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Investigating the quantum phase transition in a ring from a uniform attractive Bose-Einstein condensate to a
localized bright soliton we find that the soliton undergoes transverse collapse at a critical interaction strength,
which depends on the ring dimensions. In addition, we predict the existence of other soliton configurations
with many peaks, showing that they have a limited stability domain. Finally, we show that the phase diagram
displays several new features when the toroidal trap is set in rotation.
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I. INTRODUCTION

Metastable states of Bose Einstein condensates �BECs�
made of attractive 7Li atoms, namely single and multiple
bright soliton configurations, have been observed in two dif-
ferent experiments �1,2�. These metastable bright solitons,
which can travel for long distances without dispersion, have
been the subject of various theoretical investigations because
of their relevance in nonlinear atom optics �3,4�. Repulsive
BECs in a quasi-one-dimensional �1D� ring have been pro-
duced and studied �5�. The case of an attractive BEC in a
ring has not yet been experimentally investigated but appears
very interesting. For this system a quantum phase transition
from a uniform condensate to a bright soliton. has been pre-
dicted by Kavoulakis and by Kanamoto, Saito, and Ueda �6�.
This prediction is based on mean-field and beyond mean-
field numerical results for a 1D Bose gas with contact inter-
action and periodic boundary conditions �6�. Later, the same
authors have shown that the quantum transition properties of
the attractive BEC in a 1D ring are strongly modified if the
confining trap is rotating �7�.

In this paper we investigate an attractive BEC in a three-
dimensional �3D� ring, taking into account transverse varia-
tions of the BEC width, showing that the phase diagram of
the system reveals peculiar structures. In particular, we prove
that, contrary to the simple 1D case, the localized soliton has
a limited existence and stability domain, which nevertheless
strongly extends the stability domain of the uniform solution.
Moreover, we find that the system supports also multipeak
solitons, which are energetically unstable but can be dynami-
cally stable. Finally, we analyze the effect of a rotating ring.
In this case the multipeak solitons are always energetically
and dynamically unstable, while the one-peak soliton is
stable in a domain that, for a fixed rotation frequency, criti-
cally depends on the system parameters.

II. TOROIDAL TRAP

We consider a BEC confined in a toroidal potential given
by

U��,�� =
1

2
m��

2 ��� − R0�2 + �2� , �1�

where � is the cylindric radial coordinate, � is the cylindric
axial coordinate, and � is the azimuthal angle. The BEC has

transverse harmonic confinement of frequency �� and the
two characteristic lengths of the toroidal trap are R0 and
a�= �� / �m����1/2. In the remaining part of the paper we use
scaled units; time in units of ��

−1, length in units of a�, and
energy in units of ���. To simplify the 3D Gross-Pitaevskii
equation �GPE� we impose that the order parameter
��� ,� ,� , t� of the Bose condensate is the product of a ge-
neric azimuthal function f�� , t� and a radial Gaussian func-
tion, which has two variational parameters; the width ��� , t�
and the coordinate R of the center of mass in the radial
direction. The trial wave function is given by

���,�,�,t� =
f��,t�
R1/2

exp�−
�� − R�2 + �2

2���,t�2 �
�1/2���,t�

. �2�

We follow a procedure similar to that described in �8� insert-
ing the trial wave function into the GPE Lagrangian density

L = �*�i
�

�t
+

1

2
�2 − U −

1

2
	���2	� , �3�

where 	=4�asN /a�, with N the number of condensed atoms
and as
0 the attractive s-wave scattering length. The trap-
ping potential of Eq. �1� has a cusp at the origin, a feature not
usually present in experimental traps, but this is expected to
have minor effects on physical properties if only a small
fraction of the particles are near the origin. For example, if
R /��3/2, the fraction of particles belonging to the radial
region �0,R−�� is below 1%. In the range 1
R /�
3/2 the
population near the origin is not so small and the results
reported below are not fully reliable in this range. We inte-
grate over � and � coordinates �9�. In this way, from the
Euler-Lagrange equations of the resulting effective Lagrang-
ian density, we get the nonpolynomial Schrödinger equation
�NPSE�

�i
�

�t
+

1

2

�2

�z2 − T�n�	� = 0, �4�

where ��z , t�= f�� , t� /R1/2 is the azimuthal wave function
of the condensate with z=R�, n= ���2 is the density profile
normalized to unity and T�n�=dW�n� / �dn� with W�n�
=n�1−gn�1/2. The scaled interaction strength g is given by
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g= �	� / �2��=2N�as� /a�. In toroidal geometry the solution
��z , t� must obey periodic boundary conditions ��0, t�
=��L , t� with L=2�R. Within our variational approach the
transverse width � of the BEC is given by

�2 = �1 − gn�1/2. �5�

For gn1 one has �
1, T�n�
−gn+1, and the NPSE re-
duces to the 1D GPE. In addition, we find that the variational
parameter R is implicitly given by the equation

R −
1

R
�

0

2�R � ��

�z
�2

dz +
g

2�2�
0

2�R

���4dz = R0. �6�

This formula shows that the effective radius R of the BEC
ring depends on the interaction strength g. We have verified
that for a static and attractive BEC, the effective radius R
decreases very slowly by increasing g, while for a repulsive
BEC the opposite is true. In practice, because for an attrac-
tive BEC the strength g cannot exceed the scaled inverse
density n−1, the effective radius R is always close to R0. For
a uniform BEC, where Eq. �6� becomes R+g / 4�R2�1
−g / �2�R��1/2�=R0, it is easy to check that the relative dif-
ference between R and R0 is typically only a few percent and
becomes 10% only near the collapse.

The very good accuracy of the NPSE in approximating
the 3D GPE with a transverse harmonic potential has been
verified in �8� for both positive and negative scattering
length. In the derivation of NPSE one neglects the space and
time derivatives of the width ��z , t�. By including these
terms one gets the coupled equations derived by Kamchat-
nov and Shchesnovich �10�, but it is not clear if these terms
give an improvement. We have verified that, according to the
3D GPE, the single-peak bright soliton of an attractive BEC
in an infinite cylinder collapses at the critical strength gc /2
=0.676 �see also �11��, a value very close to the NPSE pre-

diction gc /2=2/3=0.666̄ �8�.

III. UNIFORM AND LOCALIZED SOLUTIONS

The NPSE conserves both the norm of the wave function
and the total energy E of the configuration. The stationary
solutions follow from Eq. �4� by looking for solutions of the
form ��z , t�=��z�e−i�t for some chemical potential �. The
resulting nonlinear eigenvalue equation is the static NPSE. In
toroidal geometry, the uniform solution ��z�=1/�L is al-
ways present for g
L, i.e., with density N /L
a� / �2�as��,
and corresponds to the eigenvalue �=T�1/L�. In addition,
other less trivial profiles may be present. Beyond this limit
�i.e., for g�L� the attraction is too strong and no regular
solution is possible, leaving the BEC collapse as the only
possibility. A generic �real� solution ��z� of the stationary
NPSE may be interpreted as the classical “time” evolution of
a fictitious particle moving in a potential V���=��2

−W��2�. As a consequence, the “energy” conservation equa-
tion for this motion reads

1

2
�d�

dz
�2

+ V��� = � . �7�

According to the values of the two parameters � and � two
kinds of “trajectories” may be realized. For ��0 and ��0
the solution ��z� oscillates between a positive and a negative
value, thereby crossing zero, while for �
0 the solution
��z� remains always positive. In the first case the solutions
are named nodal solitons while in the second case nodeless
solitons.

For fixed g and L, the two parameters � and � are implic-
itly determined by the two consistency equations:

L = �2Ns�
�min

�max

d�
1

�� − V���
�8�

and

1 = �2Ns�
�min

�max

d�
�2

�� − V���
, �9�

where Ns is the number of maxima of the soliton, i.e., the
number of “periods” of the corresponding orbit, and �min
��max� is the minimum �maximum� value attained by ��z�
during the periodic oscillation. As customary in Newtonian
problems, the extremal values of � are implicitly defined by
the equation V���=� in terms of � and �. The first equation
comes from the commensurabilty requirement of the solito-
nic solution, which, after an integer the number of periods
must close without discontinuities. The second equation is
just the normalization condition of the wave function.

The two consistency equations �8� and �9� have been
solved and the domain of existence of soliton solutions of the
given topology has been determined in the �R ,g� plane. The
results are shown in Fig. 1. The numerical analysis shows
that two solutions of same symmetry may be present in a
portion of the existence domain. For the sake of clarity in
Fig. 1 we report the existence domain only for the one-peak
soliton �Ns=1� and for the two-peak soliton �Ns=2�. Note
that the existence diagram of the 1D GPE is strongly differ-
ent from that of the NPSE. In fact, as previously stressed, the
1D GPE does not take into account the transverse dynamics
and, as a consequence, no collapse of solitonic solutions is
predicted by 1D GPE.

IV. ENERGETIC STABILITY

We now turn to the discussion of the energetic stability
�12� of the previously defined solitonic configurations. One
can rigorously prove that the energetic stability can be ex-
pressed in terms of the eigenvalues �l of H±nT�, where

H = −
1

2

d2

dz2 + T�n� + n
dT�n�

dn
− � �10�

and n�z� is the density profile of the stationary solution. The
stationary solution ��z� is energetically stable only if either
of the two conditions is satisfied: �1� all the eigenvalues �l
are non-negative and �2� a single negative eigenvalue �0 is
present and dg /d��0. When we apply this general analysis
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to the simple case of the uniform stationary solution in tor-
oidal geometry ��z�=1/�L we find that this case satisfies the
latter of the two conditions previously stated and the solution
is stable until the second eigenvalue gets negative, triggering
the instability. The resulting stability condition �2� /L�2

+4nT��0 explicitly becomes

�2

gL
�1 −

g

L
�3/2

� �1 −
3g

4L
� . �11�

This formula reduces to �2 / �gL� for large L �1D limit�, that
is precisely the result one finds with the 1D GPE �6�. The
stability analysis of the solitonic configurations, however,
does not allow for a general analytic solution and the eigen-
value equations of H±nT� must be investigated numerically.

The operators H±nT� may be numerically diagonalized
by introducing a finite mesh in the interval 0�z
L and
approximating the differential operator with the correspond-
ing finite difference operator. The two resulting equations
then give rise to a matrix eigenvalue problem. The numerical
results show the following.

�i� In the regions where the uniform solution satisfies the
energetic stability condition dg /d��0 no other solitonic
wave function can be stabilized.

�ii� Only the one peak soliton is energetically stable in a
portion of the domain where it is defined.

�iii� When distinct, one peak solutions exist for the same
values of g and L. The soliton is stable only in the branch
corresponding to the lowest energy.

The latter remark is illustrated in the upper panel of Fig.
2, where the energy E of the one-peak solution is shown as a
function of g for L=10. It is also interesting to plot the
chemical potential � versus g in the stable and unstable
branch. The case of L=10 previously analyzed is shown in

the lower panel of Fig. 2, where it appears that the onset of
instability corresponds to an extremum of the coupling con-
stant g as a function of the chemical potential. In fact, this
immediately follows from the previous analysis which led to
dg /d��0. If H+nT� admits a single negative eigenvalue,
dg /d�=0 signals the onset of the instability.

The energetic stability region of stationary solutions of
the NPSE in a ring is shown in the top panel ��=0� of Fig.
3. Below the solid curve the uniform solution is energetically
stable. The one-peak soliton, which exists between the two
dashed curves, is energetically stable in the domain limited
by the solid and the upper dashed line. In the remaining
regions of the phase diagrams no energetically stable station-
ary solution is present and the BEC is expected to collapse.
Note that for large R=L / �2�� the upper dashed line tends to
g=4/3, that is the formula one finds for the collapse of a
bright soliton in a infinite cylinder �see Salasnich et al.
�3�b���. It is not difficult to show that with a large R the
existence domain of a Ns peak bright soliton is instead given
by

0 
 g 

4

3
Ns. �12�

See, for instance, the existence domain of the two-peak soli-
tons shown in Fig. 1. As previously stressed, upper bounds
do not exist within the 1D GPE approach; the collapse of
single and multiple bright solitons is due to the transverse
dynamics of the condensate.

In the other panels of Fig. 3 the effect of a rotating toroi-
dal trap on the attractive BEC is shown. The analysis is
developed by observing that one has to include the centrifu-
gal operator

− �M̂� = i�
L

2�

�

�z
�13�

into Eq. �4�, where � is the rotation frequency �in units of
the frequency �� of the harmonic transverse confinement�

FIG. 1. �Color online� Existence diagram in the �R ,g� plane,
where g=2N�as� /a� is the interaction coupling and R=L / �2�� is
the azimuthal radius of the ring �in units a��. A uniform solution
exists for g
2�R. A one-peak localized nodeless solution exists
between the two solid lines. Nodeless two-peak localized solution
exists between the two dashed lines. The nodal two-peak localized
solution exists between the two dot-dashed lines.

FIG. 2. Energy E and chemical potential � of the one-peak
solitons as a function of the coupling g for L=10. The energetically
stable solutions are represented by the solid lines, the unstable so-
lutions are represented by the dashed lines.
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and M̂� is the azimuthal angular momentum. As shown in
Ref. �7� by using the 1D GPE, the uniform state of the at-
tractive BEC is superfluid, i.e., it exists a critical frequency
�c below which the uniform state remains stationary, and
only above this critical frequency the uniform state rotates.
In general, the stationary uniform solution is thus given by
��z�=ei2�zj/L /�L, where the integer number j is a function of
� and L, namely,

j��,L� = int��L2

4�2 +
1

2
	 , �14�

with int�x� the maximum integer that does not exceed x. The
localized soliton solution has a different behavior; its angular
momentum is not quantized �7� and this means that the quan-
tum phase transition from the uniform to the localized state
suppresses the superfluidity of the system �7�. Setting ��z�
=��z�ei��z�, where both ��z� and ��z� are real, from the sta-
tionary NPSE with the centrifugal operator of Eq. �13� one
finds

d�

dz
= �

L

2�
+

c

�2 , �15�

where the constant c is given by the equation

�R2 +
c

2�
�

0

L dz

��z�2 = j . �16�

In addition, the function ��z� is obtained from the two con-
sistency Eqs. �8� and �9� with V��� now given by

V��� = � +
1

2
��L

2�
�2

− W��� +
c2

2�2 , �17�

where W���=�2�1−g�2�1/2.
Following the previous analysis one finds that the ener-

getic stability condition reads

1 − 4��L2

4�2 − j��,L��2

�
gL

�2

�1 −
3g

4L
�

�1 −
g

L
�3/2 . �18�

In the 1D limit of large L the previous formula gives 1
−4���L2 /4�2�− j�� ,L��2�gL /�2, that is, the results found
in Ref. �7�. Figure 3 shows the energetic stability diagram in
the plane �R ,g� for two nonzero values of the rotating fre-
quency �. Below the solid line the stability condition holds
and the uniform state is energetically stable. The periodic
structure for ��0 is a consequence of the periodic quanti-
zation of the angular momentum j�� ,L�. In particular, for a
fixed �, the solid line touches the horizontal axis g=0 for
discrete values of R=L / �2��, which correspond to jumps in
the quantum number j.

The one-peak solitonic solution exists between the two
dashed lines and it is energetically stable between the solid
line and the upper dashed line. Interestingly, Fig. 3 shows
that for large R the lower dashed line and the solid line
practically coincide. As in the nonrotating case, we find that
also for ��0 solutions with more than one peak are not
energetically stable.

In Fig. 4 we plot the angular momentum M� and the azi-
muthal width � of the rotating one-peak bright soliton. The
figure shows that the angular momentum is not quantized. It
approaches the value M�=�R2 of a “classical particle” for g
close to the collapse �g
4/3�, but it becomes quantized, i.e.,
M�= j, where j depends on � and R, for the small value of g
that gives the transition to the uniform solution. Obviously,
when the angular momentum becomes quantized the width �
of the bright soliton coincides with that of the uniform solu-
tion. Figure 4 also shows that the width � is independent on
the ring radius R as the bright soliton is close to the collapse;
in this case g
4/3 and �
0.85.

V. DYNAMICAL STABILITY

It is important to stress that energetic stability implies
dynamical stability but the converse is not true �12�. In order
to investigate the dynamical stability of stationary solutions
in the ring one can solve the Bogoliubov–de Gennes �BdG�
equations which give the elementary excitations �l �l
=1,2 ,3 , . . . � of the system; the appearence of a complex
excitation signals dynamical instability while a negative ex-
citation implies energetic instability �12�. For the uniform
solution ��z�=ei2�zj/L /�L one finds

FIG. 3. �Color online� Attractive BEC in a ring rotating with
frequency �. Energetic-stability diagram in the plane �R ,g�. The
uniform solution is the ground state only below the solid line. The
one-peak localized solution exists between the two dashed lines but
it is the ground state only between the solid line and the upper
dashed line. Note that for almost all R=L / �2�� the solid curve is
superimposed to the lowest dashed curve. Only for 1
R
1.5 is
the lowest dashed line below the solid line.
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�l = − �� −
4�2

L2 j��,L��l

+
1

2��2�l

L
�2��2�l

L
�2

−
4g

L

�1 +
3g

4L
�

�1 −
g

L
�3/2��

1/2

. �19�

This result confirms that the uniform solution is energetically
stable if the previously written stability condition is satisfied;
moreover it shows that the dynamical stability of the uniform
solution is independent on �. For localized solutions the
BdG equations are computationally rather demanding. For
this reason we have analyzed the dynamical stability by nu-
merically solving the time-dependent NPSE taking as an ini-
tial condition the stationary localized solution ��z� with a
very weak perturbation.

In Fig. 5 we plot the density profile ��z�= ���z��2 of the
one-peak and the nodal two-peak solutions, choosing L=15,
g=1, and two values of �. In addition, we plot the time
evolution of the mean squared width �z2�− �z�2. Its behavior
reveals that these solitonic solutions are dynamically stable.
We have investigated the dynamical stability for various ini-
tial conditions. For �=0 we have found that �i� the one-peak
soliton is dynamically stable where it exists; �ii� the nodal
two-peak soliton is dynamically stable in the plane �R ,g�
only below the upper curve of existence of the one-peak
soliton; and �iii� the nodeless two-peak soliton is dynami-
cally unstable. Similar results are found for solitonic solu-
tions with a larger number Ns of peaks.

The case ��0 leads to similar results, keeping in mind,
however, that nodal solitons do not exist under rotation. For
high rotational frequencies, namely when � approaches the

frequency of transverse harmonic confinement �that is 1 in
our units�, the effect of the centrifugal force on the transverse
dynamics becomes relevant. For a given angular momentum
j
R2�, the centrifugal force increases the effective radius R
of the BEC ring. For a rotating and uniform ideal BEC one
easily finds from Eq. �6� that R=R0 / �1−�2�. This formula
holds also for an azimuthally localized ideal BEC. At the
critical frequency �=1 the radius R diverges and this means
that the Bose condensate is no longer confined. As in the
nonrotating case, an investigation of Eq. �6� shows the effect
of the interaction strength g on the effective radius R is neg-
ligible for an attractive BEC.

VI. CONCLUSIONS

We have predicted quantum phases for an attractive Bose
condensate in a ring. Our results can be experimentally
tested with the optical and magnetic traps developed �5,13�,
where a time-dependent stirring potential can be used to set
the system into rotation. For instance, by choosing 103 7Li
atoms �as=−1.4 nm� in a toroidal trap with L
25 �m and
a�
3 �m, a sequence of transitions between the uniform
state and solitonic configurations takes place when the stir-
ring frequency � is varied between 0 and 1 kHz. These ex-
periments will open the way to the observation of amazing
quantum phenomena like solitonic condensate without super-
fluidity and the dynamically induced phase transition from
uniform to localized states.
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FIG. 4. Angular momentum M�= �M̂�� and azimuthal width �
= �z2�1/2 of the one-peak soliton as a function of the coupling g for
�=0.1 and two values of R, R=2.2 �solid line� and R=2.3 �dashed
line�.

FIG. 5. Left panels show the density profile ��z� of the solitonic
solutions. Right panels show the time-dependence of the mean
squared widths �z2�− �z�2 for the weakly perturbed solitonic solu-
tions. Ring axial lenght: L=15. Interaction strength: g=1. Rota-
tional frequency: �=0.
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