimensionless interaction strength of �Q1D=40 �see
�47�� for 100 atoms in a single-well potential was used in this cal-
culation of EBHF.
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dimension does not mean one dimension but rather that the
variation of the BEC density is negligible in the two trans-
verse dimensions and a separation of variables is permis-
sible. Using this approach, the equations are expanded onto a
discrete Fourier sine basis with 28 fixed grid points �59�,
which satisfies the proper boundary conditions, and the ex-
pansion coefficients are variationally optimized. Rather than
solving the time-independent equations �20� self-
consistently, we work with their time-dependent version,
where �11 and �22 are replaced by i��d /dt� �28�. We then
solve the time-dependent BHF equations by the method of
steepest descents in imaginary time �27�. That is, we employ
the Wick time rotation t→�= it, which takes i��d /dt� to
−��d /d��, and integrate the pair of coupled nonlinear diffu-
sion equations

− ��d/d���1 = F1�1 − �12�2,

− ��d/d���2 = F2�2 − �21�1 �23�

as an initial value problem in �, where Fk is the boson Fock
operator for the kth single-particle state �k=1,2�,

Fk�x� = h�x� + �Nk� − 1��k�x� + Nl��Jl�x� + Kl�x�� . �24�

The resulting equations are well-defined once the two-body
interaction potential V is identified. As was done in Sec. II,
we make use of the contact potential V�x ,x��
= �4��2a /m���x−x��. Following the argument of Esry et al.
�28�, the renormalized S-wave scattering length a is taken
from multichannel T-matrix calculations using symmetrized
two-body wave functions. Thus, the contact interaction ap-
proximation affects the replacement of the symmetric com-
bination of two-body matrix elements in the BHF energy
�21� with a single contact potential and not each matrix ele-
ment separately. In symbols, that is

Vklkl + Vkllk � kl�V�kl + lk
 → �4��2a/m���x − x�� .

�25�

This identification differs by a factor of 2 from Refs. �5–7�;
see Refs. �60,61�, and the discussion following �39�. The
resulting BHF equations �20� are �28,38�

�h + g�N1� − 1���1�2 + gN2���2�2	�1 = �11�1 + �12�2,

�h + g�N2� − 1���2�2 + gN1���1�2	�2 = �21�1 + �22�2. �26�

We choose as an initial condition for the single-particle
wave function �1 the square root of the Thomas-Fermi den-
sity �TF�x�= ��−Vext�x�� /g�N−1� at a particular barrier
height, chemical potential, and value of coupling constant.
For a symmetric trapping potential, the second wave function
�2 is taken to be antisymmetric to �1 and the off-diagonal
Lagrange multipliers are unnecessary. Otherwise, �2 need
only be orthogonal to �1 but constraints are needed to main-
tain orthogonality. Both wave functions are initially normal-
ized so that ��1�0��= ��2�0��=1 and are real-valued. Thus,
the overlap matrix elements kl=�kl initially. We then em-
ploy the standard relaxation approach, i.e., we subtract a
guess �̄ of the ground state chemical potential from the Fock

operator and allow the system to time evolve. The wave
functions relax according to

�k��� � �
�

exp�− �� − �̄kk��/���k
��0�c� �27�

for k=1,2, where the expansion coefficients c� are projec-
tions of the evolving state ��k���
 onto the stationary basis
��k

����
. Eventually, all excited states decay away after rep-
etition of this procedure together with intermittent renormal-
ization. If the wave functions are initially orthogonal and
share the symmetry of the trapping potential, then the wave
functions that remain are the symmetric and antisymmetric
solutions which minimize EBHF for each configuration.

Whenever the external potential Vext is asymmetric, off-
diagonal Lagrange multipliers must be introduced to keep
the single-particle wave functions orthogonal to each other
throughout the evolution. The proper choice for the �kl �k
� l� will ensure that �d /d��kl��kl�=0 for all time �. The
appropriate �kl �k� l� are found by multiplying the first
equation in �23� by �2 and the second equation in �23� by �1,
adding the two equations together, and then performing a
volume integral. One then arrives at the following expression
for the time derivative of the off-diagonal overlap

− ��d/d��12 = �2�F1 − �̄11��1
 − �12�2��2


+ �1�F2 − �̄22��2
 − �21�1��1
 , �28�

where the �̄kk are intermediate guesses of the ground state
chemical potentials associated with �1 and �2. The time de-
rivative of 21 is the same, as T=. With �28� and the
relation N1��12=N2��21 �6�, values for �12 and �21 can be
chosen so that the right-hand side of �28� equals zero. Those
values are

�12 =
�2�F1 − �̄11��1
 + �1�F2 − �̄22��2


�N1�/N2���1��1
 + �2��2

,

�21 =
�2�F1 − �̄11��1
 + �1�F2 − �̄22��2


�1��1
 + �N2�/N1���2��2

. �29�

With this choice, the time derivatives of the off-diagonal
matrix elements of  are zero. Therefore, if the single-
particle wave functions are initially orthogonal, then they
will stay orthogonal for all time � regardless of trap symme-
try. For each choice of BHF configuration �N1� ,N2�
, the re-
laxation algorithm will then find the associated two orthogo-
nal wave functions which minimize the energy �21�. This is
the essence of our integration scheme.

D. Hartree-Fock and Schrödinger wave functions

Figure 4 displays the BHF single-particle wave functions
�1 and �2, which are obtained by solving �26� in quasi-one-
dimension at four different barrier heights 0, 3, 9, 13�	. In
each panel, �1 is associated with the BHF configuration
�N ,0
 and �2 is associated with the BHF configuration �0,N
.
In these extreme configurations, the single-particle BHF
wave functions reduce to the GP ground and first excited
wave functions. The configuration �N ,0
 minimizes EBHF at
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each barrier height. Figure 5 displays the solutions of the
single-particle Schrödinger equation h�k=�k�k at the same
four barrier heights 0, 3, 9, 13�	. Since the Schrödinger
equation includes no atom-atom interaction, the Schrödinger
solutions have no dependence on the number of particles in
each single-particle state. For 100 atoms with a dimension-
less interaction strength of �Q1D=40 �see �47��, it is seen that
the BHF wave functions follow the Thomas-Fermi result
quite well whereas the Schrödinger wave functions bear little
resemblance to either BHF or Thomas-Fermi solutions.

E. Lack of correlation effects

The solutions �1 and �2 of the BHF equations �20� in-
clude the effects of the condensate mean field on their shape.
An appropriate symmetrized product of these wave functions
results in a BHF wave function like that in �17�. Unlike in
the single determinantal case where the wave function is de-
fined only up to unitary transformations of its constituent
single-particle wave functions �47�, the BHF single perma-
nental wave function seemingly corresponds uniquely to a

single configuration. That is, the single permanent

S��1�1� ¯ �1�N1���2�N1� + 1� ¯ �2�N1� + N2��	 �30�

is in one-to-one correspondence with the single configuration
�N1� ,N2�
, while another BHF permanent

S��1�1� ¯ �1�N1���2�N1� + 1� ¯ �2�N1� + N2��	 �31�

is in one-to-one correspondence with the single configuration
�N1� ,N2�
, and so on. All such single configurations can be
collected into the set

��N,0
, �N − 1,1
, �N − 2,2
, . . . , �0,N
	 , �32�

which, like �3�, spans an �N+1�-dimensional Fock space but,
in addition, has states that are now specified by BHF equa-
tions.

Considering that the eigenstates of the many-body Hamil-
tonian �6� are not, in general, a single configuration but are
rather composed of a linear combination of N+1 such con-
figurations, it is evident that a single configurational descrip-
tion is quite limiting. In particular, it lacks all effects of cor-

FIG. 4. �Color online� BHF single-particle wave functions �1 and �2 versus coordinate z at four different barrier heights 0, 3, 9, 13�	.
A dimensionless interaction strength of �Q1D=40 �see �47�� was used. In each panel, �1 corresponds to the BHF configuration �N ,0
, while
�2 corresponds to the BHF configuration �0,N
. The BHF energies associated with �N ,0
 and �0,N
 at zero barrier height appear in Fig. 3.
Both wave functions have been set at the chemical potentials �11 and �22 associated with each configuration. At each barrier height, we plot
the corresponding Thomas-Fermi wave function as a solid black curve.

MASIELLO, MCKAGAN, AND REINHARDT PHYSICAL REVIEW A 72, 063624 �2005�

063624-8



relation that arise between atoms in different configurations.
To this end, we formulate a new approach in Sec. IV that
combines the full diagonalization of the many-body Hamil-
tonian in a restricted basis with mean field theory for the
underlying single-particle states.

IV. MULTICONFIGURATIONAL BOSONIC
HARTREE-FOCK THEORY

The many-boson theory restricted to a Fock basis consist-
ing of two single-particle states and the two-single-particle
state BHF mean field theory provide complementary descrip-
tions of the BEC and its fragmentation into two condensates.
For arbitrary interaction strength, the BHF approach is well
justified whenever the state of the BEC can be described by
a single configuration, but breaks down whenever a multi-
configurational description is appropriate. Alternatively, the
finite basis representation of the many-body Schrödinger
equation accounts for atomic correlation between each Fock
state and includes the effects of the condensate mean field
directly in the Hamiltonian. However, it does not provide

equations that specify the underlying single-particle wave
functions. The use of parameters or even single-particle
Schrödinger wave functions may not capture certain proper-
ties of the BEC that are associated with strongly interacting
atomic gases, where mean field effects on the shape of the
single-particle wave functions are important.

To this end, we variationally combine the BHF mean field
theory of Sec. III with the restricted Fock state representation
of the many-body theory of Sec. II, allowing for both.

�1� The effects of the condensate mean field on the shape
of the single-particle wave functions.

�2� The ability to describe states that are made up of mul-
tiple configurations.

The former is necessary in the strongly interacting re-
gime, while the latter is needed to describe condensate frag-
mentation within our approach. We refer to the union of
these disjoint theories as the multiconfigurational bosonic
Hartree-Fock theory or MCBHF. This theory is rich enough
to characterize the atomic structure of the simple BEC and
its fragmentation into two condensates at zero temperature as
its trapping potential is deformed from a single well to a
double well with large barrier height.

FIG. 5. �Color online� Schrödinger single-particle wave functions �1 and �2 versus coordinate z at four different barrier heights 0, 3, 9,
13�	. These solutions have no dependence on the number of atoms in each single-particle state. Both wave functions have been set at the
same BHF chemical potentials used in Fig. 4. At each barrier height, we plot the Thomas-Fermi wave functions of Fig. 4 as a solid black
curve. Little resemblance is seen between the Schrödinger and Thomas-Fermi results.
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A. General theory

The basic idea behind our MCBHF approach is to diago-
nalize a representation of the many-body Hamiltonian �6� in
a set of basis functions of the form

�N1,N2;�N1�,N2�	
 , �33�

where the total number of atoms N=N1+N2=N1�+N2�, and
N1 ,N1�=0, . . . ,N. These basis states are a combination of the
Fock states of Sec. II and the BHF configurations of Sec. III.
It will become evident that N1 and N2 count atoms in left-
and right-localized Fock states, while N1� and N2� count atoms
in symmetric and antisymmetric BHF states. We call the kets

�33� generalized configuration states or GCSs because for
every underlying BHF configuration �N1� ,N2�
, which has
been indicated in �33� by �N1� ,N2�	, there are an additional
N+1 Fock states �N1 ,N2
 that can be built from this BHF
reference configuration. For instance, the subset of GCSs
stemming from the particular BHF configuration �N1� ,N2�
 is

��0,N;�N1�,N2�	
, �1,N − 1;�N1�,N2�	
,

�2,N − 2;�N1�,N2�	
, . . . , �N,0;�N1�,N2�	
	 . �34�

However, there are �N+1�-many underlying BHF configura-
tions in total. The collection of all GCSs �33� can be orga-
nized into the set

�
�0,N;�0,N	
 , �1,N − 1;�0,N	
 , �2,N − 2;�0,N	
 , . . . , �N,0;�0,N	
 ,

�0,N;�1,N − 1	
 , �1,N − 1;�1,N − 1	
 , �2,N − 2;�1,N − 1	
 , . . . , �N,0;�1,N − 1	
 ,

�0,N;�2,N − 2	
 , �1,N − 1;�2,N − 2	
 , �2,N − 2;�2,N − 2	
 , . . . , �N,0;�2,N − 2	
 ,

] ] ] ]

�0,N;�N1�,N2�	
 , �1,N − 1;�N1�,N2�	
 , �2,N − 2;�N1�,N2�	
 , . . . , �N,0;�N1�,N2�	
 ,

] ] ] ]

�0,N;�N,0	
 , �1,N − 1;�N,0	
 , �2,N − 2;�N,0	
 , . . . , �N,0;�N,0	


� �35�

containing �N+1�� �N+1�-many elements of which �34�
makes up just one row. These elements span a Fock space
that contains the �N+1�-dimensional Fock spaces of Secs. II
and III in certain limits. For example, the set of all GCSs
�35� reduces to the set �3� associated with the Schrödinger
model of Sec. II in the limit of vanishing atom-atom interac-
tion within the BHF equations. This corresponds to the sub-
set of all N+1 columns belonging to any single row of �35�,
since all rows within each column are equivalent in the non-
interacting limit of BHF. Alternatively, the subset of GCSs of
the form �N1 ,N2 ; �N1�=N1 ,N2�=N2	
 is identical to the set of
BHF configurations �32� of Sec. III. The diagonal entries of
�35� realize such a subset.

For each BHF configuration �N1� ,N2�
, which is determined
by solving the BHF equations �20�, the MCBHF state vector
can be expanded onto the GCS basis �33� according to

��N;�N1�,N2�	
� = �
N1=0

N

CN1

� �N1�,N2���N1,N − N1;�N1�,N2�	
 ,

�36�

where the expansion coefficient CN1

� �N1� ,N2�� is the probabil-
ity amplitude for the �th excited state of the system to be in
the GCS �N1 ,N2 ; �N1� ,N2�	
. With the MCBHF states, the
many-body Schrödinger equation

Ĥ��N;�N1�,N2�	
� = E��N1�,N2����
N;�N1�,N2�	
� �37�

is represented in the GCS basis �33�. In a symmetric trapping
potential Vext, the Hamiltonian matrix elements hkl= k�h�l


and Vklmn= kl�V�mn
 are constructed out of the left- and
right-localized states �1/�2����1
± ��2
�, which are obtained
from the symmetric and antisymmetric BHF solutions ��1

and ��2
 by unitary transformation. Such a transformation
can always be performed within hkl and Vklmn since they
provide only matrix elements for the many-body Hamil-
tonian �6�. Consequently, the Fock space occupation num-
bers N1 and N2, which are the first two entries of the GCS
�33�, refer to the number of atoms in left- and right-localized
single-particle states, while the BHF occupations numbers
N1� and N2�, which appear in curly brackets within �33�, refer
to the number of atoms in symmetric and antisymmetric
single-particle states. Full diagonalization in this basis gives
rise to a set of energy eigenvalues E��N1� ,N2�� and associated
eigenvectors CN1

� �N1� ,N2�� that depend upon the particular
BHF reference configuration �N1� ,N2�
. Solving this eigen-
value problem for each of the N+1 configurations results in
the set of all MCBHF energies

�E��0,N�,E��1,N − 1�,E��2,N − 2�, . . . ,

E��N1�,N2��, . . . ,E��N,0�	 , �38�

where �=0, . . . ,N. The cardinality of this set is �N+1�
� �N+1�.

We then appeal to the variational principle �48� and
Hylleraas-Undheim theorem �49–52�, which is presented in
the Appendix without proof. The variational principle asserts
that within the model space of MCBHF, the ground state
energy E0 stemming from any BHF configuration is an upper
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bound to the exact ground state energy and may be system-
atically reduced by adding more GCSs. Furthermore, by the
Hylleraas-Undheim theorem, we know that �th MCBHF ex-
cited state energy E� stemming from any BHF configuration
is an upper bound to the exact �th excited state energy, and
may also be systematically reduced by adding more GCSs to
the basis. Therefore, it is true in general, that the optimal
BHF configuration at each energy level is the one that mini-
mizes the energy at that particular level. By choosing the
BHF configuration �N1� ,N2�
 that minimizes E0, and the BHF
configuration �N1� ,N2�
 that minimizes E1, and so on, we gen-
erate a set of N+1 optimal MCBHF energies

�E0�N1�,N2��,E
1�N1�,N2��, . . . ,EN�N1�,N2��	 , �39�

where each energy E� may stem from a different BHF refer-
ence configuration. In fact, for each configuration, the cou-
pling constant g in the BHF equations �26� could also be
treated as a variational parameter �61�, but in this case g may
not be the same as the physical coupling constant. Each of
these optimal energies has an associated optimal eigenvector
that is based off of the same BHF configuration that opti-
mizes the energy. For example, the set of eigenvectors cor-
responding to the set �39� is

�CN1

0 �N1�,N2��,CN1

1 �N1�,N2��, . . . ,CN1

N �N1�,N2��	 , �40�

where N1=0 , . . . ,N and where each of the individual BHF
reference configurations �N1� ,N2�	, �N1� ,N2�	, and �N1� ,2N�	 are
the same in both �39� and �40�. In this way, the MCBHF
theory simultaneously optimizes both the underlying basis
functions, i.e., the BHF reference configurations, and the ex-
pansion coefficients of the GCSs. Therefore, each state vec-
tor ��N ; �N1� ,N2�	
� is potentially made up of multiple GCSs
between which arise correlations, and where the effects of
the condensate’s mean field are built into the Hamiltonian as
well as into the shape of the underlying single-particle wave
functions.

We call the MCBHF state vector that has the lowest
MCBHF energy at the �th energy level the optimal �th
MCBHF state vector and denote it by

��N;�N1�
•,N2�

•	
�. �41�

The bullets symbolize that the energy of the �th state is
minimized in the BHF configuration �N1� ,N2�
. The corre-
sponding set of constituent GCSs forms an optimal
�N+1�-dimensional subset of �35� that spans a Fock space
supporting lower energies than either of those in Secs. II and
III. We now provide an algorithmic method by which to re-
alize this subset.

B. Implementation algorithm

Implementation of the MCBHF theory begins by solving
the BHF equations �26� for a particular trap geometry, say a
single-well potential, and a particular BHF configuration, say
the single configuration �62�

�N1� = 0,N2� = N
 � ��BHF
 = �b̂1
†�0�b̂2

†�N�vac
/�0!N!,

�42�

where there are no atoms in the single-particle state ��1
 and
N atoms in the single-particle state ��2
. We choose Vext to be
symmetric so that the solutions �1 and �2 of the BHF equa-
tions are symmetric and antisymmetric. With these single-
particle wave functions we first calculate the BHF energy
�21�. We then unitarily transform �1 and �2 to the left- and
right-localized functions �1/�2���1±�2�, and use them to
build the matrix elements hkl and Vklmn in the many-body
Hamiltonian �6�. With the MCBHF state vector

��N;�0,N	
� = �
N1=0

N

CN1

� �0,N��N1,N − N1;�0,N	
 , �43�

full diagonalization of the Hamiltonian yields a basis repre-
sentation of the ground and excited state energies and asso-
ciated eigenvectors stemming from the single BHF configu-
ration �N1�=0,N2�=N
.

Next, we solve the BHF equations �26� associated
with the single configuration �N1�=1,N2�=N−1

= �b̂1

†�1�b̂2
†�N−1�vac
 /�1!�N−1�!, in which a single atom has

been moved from the second single-particle state to the first.
With the BHF solution for this configuration we again calcu-
late EBHF, make a unitary transformation to left- and right-
localized states, and then build the matrix elements hkl and
Vklmn. With the MCBHF state vector

��N;�1,N − 1	
� = �
N1=0

N

CN1

� �1,N − 1��N1,N − N1;�1,N − 1	


�44�

the full diagonalization of the associated Hamiltonian yields
the MCBHF ground and excited state energies and eigenvec-
tors stemming from �N1�=1,N2�=N−1
.

We then repeat this procedure for each BHF configuration
until we reach the last BHF configuration �N ,0

= �b̂1

†�N�b̂2
†�0�vac
 /�N!0! in which all N atoms are in the sym-

metric state ��1
 and no atoms are in the antisymmetric state
��2
. Mapping out the complete set of MCBHF energies ver-
sus all possible BHF reference configurations at this trap
geometry results in a diagram like that displayed in Fig. 6.
Notice the detailed energy level mergings and splittings that
occur in this figure. By appealing to the variational and
Hylleraas-Undheim theorems, we find the variationally opti-
mal MCBHF ground state and excited state energies and de-
note their location by a single bullet. The location of these
bullets also indicates which BHF configuration provides the
optimal MCBHF ground and excited state energy. In this
way, we are variationally optimizing both the shape of the
single-particle wave functions and the expansion coeffi-
cients. That is, a nonlinear optimization determines the shape
of the BHF single-particle wave functions for each BHF con-
figuration while a second linear Hylleraas-Undheim optimi-
zation determines the expansion coefficients of the optimal
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MCBHF state vector ��N ; �N1�
• ,N2�

•	
�. We then repeat this
algorithm as the trapping potential is deformed from a
single-well to a double-well geometry.

C. Example: MCBHF excited state

Consider, for example, the optimal 51st excited state in
Fig. 6. It is built off of the �N1�=56,N2�=44
 BHF reference

configuration, which can be read off of Fig. 6, and has ex-
pansion coefficients CN1

51�56,44� as shown in Fig. 7. This par-
ticular optimal MCBHF excited state is not described by the
single BHF configuration �N1�=56,N2�=44
 displayed in Fig.
8 but rather by almost all possible GCSs within this model
space. It is roughly of the form

��N;�56•,44•	
51 � C10
51�10,90;�56,44	
 + C11

51�11,89;�56,44	
 + ¯ + C56
51�56,44;�56,44	
 + ¯ + C90

51�90,10;�56,44	
 ,

�45�

where CN1

51 �CN1

51�56,44� and where the label �56, 44	 in each
ket signifies that the matrix elements of the many-body
Hamiltonian �6� for the optimal 51st excited state have been
built out of the single BHF configuration �N1�=56,N2�=44
,
where N=100=N1+N2. While this BHF configuration mini-
mizes the energy for the 51st excited state, another BHF
configuration may be optimal for the 52nd, and so on. Fur-
thermore, each optimal state may also have a different dis-
tribution of expansion coefficients CN1

� . In other words, every
optimized MCBHF state is potentially derived from a differ-
ent BHF reference configuration and is potentially made up
of a unique superposition of GCSs.

V. RESULTS AND DISCUSSION

We employ an external trapping potential Vext that is har-
monic with a Gaussian function centered at the oscillator’s

minimum. In quasi-one-dimension �45,46�, it has the dimen-
sionless form

Vext�z� = �1/2��z − �z/2�2 + A exp�− �z − �z/2�2/2� , �46�

where �z is the spatial grid length and A is the amplitude of
the Gaussian having unit width in oscillator units. While we
do not intend to precisely model a particular experiment in
this paper, the functional form of Vext �53� has been chosen
because of its resemblance to the double-well interference
experiments performed at MIT �1,2,54�. In practice, A=1
+�B and B is varied from zero up to 150 in increments of
�=0.1�	. As the amplitude is increased, the constant 1
+ln A is subtracted off of the potential so that its minimum
always lies at 0�	. All energies are, therefore, reported as
relative to the zero of the trapping potential. In this way, Vext
is deformed from an initially single well with zero barrier
height to a double well with a barrier height of �B=15�	.

FIG. 6. �Color online� MCBHF ground and excited state ener-
gies and BHF ground state energy for N=100 atoms in a single-well
potential �or zero barrier limit of a double well� with a dimension-
less coupling of �Q1D=40 �see �47�� �Q1D=40 �see �47�� versus
BHF reference configuration. The solid black curve represents the
BHF ground state energy. Bullets are placed at the minima of BHF
ground and MCBHF ground and excited energies. The line style is
alternated to aid in visualization. This figure is a zoomed in and
more detailed version of the first panel in Fig. 9.

FIG. 7. �Color online� MCBHF expansion coefficients CN1

51 of
the 51st excited state ��N ; �56• ,44•	
51 versus the occupation num-
ber in each GCS. The label �56, 44	 in the state vector signifies that
the minimal 51st MCBHF excited state energy has been attained in
the BHF configuration �N1�=56,N2�=44
. This probability amplitude
corresponds to 100 atoms in a single-well trapping potential with
�Q1D=40 �see �47��.
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In the GP equation �16�, varying g is the same as varying
N. However, g and N enter the many-body Hamiltonian �6�
in different ways so that varying g is not the same as varying
N in MCBHF theory. Although actual experiments involve
N�105 condensate atoms, we choose to perform all calcula-
tions with a smaller number. Nevertheless, it is possible to
illustrate the importance of correlation and mean field effects
by adjusting g so that the product gN has the correct value.
In quasi-one-dimension, the dimensionless coupling constant
becomes

�Q1D � 4�a
zN/L�
2 , �47�

where 
z=�� /m	z is the z-oscillator length and L� is the
transverse length associated with the quasi-one-dimensional
approximation. Choosing trap frequency 	z=2��30 Hz
and S-wave scattering length a=4.9 nm appropriate for the
recent 23Na double-well interference experiments �1,2�, the
dimensionless quasi-one-dimensional coupling constant has
an approximate value of 50, where a condensate density of
1013 atoms/ �cm�3 has been assumed. In light of this value,
we perform MCBHF calculations at �Q1D=40 where
Thomas-Fermi characteristics are already evident. The quasi-
one-dimensional BHF wave functions displayed in Fig. 4
correspond to this particular value of coupling strength.
Throughout the paper, we have chosen the frequency scale 	
to be 	z.

A. MCBHF energy versus BHF configuration

Allowing the interwell barrier in �46� to grow, we repeat
the implementation algorithm of Sec. IV B for each and ev-
ery barrier height. A panorama of MCBHF energies versus
BHF configuration is presented in Fig. 9 corresponding to
four different barrier heights 0, 3, 9, and 13�	 with �Q1D
=40 in both the many-body Hamiltonian �6� and in the BHF

equations �26�. The first panel is an enlarged version of Fig.
6, where only every fifth line is plotted to aid in visualiza-
tion. Bullets have again been placed at each of the variation-
ally optimal energies. The structure of the MCBHF ground
and excited state energies versus BHF reference configura-
tion is quite detailed and it is important to explain some of its
features. For example, it can be seen in Fig. 6 or in the upper
two panels of Fig. 9 that there are two energetic pathways
that can support optimal solutions. One pathway provides the
globally optimal solutions while the second pathway pro-
vides only locally optimal solutions. One might ask why this
structure is present and why it is not symmetric about the
�N /2 ,N /2
 BHF configuration. The answer lies in the role of
the two single-particle states ��1
 and ��2
, which are the
symmetric and antisymmetric BHF solutions, as various
numbers of atoms are placed in each state.

Consider the BHF reference configuration �0,N
 in which
there are no atoms in the symmetric state and N atoms in the
antisymmetric state. Excited MCBHF states ��N ; �0,N	
� are
made up of single atom excitations out of the highest energy
BHF reference configuration describable in the basis. Fur-
thermore, these excitations move atoms to states that have
zero occupation. Due to the effect of bosonic amplification,
these excitations of an excited state cost a macroscopic
amount of energy �11�. Alternatively, consider the MCBHF
state ��N ; �N ,0	
�, which is built out of the BHF reference
configuration �N ,0
, in which all atoms are in the symmetric
ground state. Single atom excitations out of this state also
cost a macroscopic amount of energy, due to bosonic ampli-
fication, as atoms are moved from a macroscopically filled
state to empty states. However, these excitation energies lie
lower than the previous energies because they correspond to
excitations out of the ground state rather than excitations
from an excited state. This explains why the energies on the
left-hand side of each panel, i.e., N1� /N�0, are larger than
those on the right-hand side, i.e., N1� /N�1. Last, consider
the MCBHF state ��N ; �N1��N /2 ,N2��N /2	
�, which is ap-
proximately built out of the BHF reference configuration
�N /2 ,N /2
, in which both states are macroscopically occu-
pied. Single atom excitations out of ��N ; �N /2 ,N /2	
� ex-
change atoms between two macroscopically occupied states.
In distinction to the previous two cases, here there is a mac-
roscopic energy cost to move a single atom out of ��1
, but
there is also a macroscopic energy gain as the atom is added
to ��2
. Therefore, the MCBHF energies in this region repre-
sent the smallest energy excitations possible within our
model. The location of each minimum is biased to right-hand
side because it is energetically easier to make excitations out
of the ground state than out of excited states. This is why the
energy pathway on the right-hand side provides the global
minimum solutions while the energy pathway on the left-
hand side supports only local minima.

B. Optimal MCBHF energy versus barrier height

By collecting the set of all optimal energies at each barrier
height, i.e., by collecting all the bulleted energies appearing
in Fig. 9 plus those at all other barrier heights, an energy
level correlation diagram similar to those in Figs. 1 and 2 can

FIG. 8. �Color online� BHF single-particle wave functions �1

and �2 versus coordinate z associated with the BHF configuration
�N1�=56,N2�=44
, which underlies the optimal 51st MCBHF excited
state at a barrier height of 0�	. A dimensionless coupling of
�Q1D=40 �see �47�� for 100 atoms was used. Both wave functions
have been set at the chemical potentials �11 and �22 associated with
this configuration. The corresponding Thomas-Fermi wave function
is plotted as a solid black curve.
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be made. The MCBHF correlation diagram associated with
Fig. 9 is displayed in Fig. 10. There are qualitative similari-
ties to those of the parametrized and Schrödinger model cal-
culations such as, for example, the pronounced ridge struc-
ture that marks the merging of nondegenerate energy levels
to degenerate as the interwell barrier is raised. However,
large quantitative differences are apparent by comparing the
MCBHF correlation diagram in Fig. 10 with the correspond-
ing Schrödinger correlation diagram displayed in Fig. 11.
The latter figures are computed by diagonalizing the many-
body Hamiltonian �6� with �Q1D=40, where the underlying
single-particle wave functions are taken from the single-
particle Schrödinger equation. No optimization is necessary
in this case since the wave functions have no dependence
upon N1� and N2�. To aid in visualization, the second panels in
Figs. 10 and 11 have been zoomed in precisely at the phase
transition between nondegenerate and degenerate energies.
Notice the large difference in energy scales as well as the
shape and placement of the phase transitions in Figs. 10 and
11.

C. Distribution of GCSs and BHF wave functions

Examining the distribution of GCSs in each of the optimal
MCBHF states in Fig. 10, we find that below the ridge the
distribution is harmonic-oscillator-like in form, while exotic
macroscopic superpositions of GCSs exist above the ridge.
This behavior is generic across all barrier heights where
ridge structures are present. In order to exemplify these char-
acteristics, we present optimal MCBHF expansion coeffi-
cients in Fig. 12 taken from Fig. 10 at the particular barrier
height of 3�	. Coefficients are presented that correspond to
the optimal MCBHF ground state and first and second ex-
cited states, which are below the ridge, as well as to the
optimal MCBHF 63rd, 64th, and 65th excited states, which
are above the ridge. An analogous presentation is made in
Fig. 12 for the Schrödinger based coefficients associated
with Fig. 11. The two left-hand panels in Fig. 12 correspond
to the full MCBHF theory with an interaction strength of
�Q1D=40, while the two right-hand panels correspond to the
case where single-particle Schrödinger wave functions are
used to build the many-body Hamiltonian with �Q1D=40.

FIG. 9. �Color online� MCBHF ground and excited state energies and BHF ground state energy for �Q1D=40 and N=100 versus BHF
configuration. Four different barrier heights 0, 3, 9, and 13�	 are displayed from left to right and top to bottom. The solid black curve in
each panel represents the BHF ground state energy at each barrier height and for each BHF configuration. Bullets are placed at the minima
of the BHF ground state and all MCBHF energies. These are the variationally optimal states at each energy level. To aid in visualization, we
alternate line style and only display every fifth excited state. The box in the first panel corresponds to Fig. 6.
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Below the ridge, the optimal MCBHF states are not ener-
getically degenerate. The ground state and first and second
excited states are optimized in the BHF reference configura-
tions

�N1� = 99,N2� = 1
 ground state,

�N1� = 95,N2� = 5
 first excited state,

�N1� = 93,N2� = 7
 second excited state. �48�

Reference configurations do not enter the Schrödinger based
theory as the single-particle wave functions have no depen-
dence on N1� and N2�. It is apparent that the ground state is
described by a binomial distribution of states peaked around
N1=50 and N2=50 in the basis where N1 and N2 are the
occupation numbers of states that are left- and right-localized

in the trapping potential. However, by making a unitary
transformation directly on the coefficients of the GCSs tak-
ing them back to the symmetric and antisymmetric basis, the
expansion coefficients are tightly peaked around a single
state. The optimal MCBHF ground state becomes

��N;�99•,1•	
0 � �100,0;�99,1	
 �49�

while a similar result holds for the Schrödinger case.
The underlying BHF single-particle wave functions asso-

ciated with �49� are displayed in the first panel of Fig. 13. It
is important to note that these BHF wave functions depend
strongly on the number of atoms in each single-particle state
as well as on the interaction strength and do look quite dif-
ferent from the corresponding solutions of the single-particle
Schrödinger equation in the second panel of Fig. 5. Being
that the MCBHF states �49� are made up of a single configu-

FIG. 10. �Color online� MCBHF energy level correlation diagram versus barrier height for �Q1D=40 and N=100 atoms. Every fifth
energy level is plotted in the left-hand panel and the line styles are alternated in both to aid in visualization. The solid black curve in the
left-hand panel denotes the BHF ground state energy. Energy level mergings, which lead to a pronounced ridge structure separating
nondegenerate oscillator-like states from doubly degenerate macroscopic superposition states, are focused on in the second panel. This panel
is a zoomed and more detailed version of the boxed region in the first, where every line has been displayed.

FIG. 11. �Color online� Schrödinger energy level correlation diagram versus barrier height for �Q1D=40 and N=100 atoms. Every fifth
energy level is plotted in the left-hand panel and the line styles are alternated in both to aid in visualization. The second panel is a zoomed
and more detailed version of the boxed region in the first, where every line has been displayed.
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ration with almost all N=100 atoms in ��1
, it is not surpris-
ing that GP theory �9,10� provides a good description of the
ground state of the simple BEC.

A harmonic oscillator-like distribution of expansion coef-
ficients continues from the ground state up to and including
the excited states that lie within the ridge at approximately
470�	 in Fig. 10. However, above the ridge, the distribution
of GCSs making up each optimal MCBHF state takes on a
striking new form. Macroscopic quantum superpositions
states emerge in the spectrum. These states, which are pair-
wise degenerate, are also known as entangled number states
and are colloquially called Schrödinger cats. The lower left-
hand panel in Fig. 12 depicts the distribution of GCSs in the
optimal 63rd, 64th, and 65th excited MCBHF states at a
barrier height of 3�	 corresponding to �Q1D=40. The lower
right-hand panel depicts the associated distribution of
Schrödinger Fock states. It is found that the former three
states are optimized in the BHF reference configurations

�N1� = 50,N2� = 50
, 63rd excited state,

�N1� = 50,N2� = 50
 64th excited state,

�N1� = 50,N2� = 50
 65th excited state. �50�

The underlying BHF single-particle wave functions for the
63rd excited state are displayed in the second panel of Fig.
13. Once again, it is important to note that these BHF wave
functions depend strongly on the number of atoms in each
single-particle state as well as on the interaction strength and
do look quite different from the associated solutions of the
single-particle Schrödinger equation displayed in the second
panel of Fig. 5. Note that the Schrödinger based ground and
all excited states stem from the same Schrödinger wave func-
tion. The optimal MCBHF excited states are of the approxi-
mate form

FIG. 12. �Color online� Left-hand side two panels, expansion coefficients of the optimal MCBHF ground state and first and second
excited states versus occupation number in each GCS as well as expansion coefficients of the optimal 63rd, 64th, and 65th excited states
versus occupation number in each GCS. The optimal BHF reference configurations �N1� ,N2�
 have been provided for each state separately
within the text. Right-hand side two panels, expansion coefficients of the Schrödinger ground state and first and second excited states versus
occupation number as well as expansion coefficients of the Schrödinger 63rd, 64th, and 65th excited states versus occupation number. These
probability amplitudes correspond to N=100 atoms at a barrier height of 3�	. The left-hand column has the dimensionless coupling
�Q1D=40 in both the many-body Hamiltonian and BHF equations, while the right-hand column has �Q1D=40 only in the many-body
Hamiltonian.
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��N;�50•,50•	
� � f15
� �15,85;�50,50	
 ± g85

� �85,15;�50,50	
 ,

�51�

where �=63,64,65. The coefficients f15
� and g85

� are meant to
indicate that these states are not made up of just two GCSs,
but rather there is a distribution of GCSs peaked around
�15,85;�50,50	
 and �85,15;�50,50	
 as is evident from the
lower left-hand panel of Fig. 12. These states are, therefore,
multiconfigurational in nature. In Fig. 12, the “�” combina-
tion is for �=64 and the “�” combination is for �=63,65.
Sharper and more extreme macroscopic superposition states
do appear in the spectrum at even higher lying energies.
Notice that many more configurations are involved in the
lower left-hand panel of Fig. 12 than Fock states in the lower
right.

In addition, we point out that in the large barrier height
limit, the BHF reference configuration underlying the opti-
mal MCBHF ground state and low lying excited states ap-
proaches �N1�=50,N2�=50
. This can be seen by comparing
trends in the lower two panels of Fig. 9, which correspond to
barrier heights of 9�	 and 13�	. The distribution of GCSs
at these barrier heights is also sharply peaked at N1=50 and
N2=50. Therefore, the optimal MCBHF ground state takes
the form

��N;�50•,50•	
0 � �50,50;�50,50	
 �52�

in the large barrier height limit, which is a fragmented BEC
state. Since the optimal BHF reference configuration has ap-
proximately 50 atoms in each of two single-particles states, it
is not surprising that a two-single-particle state mean field
theory provides a realistic description of the fragmented
BEC ground state �5,6�. The MCBHF state �52� is, after all,
a single configuration with about N /2 atoms in each of two
single-particle states.

We have demonstrated that the optimal MCBHF ground
states at both zero and large barrier height are described by a
single GCS. The low barrier limit is characterized by only
one single-particle state. This is why ground state zero tem-
perature properties of the simple BEC are well understood
with GP theory alone. The large barrier height limit requires,
at minimum, two single-particle states. GP theory, being a
one-single-particle state theory fails in this case, however,
the two-single-particle state BHF theory provides a good de-
scription here. Furthermore, it has been shown that states do
exist at all barrier heights that can only be described by su-
perpositions of multiple configurations into which the effects
of atom-atom interactions are incorporated. Comparison with
the Schrödinger model of Sec. II demonstrates a marked dif-
ference in the atomic structure of the condensate due to the
neglect of mean field effects on the underlying single-particle
wave functions. Therefore, the full effects of the mean field
as well as correlation must be included in order to gain un-
derstanding of the entire process of BEC fragmentation and
not just an understanding of the simple or fragmented ground
state.

VI. CONCLUSION

Multiconfigurational Hartree-Fock theory has been for-
mulated for the many-body problem associated with a gas of
identical bosonic atoms trapped at zero temperature in poten-
tials that can be continuously deformed from single to double
well geometries. A didactic survey of our approach has been
presented which clarifies many of the principles and approxi-
mations that are found in other relevant approaches from the
literature. In the extreme limit of a single configuration,
MCBHF theory recovers two-single-particle state mean field
theory �5,6�, which includes the effect of the condensate
mean field on the single-particle states but lacks the correla-
tion that arises between configurations. In the opposite ex-

FIG. 13. �Color online� BHF single-particle wave functions �1 and �2 versus coordinate z at a barrier height of 3�	. The first panel
corresponds to the BHF configuration that optimizes the MCBHF ground state. That is, the first panel depicts the BHF configuration �99,1

associated with �Q1D=40. The second panel correspond to the BHF configuration that optimizes the 63rd MCBHF excited state. That is, the
second panel depicts the BHF configuration �50,50
 associated with �Q1D=40. All wave functions have been set at the chemical potentials
�11 and �22 associated with each configuration. At each barrier height, we plot the corresponding Thomas-Fermi wave function as a solid
black curve.
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treme limit, our approach recovers the exact diagonalization
of the many-body Hamiltonian in a restricted two-state basis
of Fock states �14�. Atomic correlation arises automatically
in this case, but the full effects of atom-atom interaction are
missing. In particular, the underlying single-particle states
have no dependence upon the mean field of the condensate.
By incorporating both approaches, the MCBHF theory is ca-
pable of describing general many-body states of the system
that are made up of a superposition of many configurations
into which mean field effects are included.

MCBHF theory has been implemented in a systematic
study of the many-body atomic structure of the BEC and its
fragmentation in a double-well trapping potential. Nonlinear
and linear optimization has been utilized in conjunction with
the variational and Hylleraas-Undheim theorems to find the
optimal ground and excited states of the condensate through-
out its break up. A variety of interesting delocalized and
localized, single configurational and multiconfigurational
states have been found to arise throughout the spectrum at all
barrier heights. Contributions from the condensate mean
field on the underlying single-particle states as well as cor-
relation effects, which arise between configurations, have
been emphasized to be essential in order to obtain a more
complete microscopic understanding of the condensate’s
atomic structure throughout the fragmentation process. Fu-
ture work will be devoted to the construction of an associ-
ated dynamical theory that incorporates the rich atomic
structure of the MCBHF formalism. It is intended to apply
such a dynamical theory to the accurate modeling of the
recent experiments �1–4� in which the observables are time-
dependent condensate densities, rather than stationary state
energy levels. However, the importance of mean field effects
illustrated here for the energy levels of the many-body sys-
tem as a function of barrier height clearly indicate that this
same mixing of mean field and correlation effects will be
important there.
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APPENDIX: HYLLERAAS-UNDHEIM THEOREM
AND OPTIMIZATION OF BOUNDS

FOR EXCITED STATE EIGENVALUES

A nonrigorous statement of the Hylleraas-Undheim theo-
rem �51� is as follows: The N energy eigenvalues E� of the
Hamiltonian Hkl= gk�H�gl
 represented in the orthonormal
basis �g1 , . . . ,gN	 can be ordered so that

E1 � E2 � ¯ � EN. �A1�

Each E� is an upper bound to the exact �th eigenvalue E�
ex of

the same symmetry, i.e.,

E1
ex � E1,E2

ex � E2, . . . ,EN
ex � EN. �A2�

The bounds can be systematically improved as N is increased
since the energy eigenvalues necessarily move downward or
stay the same. For example, the eigenvalues E�� of the Hamil-
tonian represented in the orthonormal basis
�g1 , . . . ,gN ,gN+1	, which contains one extra basis function,
interlace the eigenvalues E� in such a way that

E1
ex � E1� � E1,E2

ex � E2� � E2, . . . ,EN
ex � EN� � EN.

�A3�

Continued interlacing occurs as more basis functions are
added. In this way, bounds for excited states can be indepen-
dently optimized. A proof of the theorem appears in Refs.
�49,52�, while the more casual reader is referred to Ref. �50�.
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