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Nonlinearity-induced destruction of resonant tunneling in the Wannier-Stark problem
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We present detailed numerical results on the dynamics of a Bose-Einstein condensate in a tilted periodic
optical lattice over many Bloch periods. We show that an increasing atom-atom interaction systematically
affects coherent tunneling, and eventually destroys the resonant tunneling peaks.
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Experiments with cold and ultracold atoms made it pos-
sible in the last decade to prepare and control the center-of-
mass motion of atoms with unprecedented precision. Many
toy models of either many-body solid state physics [1-5] or
of simple Hamiltonian systems, whose complexity arises
from an external driving force [6], were realized with the
exceptional control offered by static or time-dependent opti-
cal potentials.

Particularly Bose-Einstein condensates (BECs) whose ini-
tial momentum spread can be adjusted in width and absolute
position have proved to be an extremely helpful experimen-
tal tool [3,4,7-9]. In addition, a BEC offers interesting new
features originating from the intrinsic interactions between
the atoms. Examples of such effects are new quantum phases
[10], solitonlike motion [11], the occurrence of energetic or
dynamical instabilities in condensates [7,9,12,13], or the de-
cay and subsequent revival of Bloch oscillations (BOs) [14].

We focus on the evolution of a BEC loaded into a one-
dimensional lattice and subjected to an additional static force
F, which is most easily realized and controlled by accelerat-
ing the optical lattice [1,3]. In previous experiments, a BEC
was accelerated to allow for a single crossing of the Brillouin
zone (BZ), and two effects were observed: for large accel-
erations, an enhanced tunneling probability from the ground
state band to the first excited band due to the atom-atom
interaction was measured [3,8]. Secondly, for smaller accel-
erations (where tunneling is negligible) signatures of a dy-
namical instability in the BEC were observed [9,15]. By con-
trast, here we investigate the dynamics of a BEC performing
many Bloch oscillations (BO), and we ask ourselves how the
atom-atom interaction affects tunneling for a sequence of BZ
crossings. In particular, we scan F to study the impact of the
atom-atom interaction on resonantly enhanced tunneling
(RET), for which the standard Landau-Zener prediction is
modified even in the absence of interactions [16]. The RET
leads to a faster decay of the Wannier states trapped in the
potential wells. With the survival probability and the recur-
rence probability [see Egs. (4) and (6) below] we present two
consistent measures for the nonlinear RET which define clear
experimental signatures of the destruction of the coherent
tunneling process inside the periodic potential.

If we neglect interactions for a moment, our system will
be described by the Hamiltonian
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Here d; is the spatial period of the optical lattice with maxi-
mal amplitude V, and M the atomic mass. Equation (1) de-
fines the well-known Wannier-Stark problem, which gives
rise to BO with period Ty, =1/d, F (h is Planck’s constant).
If tunneling is small, we can view the system as moving at a
constant speed in momentum space within the fundamental
BZ. At the zone edge, most of the wave packet is reflected
(giving rise to BO) while a small part can tunnel across the
first band gap to the next higher-lying energy band and then
escape quickly by successive tunneling events across the
smaller (higher) band gaps. Landau-Zener theory predicts a
decay rate [16]

I'(F) « Fe™"F, (2)

where b is proportional to the square of the energy gaps.
Equation (2) is modified by RET which occurs when two
Wannier-Stark levels in neighboring potential wells are
coupled strongly due to their accidental degeneracy. The
RET results in pronounced peaks in the tunneling rates, e.g.,
as a function of 1/F, on top of the global exponential decay
described by Eq. (2) [16]. In this paper we investigate the
impact of the effective shift of the Wannier-Stark levels by a
nonlinear interaction term.

For the linear problem (1), the decay rates have been mea-
sured previously in the regime of short lifetimes in the
ground state band (of the order of 100 ws), where I'(F) is
essentially smooth [17]. Since RET is a coherent quantum
effect, the peaks should be sensitively affected by the atom-
atom interaction, which can be varied experimentally by
changing either the density of the BEC or through the atom-
atom scattering potential via a Feshbach resonance [18]. Our
results are a consequence of many sequential Landau-Zener
events, and they show the destruction of a RET peak with
increasing interaction strength, in a regime which is experi-
mentally accessible.

We use a fully 3D Gross-Pitaevskii equation (GPE) [19]
to describe the temporal evolution of a BEC which is subject
to realistic potentials
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(7, 1) represents the condensate wave function, and the fre-
quencies w, and w, characterize the longitudinal and trans-
verse harmonic confinement (here with cylindrical symmetry
p=\y*+7%). We fixed d;=1.56 um and V/Eg=5 for our
computations, with the recoil energy Ez= Pzze/ 2M  for
pr=h/d;, and the recoil period Tr=h/Ey. The above val-
ues for d; and V were realized in the experiments reported in
Refs. [3,8,9] based on two laser beams propagating at an
angle different from 7. In Eq. (3), the nonlinear coupling
constant is given by g=4mh%a,/M, where a, is the s-wave
scattering length and N the number of atoms in the BEC
[19,20]. The dimensionless nonlinearity C=gn,/(8Eg) is
computed from the peak density of the initial state of the
condensate, with C=0.027-0.31 for the experimentally in-
vestigated range of Ref. [3], and with C=0.5 reached in Ref.
[21]. Here we focus on C>0, but report briefly also on at-
tractive interactions with C<<0. The latter case leads to a
fundamentally different behavior of the system because
the collapse of the condensate introduces an additional time
scale, which for experimentally relevant parameters is of
the order of 10 msec [18,22] (slightly longer than
Tgioch=1.8—3.0 msec here).

The GPE (3) is numerically integrated using finite differ-
ence propagation, adapted by a predictor-corrector estimate
to reliably evaluate the nonlinear interaction [19]. Since our
system is essentially the problem of a constantly accelerated
particle for the part of the wave function which has tunneled
out of the first BZ already, one must be careful with the
application of absorbing boundary conditions or complex co-
ordinate methods [23,24]. To avoid any spurious effects due
to the fast spreading, we use a large numerical basis. In this
way, we fully cover the 3D expansion of the entire wave
packet, including its tunneled tail, without the use of non-
Hermitian potentials. The initial state propagated by Eq. (3)
is the relaxed condensate wave function, adiabatically loaded
into the confining potential given by the harmonic trap and
the optical lattice (with F=0). Approximate analytic forms of
the relaxed state are found, e.g., in Ref. [25], but we used an
imaginary time propagation to reliably compute the initial
state for C>0.

The linear decay rates for noninteracting atoms in the op-
tical lattice are computed from the spectrum of the 1D
Wannier-Stark problem of Eq. (1) using, e.g., the method of
Ref. [16]. Those linear rates are plotted in Fig. 1. The
maxima in the rates occur when Fd,m (with m integer) is
close to the difference between the first two energy bands
(averaged over the BZ) of the F=0 problem [16]. The actual
peaks are slightly shifted with respect to the above estimate
(marked by arrows in the inset of Fig. 1), owing to a field-
induced level shift [16].

Experimentally, the most easily measurable quantity is the
momentum distribution of the BEC obtained from a free ex-
pansion after the evolution inside the lattice. From the mo-
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FIG. 1. (Color online) Tunneling rates obtained by exponential
fits to data of Pg,(z) as the solid-line fits in Fig. 3. Here the peak in
the box in the inset is scanned locally, while globally the rates
follow an exponential law (dashed line in the inset). C=-0.31 (dia-
monds), C=-0.065 (crosses), C=0 (solid line), C=0.027 (pyra-
mids), C=0.065 (stars), C=0.12 (circles), C=0.31 (squares). The
“error” bars interpolate different exponential fits such as the dot-
dashed ones in Fig. 3. The arrows in the inset mark the peak posi-
tions as predicted by the simple argument stated in the text.

mentum distribution we determine the survival probability
by projection of the evolved state /(p,) onto the support of
the initial state

Pe
Pyl1) = f dpx( f dpydpzW(ﬁ,t)lz), (4)
o

where p.=3pr is a good choice since three momentum
peaks are initially significantly populated, corresponding to
—2pg, 0, 2pg [3,25].

Figure 2 shows the initial population in momentum space
[inset in (a)] as compared with the population after 10 BO
periods, for both the linear and the nonlinear case. The in-
crease of C>0 has two effects: firstly, it enhances the tun-
neling for the first few crossings of the BZ. Secondly, it
scrambles the out-coupled part of the wave function (see Fig.
2 and its complement in Fig. 4 below), as previously ob-
served in Refs. [2,3,5]. The change in the momentum distri-
butions after various Landau-Zener events is a manifestation
of the intrinsic instability of the nonlinear GPE dynamics
[9,12].

Instead of studying the details of the distributions shown
in Fig. 2, we will focus on the temporal decay of the survival
probability in the following. Figure 3 presents Pg,(f), which
for the linear case has an exponential form (apart from the
t—0 limit [26])

Py(t) ~ e, (5)

with the characteristic exponent I'. The temporal behavior of
P, depends significantly on C. For C=+0.31, we observe
clear deviations from a purely exponential decay, as present
for small C. A repulsive nonlinearity initially enhances the
tunneling more than after about five crossings of the BZ (see
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FIG. 2. Momentum distributions after 10 BOs, for
Tr! Tgioen=1.428. C=0 (dotted) compared with (a) C=0.027 (full
line; the inset shows the corresponding =0 distribution), (b)
C=0.065, (c) C=0.12, and (d) C=0.31.

fits to data in Fig. 3). This deviation from the monoexponen-
tial behavior means that the tunneling events occurring at
different integer multiples of the Bloch period are correlated
by the presence of the nonlinearity. Since the remaining den-
sity becomes smaller, the impact of the nonlinearity becomes
less. The result is that the rate I" is defined only locally in
time, and its value systematically decreases as time in-
creases.

An attractive interaction can stabilize the system at
the RET peak, which is shown for C=-0.31 in Fig. 3(b).
For optimal comparison, we chose the same initial state
(for C=+0.31) which then was evolved for F#0 with
C=-0.31. Such a scenario could be realized by a sudden
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FIG. 3. (Color online) Pg,(t) for (a) Tr/Tgjoen=1.428 and (b)
1.613 (the peak maximum in Fig. 1). C is scanned from —0.31
[diamonds in (b) only], 0 (solid line), 0.027 (dotted line), 0.065
(dashed line), 0.12 (circles), to 0.31 (squares). The gray/red solid
lines show global exponential fits to the C=0.31 data, while the
dot-dashed lines show exponential fits for small and large 7, respec-
tively. From those fits, the rates in Fig. 1 and their systematical
variation in time are obtained. The step-like structures reflect the
periodic BO and are correlated with the dephased oscillations in
Fig. 4.
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FIG. 4. (Color online) P,.(¢) for the data shown in Fig. 3(b)
with C=0 (circles), 0.027 (dashed), 0.12 (thin line), and 0.31 (thick
line). The dot-dashed line presents an exponential fit to the maxima
of the C=0 data.

change of the sign of the scattering length through a Fesh-
bach resonance [18]. This result is consistent with studies of
simpler models, where a resonance state can be stabilized at
system-specific strengths of the nonlinearity [24,27].

The impact of the nonlinearity on the dynamical evolution
of the “closed” system confined to the fundamental BZ can
be studied with the help of the recurrence probability [17],
defined by the autocorrelation

Pree(t) = (1)1 = 0))]2. (6)

The BO manifest themselves as the periodic oscillations in
P...(t) plotted in Fig. 4. These oscillations are less and less
pronounced with increasing C, in much the same way as the
momentum peaks are washed out when the band edge is
crossed in the regime of instability [9]. In contrast to the
survival probability, P, is a phase sensitive measure, and
therefore it shows—in addition to the temporal decay—the
dephasing of the BO due to the nonlinearity. For C=0, the
recurrence maxima decay in time with the same rate as
P.(1), which offers an alternative method for extracting I'.
For C#0, P, can be integrated over time, and the rates are
extractable by the approximate proportionality between the
integrated area and the inverse decay rate [recalling that
Jdtf(t)exp(—tI') ~ 1/T" to leading order, for a periodic func-
tion f(r)]. The latter approach works because we can deter-
mine the linear rate from a direct fit to P, and then compare
the ratio of the linear and the nonlinear area (denoted by A,
and A.). This rough estimate I'c~T4A,/A, agrees within
25% with the rate extracted from the fits to the data of Fig. 3.
The estimate could be improved if we knew the analytic
form of the function f(¢), and it breaks down for large C,
when the periodic oscillations in P, are destroyed.

Having introduced two methods to extract the tunneling
rates, we scan the parameter F across a RET peak of the
globally exponential curve I'(1/F) (see Fig. 1). The scanned
range in F corresponds to values of lattice accelerations be-
tween 0.99 and 1.65 ms~2, which are standard in experiments
[3,9].
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A repulsive nonlinearity particularly affects the wings of
the peak and, for small C, much less the peak maximum. The
global increase of I' with increasing C is qualitatively pre-
dicted in Ref. [28], with enhanced single Landau-Zener
crossing probabilities induced by the effective reduction of
the energy gap due to the nonlinearity. The left and right-
most points in Fig. 1 are in the regime where an amended
version of Eq. (2) indeed applies [28], and here I'/F is ap-
proximately proportional to C. However, near the peak, the
rates do not follow a simple scaling law as a function of C,
and the argumentation of Ref. [28] does not apply.

For C<0 we also observe the destruction of the RET
peak. For C=-0.065, the BEC clearly stabilizes in the po-
tential wells, whilst for C=-0.31 the situation is more com-
plicated (see Fig. 1). The precise dynamics of the system is
governed by the two separate time scales for tunneling and
collapse, which strongly depend on parameters in the sensi-
tive RET regime.

In an experiment, w, can either be set to zero or decreased
to w,/27m=1 Hz to realize a quasi-1D nonlinear Wannier-
Stark problem. We verified that letting w, tend to zero for the
evolution with F# 0, or applying a small finite w, gives the
same results for the BO cycles studied here. Furthermore, for
0<C=0.05, using the renormalized nonlinearity of Ref.
[20] we observed that a 1D version of Eq. (3) reproduces
well the 3D data. If |C| is larger, the nonlinearity couples the
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longitudinal and transverse degrees of freedom, which af-
fects the dynamics of a real BEC in a nontrivial way [19].
The 1D computations are feasible up to 100 Bloch periods,
and this would allow one to extract the tunneling rates more
reliably. The effect of the nonlinearity is, however, hardly
visible for 0 <C<0.05, and quantitative predictions for a
broad range of C relied on 3D computations.

To summarize, we observed and quantified the deforma-
tion and destruction of the RET peaks due to interactions in
a BEC in an accelerated optical lattice. Our results comple-
ment ongoing studies of interaction-induced processes such
as dynamical instabilities or the decay and subsequent re-
vival of BO. In the regime of small nonlinearity, where dy-
namical instabilities are not fully developed, the survival and
recurrence probabilities experience an exponential decay
modified by the condensate nonlinearity. The temporal decay
of these observables remains a useful indicator also for large
nonlinearity, even if the resonant structure in the tunneling
rate is washed out.
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