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Nonperturbative dynamical many-body theory of a Bose-Einstein condensate
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A dynamical many-body theory is presented which systematically extends beyond mean-field and perturba-
tive quantum-field theoretical procedures. It allows us to study the dynamics of strongly interacting quantum-
degenerate atomic gases. The nonperturbative approximation scheme is based on a systematic expansion of the
two-particle irreducible effective action in powers of the inverse number of field components. This yields
dynamic equations which contain direct scattering, memory, and “off-shell” effects that are not captured by the
Gross-Pitaevskii equation. This is relevant to account for the dynamics of, e.g., strongly interacting quantum
gases atoms near a scattering resonance, or of one-dimensional Bose gases in the Tonks-Girardeau regime. We
apply the theory to a homogeneous ultracold Bose gas in one spatial dimension. Considering the time evolution
of an initial state far from equilibrium we show that it quickly evolves to a nonequilibrium quasistationary state
and discuss the possibility to attribute an effective temperature to it. The approach to thermal equilibrium is

found to be extremely slow.
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I. INTRODUCTION

Since the pioneering achievement of Bose-Einstein con-
densation in dilute alkali-metal gases much effort has been
made to extend this success to a wider class of atomic and
molecular species as well as to a wealth of different trapping
geometries. In particular, the production of quantum degen-
erate ensembles of molecules [1,2] promises a wide spectrum
of important applications ranging from ultra-precise molecu-
lar spectroscopy and cold collision studies [3] to “su-
perchemical” reactions [4] and the investigation of the cross-
over from a Bose-Einstein condensate (BEC) of molecules to
Bardeen-Cooper-Schrieffer (BCS) correlated pairs in Fermi
gases [5]. Furthermore, (quasi) one- and two-dimensional
traps [6,7] as well as optical lattices [8,9] allow us to realize
strongly correlated many-body states of atoms reminiscent of
similar phenomena in condensed matter systems.

Zero-energy scattering resonances, particularly the so-
called magnetic Feshbach resonances [10,11], so far have
played a leading role in the creation of strong interactions in
degenerate atomic quantum gases. Near a Feshbach reso-
nance, the scattering of, e.g., a pair of Bose-condensed at-
oms, whose relative energy is very close to zero, can be
described by a strongly enhanced s-wave scattering length a.
Present-day experimental techniques allow for resonance-
enhanced scattering lengths larger than the mean interatomic
distance n~'* in the gas. As a consequence, the diluteness
parameter 7=na’ is larger than one. The Bose-Einstein con-
densate is no longer in the collisionless regime; it represents
a strongly interacting system.

Feshbach resonances also play an important role in the
physics of ultracold, degenerate Fermi gases, where they
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allow us to induce a transition from a phase of Bose-
Einstein-condensed diatomic molecules to a superfluid phase
of BCS type where the Fermion pairs are correlated over
large distances [12]. In the transition region, the interaction
is strong and the correlation length easily exceeds the mean
interatomic distance.

A strongly interacting system can also be obtained with-
out the requirement of a scattering resonance: In a one-
dimensional trap, the gas enters the so-called Tonks-
Girardeau regime, if the dimensionless interaction parameter
y=g,pm/ (#*n) is much larger than one [13-15]. Here, g;p is
the coupling parameter of the one-dimensional gas, e.g.,
gip=2Hh%al (mli) for a cylindrical trap with transverse
harmonic oscillator length /. In the Tonks-Girardeau limit
y— o0 the atoms can no longer pass each other and behave in
many respects like a one-dimensional ideal Fermi gas [7].

In an optical lattice, strong effective interactions can be
induced by suppressing the hopping between adjacent lattice
sites and thus increasing the weight of the interaction relative
to the kinetic energy [8,16]. This leads, in the limit of near-
zero hopping or strong interactions, to a Mott insulating state
[17].

Conventionally, the dynamics of many-body systems of
suffiently weakly interacting particles is described using per-
turbative approximation schemes for the exact quantum field
theoretical many-body equations of motion. Such schemes
are in principle based on expansions in terms of powers of
some dimensionless parameter, like \7, which measures the
binary interaction strength. It is clear that for strongly inter-
acting systems for which the relevant parameter is no longer
small, a perturbative approach must eventually fail.

A particular challenge represent systems far from equilib-
rium. For instance, the sudden change of an external mag-
netic field for atomic quantum gases near a Feshbach reso-
nance can lead to dramatic nonequilibrium phenomena [18].
If the magnetic field is modified on time scales smaller than
a typical collisional duration, the system is driven far from
thermal equilibrium. Standard approaches based on small
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deviations from equilibrium, such as linear response theory,
or kinetic descriptions requiring a sufficient homogeneity in
time, are not applicable. Another example is the formation of
a Bose-Einstein condensate through controlled evaporative
cooling of an ultracold atomic gas, an every-day experimen-
tal procedure, which has been studied in great detail (cf. e.g.
Refs. [19-21]), a complete theoretical description of which
is, however, still lacking [22].

In this article a dynamical many-body theory is presented
which systematically extends beyond mean-field and pertur-
bative quantum-field theoretical approximation schemes. The
nonperturbative approach is based on a systematic expansion
of the two-particle irreducible (2PI) effective action in pow-
ers of the inverse number of field components A [23-25].
The 2PI 1/A expansion to next-to-leading order yields dy-
namic equations which contain direct scattering, memory,
and “off-shell” effects. It allows us to describe far-from-
equilibrium dynamics as well as the late-time approach to
quantum thermal equilibrium.

Recently, these methods have allowed important progress
in describing the dynamics of strongly interacting relativistic
systems far from thermal equilibrium for bosonic [24,26-28]
as well as fermionic degrees of freedom [29,30]. Our aim is
to employ the 2PI effective action for ultracold quantum
gases and to numerically solve the 2PI 1/N expansion to
next-to-leading order. This is exemplified for a homogeneous
ultracold Bose gas in one spatial dimension. We compute the
time evolution of an initial state which is far from thermal
equilibrium. After a characteristic short-time scale it is found
to be driven to a quasistationary state. However, the system
is still far from equilibrium and the thermal equilibration
time can exceed the early-time scale by orders of magnitude.
In particular, a unique temperature cannot be attributed to the
quasistationary state. This is important in view of experi-
ments with one-dimensional traps, where the longest acces-
sible times may be too short to see complete thermalization.

We emphasize that mean-field approximations fail to de-
scribe the dynamics even qualitatively. Similarly, standard
kinetic descriptions based on two-to-two collisions give a
trivial (constant) dynamics because of phase space restric-
tions in one spatial dimension. We will describe one-
dimensional dynamics from a full systematic 2PI 1/N ex-
pansion in a nonrelativistic quantum field theory. The 2PI
effective action approach in this context has been discussed
previously using an additional weak-coupling expansion and
solved for a Bose gas in a lattice in one spatial dimension
[31]. See also Ref. [32] for a discussion of the 2PI (or
®-derivable) approach to the theory of weakly interacting
Bose gases. The connection to kinetic theory (c.f., e.g., Refs.
[33-40] and references therein) has been discussed in Refs.
[41,42], cf. also Refs. [43-46] in the context of elementary
particle physics and cosmology. The 2PI 1/A expansion has
also been successfully applied to compute critical exponents
in thermal equilibrium near the second-order phase transition
of a model in the same universality class [47]. The good
convergence properties of the expansion for small values of
N>1 have also been observed in the context of nonequilib-
rium classical statistical field theories [48].

Ultracold atomic Bose gases in one- and two-dimensional
trapping configurations, due to their specific quantum statis-
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tical properties, have been studied in great detail, using both
perturbative and nonperturbative approaches. In lower di-
mensional systems, the regime of applicability of perturba-
tion theory (cf., e.g., [49]) is reduced as compared to three-
dimensional gases since fluctuations, in particular of the
phase, play a stronger role such that nonperturbative descrip-
tions are required. Stationary systems have been studied
using, e.g., renormalization group [50] or Monte Carlo tech-
niques [51].

Our article is organized as follows: In the remainder of
this chapter we introduce the basic principles and ideas un-
derlying the nonperturbative approximation scheme. In Sec.
II the 2PI effective action is defined, and the (exact) dynamic
equations are deduced from it. We then show, in Sec. III, that
the well-known dynamical Hartree-Fock-Bogoliubov equa-
tions of motion result from a single diagram in a loop expan-
sion of the 2PI effective action. In Sec. IV, we introduce in
detail the nonperturbative approximation scheme on the basis
of a 1/ expansion of the 2PI effective action, where N is
the number of field components in a subspace where the
action is invariant under O(N) rotations. For the simplest
case of a single complex Bose field, we have A'=2. Before
we draw our conclusions in Sec. VI we apply, in Sec. V, the
many-body dynamic equations, to next-to-leading order in
the 1/ expansion, to a uniform ultracold Bose gas in one
spatial dimension.

A. Nonperturbative approximations out of equilibrium

The systems of identical bosons to be considered in this
article are described by the Hamiltonian

H= f Ex P (x)H p(x) P (x)

+ % f PxdPy Wi (x) U (y) V(x - y )T (y) P (x), (1)
2v2
HIB(X) == Z_H’lx + Vtrap(x)7 (2)

The second term on the right-hand side of Eq. (1) represents
the bare interaction term. The bare coupling constants equal
the binary interaction potential V(|x—y|) at the possible in-
terparticle distances |x—y|. This potential is obtained, e.g., by
describing the quantum mechanics of two-atom interactions
in the Born-Oppenheimer approximation, where |x—y| de-
notes the internuclear distance.

The dynamics of the nonrelativistic many-body system
can be described, e.g., in the Schrodinger picture, where the
many-body state at time ¢ is given by some density matrix
pp(t). The Schrodinger equation, with the Hamiltonian (1),
then completely determines the nonequilibrium dynamics.
All information about the quantum theory can be encoded in
the infinite series of correlation functions or n-point func-
tions

(Wi(x)) - W)Y, = T pp(0 P () - T, ], (3)

with n= 1. For the Hamiltonian (1), the equation of motion
of any particular n-point function involves other correlation
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functions up to the order of n+2. Hence, the result is an
infinite system of coupled dynamic equations for the corre-
lation functions (cf., e.g., Refs. [52,53]). Since this cannot be
solved exactly one has to find suitable approximation
schemes.

Here it is important to note that for out-of-equilibrium
calculations there are additional complications which do not
appear in vacuum or thermal equilibrium. The first new as-
pect concerns secularity: Even for weak couplings, the strict
perturbative time evolution suffers from the presence of spu-
rious, so-called secular, terms which grow with time and
invalidate the expansion. Moreover, the very same problem
appears as well for nonperturbative approximation schemes
such as standard 1/A\ expansions based on the one-particle
irreducible (1PI) effective action [54-56]. Similar problems
can also appear by simply truncating the infinite system of
coupled dynamic equations for the correlation functions at a
given level of n-point functions.

The problem of secularity has been discussed in Refs.
[57,58]. Typically, for a given approximation, there can be
various ways to resolve the secularity problem by resumma-
tion. There is a requirement, however, which poses very
strong restrictions on the possible approximations: universal-
ity, i.e., the insensitivity of the late-time behavior to the de-
tails of the initial conditions. If thermal equilibrium is ap-
proached, then the late-time result is universal in the sense
that it becomes uniquely determined by the conserved energy
density and particle number. To implement the necessary
nonlinear dynamics which recover detailed balance at late
times is demanding. Both requirements of a nonsecular and
universal behavior can indeed be fulfilled using systematic
expansions of the 2PI effective action, which provide a prac-
tical means to describe far-from-equilibrium dynamics as
well as thermalization from first principles [57,58].

As will be described below, to lowest order, if all
quantum-statistical fluctuations are neglected, the 2PI effec-
tive action leads to the Gross-Pitaevskii equation for the
mean field [59]. For a sufficiently large mean field this clas-
sical field-theory approximation can be used to approxi-
mately describe the dynamics of weakly interacting Bose-
Einstein condensates. Of course, the classical approximation
cannot be used to describe the approach to quantum thermal
equilibrium characterized by a Bose-Einstein distribution.

The 2PI effective action, with fluctuations taken into ac-
count to two-loop order, describes the (time-dependent)
Hartree-Fock-Bogoliubov (HFB) approximation, in which
exchange between the condensate and the noncondensed
fraction of the gas is accounted for. It conserves total particle
number and energy but neglects multiple scattering. As a
consequence, the approximation fails to describe thermaliza-
tion. Typically, the maximum time for which it is reliable
decreases with increasing interaction strength, e.g., in the
case of ultracold alkali-metal atoms, scattering length a. In
particular, the Hartree-Fock approximation is known to suf-
fer from the presence of an infinite series of additional con-
served quantities, which are not present in the fully interact-
ing theory. These spurious constants of motion are associated
to an infinite life-time of quasi-particle momentum modes,
which prevent relaxation to a thermal distribution [24].

The extensively employed HFB equations of motion may
also be obtained by rewriting the hierarchy of dynamic equa-
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tions for the correlation functions (3) in terms of their con-
nected counterparts, or cumulants, and neglecting all cumu-
lants of three and more field operators [52,60]. One finds that
the HFB dynamic equation for the leading order cumulant,
the mean field, involves a resummation of infinitely many
graphs and therefore arbitrary high powers of the bare cou-
pling V. For Bose-Einstein condensates, many approximation
schemes beyond HFB have been introduced, e.g., in Refs.
[52,61], and take into account correlation functions of third
and higher orders. However, the requirements for a reliable
late-time behavior are difficult to implement. The approxi-
mation schemes, first, have to yield controlled approxima-
tions and, second, must not violate crucial conservation laws
like energy conservation, or, for a nonrelativistic gas, the
conservation of total particle number.

We emphasize that all these requirements can be met by
systematic expansions of the 2PI effective action. These in-
clude 2PI loop expansions, coupling expansions, as well as
1/N expansions. In the following we concentrate on the ex-
pansion in inverse powers of N, where A is the number of
field components of a scalar theory invariant under the sym-
metry transformations of the orthogonal group O(N). Com-
pared to a coupling expansion, this procedure has the advan-
tage that it can be employed in the absence of a weak
coupling. In particular, it can be used to describe the nonana-
lytic dynamics near the second-order phase transition [47],
where the condensate vanishes—a situation which cannot be
quantitatively described in terms of a coupling expansion.
The scalar theory defined by Eq. (1) is U(1) invariant, which
is equivalent to an O(2) symmetry. In contrast to the standard
1/N expansion of the 1PI effective action, the apparently
rapid convergence of the 2PI expansion even for small val-
ues of A is crucial for our approach [47,48]. In the following
we present the 2PI effective action approach to the dynamics
of a strongly interacting ultracold Bose-gas.

II. 2PI EFFECTIVE-ACTION APPROACH
A. Nonequilibrium quantum field theory

Before introducing the 2PI effective action we would like
to recall, for the purpose of making our article sufficiently
self-contained, some basics about nonequilibrium quantum
field theory. For more details, cf., e.g., Ref. [57]. All infor-
mation about a nonequilibrium quantum many-body system
is contained in the generating functional for nonequilibrium
correlation functions [62]:

Z[J.K;ppl= TrlﬁD(l‘o)TC CXP<iJ D(x)J(x)
+s f é(x)K(x,y)cﬁw)) ] . 4)

Any correlation function of a quantum many-body system
can be derived from this by functional differentiation with
respect to J(x) and subsequently setting J=K=0. For ex-
ample, the two-point function follows as
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Ti pp(t) TeD(x)D(y)]

_ FZIKipp) (5)
i8J(x)isI(y) | jogeo

(TeD(x)D(y))

Here, pp(ty) is the normalized density matrix describing the
many-body system at the initial time 7,, which, in general,

does not have the equilibrium form pgq)~exp(—ﬁH). b is
the operator of a AV'-component scalar quantum field, with its
space-time arguments x=(z,x)=(xy,x). In the following,
where obvious, we suppress indices i enumerating the two
components Cf>,~, corresponding to the real and imaginary
parts of a single complex Bose field V¥ or to their indepen-
dent combinations ¥ and ¥*.

In Egs. (4) and (5), 7, denotes time-ordering along a
closed time-path contour C appearing in the source term in-
tegrals with [,= [cdx,[d’x [63]. The time path C extends
from the initial time #, to some finite time 7>>¢,, and back
from 7 to f,. Note that, in Eq. (5), the real-time contour must
contain the times of interest, i.e., x, and y,. In practice, this is
no problem since the largest time, max(xg,y,), is kept as a
variable which evolves in the time-evolution equations for
the correlators dicussed below. The second half of C, from ¢
to ¢, ensures the normalization of the generating functional
7[0,0;pp]=1, i.e., unity of the trace of the density matrix.

The generating functional Z[J,K;pp] has a functional
integral representation, which can be found by inserting,
to the left and right of pp, a complete set of eigenstates of
the Heisenberg field operators at the initial time,

D (xy=(10,x)| D%y = D=(x)| D), with D*(x) =D(t,X):

Z[J.K:ppl= J dPTdD™(P*|pp(t9)|P7)

X f¢_Dd> exp{i(S[®]+f D(x)J(x)

<D+

2

Xy

.1 f @(x)K(x,yyb(y))]. 6)

The functional integral [DP=II; [ DP; sums over all field
configurations. S denotes the classical action, defined as

5[] = f L), )

where £ is the Lagrangian density. We will provide S[®]
below.
A general initial density matrix can be parametrized as

(D*[pp(te)|P7) = Nexp(if [ P]), (8)

with a normalization N and the functional f expanded in
powers of the fields:

0 1 n
f®]=ap+ 2 oy a,(xp, .. x) [T @) (9)
n=1 i=1

° XXy,

Here, the coefficients «,(x;,...,x,) vanish identically for all
times different from £, (cf., e.g., Ref. [57]).
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In many practical cases it is sufficient to specify, at time
19, only the lowest correlation functions. If an initial state is
fully determined by the mean field

() = (Dy(x)) (10)
and the connected two-point function or cumulant
Gyxy) =(TD)D,()) - s B0, (1)

then the initial density matrix, Eq. (8), can be written as a
Gaussian in the field @, i.e., all «,, with n=3 vanish identi-
cally.

In this case, comparing Egs. (8) and (9) with Eq. (6), one
finds that the initial-time sources can be absorbed into the
functional integral by redefining the source fields at times
Xo=yo=1t, according to J(x)—J(x)—a;(x) and K(x,y)
—K(x,y)—a(x,y). «p yields an irrelevant normalization
constant. In this way we arrive at the nonequilibrium gener-
ating functional in the form

Z[J,K]:fD(I) exp[i(S[(I):HJ D(x)J(x)

X

. f @(x)K(x,yxb(y))]. (12)

Xy

We emphasize that the use of a Gaussian initial density ma-
trix only restricts the “experimental” setup described by the
initial conditions for correlation functions—higher irreduc-
ible correlations can build up corresponding to a non-
Gaussian density matrix for times 7> ;. Non-Gaussian initial
density matrices pose no principal problems but require tak-
ing into account additional initial-time source fields.

The 2PI effective action is obtained below from a double
Legendre transform of the generating functional (12) with
respect to the linear and bilinear source terms, J(x) and
K(x,y). Accordingly, more complicated initial conditions
involving higher irreducible correlation functions are most
efficiently described in terms of nPI effective actions with
n>2 [64]. In the following we will always assume that, in
order to fully specify the initial state of the many-body sys-
tem, it is sufficient to provide the initial one- and two-point
functions ¢ and G.

B. 2PI effective action

The 2PI effective action [23,65,66] is defined as a Leg-
endre transform of the generating functional of connected
Greens functions W[J, K], defined by

Z[J,K] =exp(iW[J,K]). (13)

The double Legendre transform reads

16.61= WK1~ [ atou -5 | startenst
X Xy

-2 f Gle.y)K(x.y). (14)
xy

Here, J and K are fixed through the conditions
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SWLJK]
I &i(x), (15)
SWLJ.K]

1
5Kij(x’y) = E[(ﬁz(x) ¢](y) + Gij(x,y)], (16)

with the mean field ¢,(x) and the two-point function G;;(x,y)
defined in Egs. (10) and (11), respectively.

The equations of motion for ¢;(x) and G;;(x,y) are given
by the stationarity requirements

A$G]

30(x) =0, (17)
[4,G]

5G(x,y) (18)

which follow directly from the definition (14) for vanishing
sources J and K.

Equation (14) shows that the conventional 1PI effective
action I'[@] is merely I'[ ¢, G] for K=0, i.e., it is equivalent
to I'[ ¢, G] for that function G for which the stationarity con-
dition (18) is fulfilled. Hence, the equation of motion follow-
ing from the condition (17) is equivalent to that derived from
the 1PI effective action. On the exact level all effective ac-
tions are, of course, equivalent. Here the particular reason for
using the 2PI effective action is that it efficiently allows us to
devise systematic approximation schemes suitable for non-
equilibrium dynamics.

It is convenient to write the 2PI effective action as

I, G]=S[p]+ éTr(ln G '+ Ggl[qS]G) + I',[ ¢, G] + const,

(19)

which contains the contribution from the classical action S, a
one-loop-type term and a term I',[ ¢, G] that contains all the
rest. The trace, the logarithm, and the product of Green’s
functions in the third term are meant in the functional sense.
Gal is the inverse of the classical propagator

5*S[ 4]
dp(x) 5¢j()’) '
for which we will give an explicit expression in the next
section.

Taking the derivative of (19) in terms of G one observes

that the second stationarity condition (18) is equivalent to the
exact Dyson-Schwinger equation for the propagator,

G;l(x’y) = Ga,lzj(x’y’(ﬁ) _Ell(x’y9¢’G)7 (21)
with the proper self-energy

iGoy(x.yi ) = (20)

§F2[ ¢’ G]

2%&ﬂ¢lﬂ:%5Gﬁnﬂ'

(22)
From Eq. (21) one easily sees that the proper self-energy 3 is
1PI. Since the functional differentiation of I', with respect to
G corresponds to opening one propagator line in any diagram
contributing to I',, the expansion of I, may only contain
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diagrams which are at least two-particle irreducible. This
feature constitutes the name of the 2PI effective action.

We note that the above-mentioned more general nPI ef-
fective actions can be constructed analogously. These depend
on correlation functions up to order n and generate diagram-
matic expansions in which also the corresponding higher ver-
tices are self-consistently determined, i.e., dressed [57].

Before we apply the effective-action description of a non-
equilibrium many-body system to derive dynamic equations
we close this section by introducing the spectral,

pijx.y) = [ D,(x), ()] (23)
and statistical components,
Fij(e.y) = 3{@i(0). @, (0. (24)

of the two-point function G, where the subscript ¢ means
that, for ¢+ 0, disconnected parts are substracted. In Eq.
(24), {,} denotes the anticommutator. The decomposition
identity for the two-point function G follows from Egs. (11),
(23), and (24) as
Gij(x9y) = Fij(-x»y) - épij(x’y)SgnC(xo - yO)’ (25)
where sgng(xy—y,) is the sign function along the path C
which evaluates to 1 (—1) if x, (y,) is prior to y, (x,) along C.
While the spectral function encodes the spectrum of the
theory, the statistical propagator gives information about oc-
cupation numbers. Loosely speaking, the decomposition
makes explicit what states are available and how often they
are occupied. Note that, in thermal equilibrium, the spectral
and statistical functions would be related by the fluctuation-
dissipation relation, which, for a noncondensed homoge-
neous system in energy-momentum space, reads

1
FY(w,p) =~ i(i +n(w, T))p(eq)(w,p), (26)
with the Bose-Einstein distribution function n(w,T)
=(e\#/ksT_1)~1 Relation (26) no longer applies in a sys-
tem far from equilibrium, such that the dynamical evolution
of F and p is given by separate (coupled) equations of mo-
tion.

C. Dynamic equations

In this section, we derive dynamic equations for the mean
field ¢ and the two-point cumulant G from the stationarity
conditions, Egs. (17) and (18). We consider explicitly the
theory defined by the Hamiltonian (1) and choose the repre-
sentation

P, (x)=\2Re ¥(x), ®(x)=\2ImP(x) (27)

of the quantum field in terms of its real and imaginary parts.
The corresponding field operators obey the bosonic commu-
tation relation [(ﬁl(x,t),(ﬁz(y,t)]:iﬁ(x—y) while all other
equal-time commutators vanish. This representation will be
particularly convenient when discussing the nonperturbative
1/N expansion in Sec. IV. The classical action is given by
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191=3 [ @in7 - em 5@l 08

xy
with the inverse free propagator (Green’s function)
iDj (x = y) = 8olx = y)[- ioy 0y — Hip(X) 8], (29)
containing the Pauli matrix
0'2=(9 _i). (30)
i 0

Here, &q(x—y)= 8(xg—yo) 8P (x—y) denotes the four-
dimensional Dirac distribution on the closed time path. The
interaction part S;,[®] may be expressed, for the Hamil-
tonian (1), with V(x—y)=V(|x-y|,x,) 8, ,, as

00’
1
Sin P] =~ gJ (Di(x)q)j(y)v(x - y)q)j(y)q)i(x)’ (31)
xy
where it is summed over double indices. We use Egs. (28)
and (31) to derive the classical inverse propagator, cf. Eq.
(20):
&S[¢]
5¢i(x) 5¢j(y )
=D (x—y) = () V(x = y) /()

iGoli(x.y: ) =

| some-as@san-n. @

Now, everything is prepared to derive the dynamic equations
by imposing the stationarity conditions, Eqs. (17) and (18).
These conditions yield, together with Egs. (19), (28), (31),
and (32),

0= ST, Gl S(x) = J (iD:; (=) ;(0)

Y

V=SB0V + Gulr3) )

- V(X - )’)Gz](X,y)éi’/(y)) + 5F2[¢’ G]/5¢l(‘x)? (33)

0= ST[$.GY8Gy(x.y) = S[Gy .. ) = G (0]

+ 6o, G1/8G (x,y). (34)

From Eq. (33), the equation of motion for the mean field ¢;
is obtained as

[ ioy 0., — Hip(x) 8] ¢b;(x)

1
= f Vix- y)<5[¢k(y)¢k(y) + Gy, ) 1i(x)
y

+ Gij(x,y)(éj(y)) - 5F2[¢,G]/5¢1(x) (35)

The dynamic equation for the Green’s function G follows
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from Eq. (34) by convolution with G and using the definition
(22) of the self-energy X.:

f G(_),lik(xaz; ¢)ij(1a)’) = dlx~y) 55]

Z

+ f E,-k(x,z; ¢>,G)ij(ZaY)~

(36)

Once the 2PI part I',[ ¢, G] of the effective action is known,
Eqgs. (35) and (36), representing a closed system of dynamic
equations for ¢ and G, may be solved to determine, for given
initial correlation functions ¢(z,) and G(ty,t,), the complete
dynamical evolution of the system. It is, of course, not pos-
sible to solve the equations exactly. In the following we dis-
cuss approximation schemes for I'; and use these to obtain
approximative dynamic equations for ¢ and G.

D. Number conservation

A major advantage of the effective action approach is that
it automatically provides us with dynamic equations which
are particle number conserving. This is a consequence of the
Noether theorem in conjunction with the invariance of the
theory under orthogonal transformations and can be seen as
follows [67]: The stationarity conditions (17) and (18) for the
mean field and the propagator can be combined to the equa-
tion

Gki(y’x)) = O,

0'2,i7<¢i(x) A14.0] 2 J A14.0]
y

+
5¢j(x) 5ij(y,x)
(37)
with the elements o ;; of the Pauli matrix (30). From the

specific expression (19) for the 2PI effective action follows
that Eq. (37) is equivalent to the relation

. . 6Fint[¢7G]
n(x) = Vi(x) = — | () e
9y (x) = Vj(x) 2102,,,l¢l(x) 56,0
S[‘inl[(va]
Here,
n(x) = ¢;(x) i(x) + G;(x,x), (39)

jw=#@mVQw—me@m

+ (T Dy (x) VD, (x) = D, (x) VDy(x)])}  (40)

are the total number and current densities, respectively.
Clearly, particle number is conserved locally if n and j obey
a continuity equation, i.e., if the right-hand side of Eq. (38)
vanishes identically. We consider the specific structure of
these terms: The interaction part of the 2PI effective action
occuring therein is defined as
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1
Ful.61=T16.61-3 [ D3 -0
Xy
- éTr(D‘lG). (41)

The 2PI effective action is, like the underlying quantum ac-
tion S[®], Egs. (28) and (31), a singlet under O(2) rotations.
It is parametrized by the classical fields ¢; and G;;, where the
number of ¢ fields has to be even in order to construct an
O(2) singlet. From the fields ¢); alone one can construct only
one independent invariant under O(2) rotations, which can
be taken as tr(¢p¢) = ¢*=h.¢h;. All functions of ¢ and G,
which are singlets under O(2), can be built from the irreduc-
ible, i.e., in field-index space not factorizable, invariants
[24,25]

¢*, (G, and tr(ppGh), (42)
with n=1,2,.... As before, the trace tr(-) only applies to the
field-component indices while there is no integration over
space-time, e.g., tr(G?) = G;j(x,y)Gx(y,2)Gi(z,%).

For contributions to I';,, which contain only ¢ or tr(G"),
the terms in square brackets in Eq. (38) either vanish sepa-
rately or are symmetric under the exchange of i and j. More-
over, if a term contains an invariant of the form tr(¢¢$G"), as,
e.g., the contributions remaining in T, from Tr(G,'G), the
combination of the terms in square brackets in Eq. (38) is
symmetric under transposition in field index space. Hence,
the total number density is conserved locally as a conse-
quence of the O(2) symmetry of the theory, and, more im-
portantly, this is true for any set of approximative dynamic
equations derived from a truncated but still O(2)-symmetric
effective action. Note, finally, that only terms in the action
which contain mixed invariants tr(¢¢G") induce exchange
of particles between the condensate and the noncondensed
fraction of the gas.

III. DIAGRAMMATIC REPRESENTATION
A. Loop expansion of I';[ ¢,G]

In this section we briefly discuss the diagrammatic meth-
ods that we will use later on to generate the equations of
motion for ¢ and G. For a more comprehensive review see,
e.g., Ref. [57] and references cited therein.

The 2P1 effective action, Eq. (19), can be expanded into a
series of closed loop diagrams, i.e., diagrams without exter-
nal lines. In Fig. 1, the diagrammatic representation of
I'l¢,G]-T',[ ¢, G] is shown, cf. Eq. (19). Figure 2 shows the
lowest order diagrams contributing to I',[¢,G]. Internal
lines in these diagrams represent the full two-point Green’s
function G, vertices the bare interaction V. In addition, one
needs to distinguish topologically different diagrams. This
becomes obvious when considering an interaction V= V(x
—y,xo) which is nonlocal in its spatial arguments and its
diagonal coupling to the field components 1 and 2 as exhib-
ited by Eq. (31). An example of this are the diagrams shown
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T 1oor[0,G] = %@ + +iTrinG™
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FIG. 1. (Color online) Diagrammatic representation of the one-
loop part T'P[ b G]=I"[¢p, G]-T,[ ¢, G] of the 2PI effective ac-
tion, cf. Eq. (19), without the irrelevant constant. The inverse free
propagator D™!(x,y) is represented as a (green) filled circle, exter-
nal fields ¢(x) as (red) crosses, the bare potential V(x—y) as a
wiggly line, and the full propagator G(x,y) as a (blue) solid line—
colors are seen in the online version. At each “vertex” it is summed
over double field indices and integrated over the respective space-
time variable x. The first two diagrams are the classical action S[ ¢],
the last three diagrams are the term (i/ 2)Tr(G61G), cf. Eq. (32).

in Fig. 4 which combine to give the “double-bubble”
diagram, i.e., the first graph in the loop expansion of I'; in
Fig. 2.

Counting the number of loops, I'[¢,G|-T',[¢,G] is of
leading order, and, as discussed in Appendix A, this part of
the effective action equals the 1PI effective action to one-
loop order. We have seen in Sec. II B that I', can only con-
tain 2PI diagrams. For this reason it is at least of two-loop
order, the leading order comprising the double-bubble and
the “setting-sun” diagrams in Fig. 2.

In the following section we will consider the most simple
approximation of I', which only takes into account the
double-bubble diagram. The dynamic equations resulting in
this approximation constitute the well-known time-
dependent Hartree-Fock (vanishing mean field, ¢=0) or
Hartree-Fock-Bogoliubov (¢ # 0) equations which describe
coupling between the condensate and the thermal fractions of
the gas and account for the formation of pair correlations
through binary interactions.

B. Hartree-Fock-Bogoliubov dynamics

In this section we derive the coupled Hartree-Fock-
Bogoliubov equations of motion for the mean field ¢ and the

XY

FIG. 2. (Color online) Diagrammatic representation of the two-
and three-loop diagrams contributing to the 2PI part I';[ ¢, G] of the
2PI effective action, cf. Eq. (19). To simplify the diagrams, the bare
vertices V(x—y) are drawn as black dots. Each such vertex is un-
derstood to represent a sum of the topologically different terms
shown in Fig. 3. At each vertex, it is summed over double field
indices and double space-time variables according to the respective
diagram in Fig. 3.
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Vix-y) = X =E+>ww< +%

FIG. 3. The representation of the bare vertex in terms of a black
dot stands for a sum of the three topologically different connections
of the four “corners.” The black lines do not represent propagators
and are only drawn in order to illustrate the different possible con-
nections of propagators and/or external fields at the vertices in Figs.
4 and 5.

correlation function G by evaluating Egs. (35) and (36) for
the leading-order approximation to the 2PI part of the effec-
tive action, the double-bubble diagram in Fig. 2 which is
shown, for a nonlocal coupling V(x—y), in Fig. 4.

For a better comparison with standard results, we shall, in
this section, use the representation where the field @ and its
complex conjugate are considered as independent quantities.
To this end we write the effective action in terms of a two-
component field with

D)=V, Pyx)=P"(x), (43)

Note that the representation in terms of the components de-
fined in (43) is obtained from the “Cartesian” representation
(27) by the U(2) unitary transformation

@\ 1 (1 i\(o
(q)z)_)\rE(l —l)(q)z) (44)

Hence, introducing an upper-index notation according to

(I)i = CI):‘ = CI)S—i’
. (45)
G = G, etc.,
with i,j e {1,2}, the double-bubble contribution to I', can be
written in the form

1 : .
I3l ¢,G]=- 3 f V(x = y)[G;(x,x)G/(y,y)

+ Q’sz(x’y)G]l(y?x)] > (46)

where it is again summed over double indices. The statistical
factor 2 in the second term in brackets accounts for the to-
pologically equal diagrams, i.e., for the second and third dia-
grams in Fig. 4.

The proper self-energy corresponding to the
(46) is obtained using Eq. (22):

"8 in Eq.

. b, G ] .
>/ (x,y) = Ziﬁ =- é(ﬁ V(z = x)G}z,2) 8/ 8p(x - y)
+2V(x - y)Gji(y,x)) . (47)

By making use of the symmetry relations

Fij(-x’y) = Fji(y?x) = [Fji(y’x)]*’ (48)
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i i
i j
i J
FIG. 4. (Color online) Diagrammatic representation of the dia-
grams contributing, in the Hartree-Fock(-Bogoliubov) approxima-
tion, to the 2PI part I',[ ¢, G] of the 2PI effective action. At each
vertex, it is summed over double field indices which are indicated,

and integrated over double space-time variables. For an explanation
of the symbols see the caption of Fig. 1.

pi(x.y) == p/i(y.0) =[- p/ (. 0], (49)

the dynamic equation (35) for the mean field may be reex-
pressed in terms of ¢=¢,;=¢” and F as

[ihd,— H1p(x)]p(x,1)

= f Vx -y, ){[d(y.0) p(x,1) + F,,(y.x;)]1¢ (y.7)

y
+F,(y.x:0) ¢(y.1) + F,(y.y: 1) p(x,1)}. (50)

In deriving Eq. (50) we have integrated y, over the path C,
leaving only the space integral [ y= [d?y, and used the local-
ity of V(x—y)=V(x-y,1)d(xo—yy) in its time argument t
= x,. By this integration, the spectral functions are evaluated
at equal times and disappear from the equation, either be-
cause of a vanishing equal-time commutator, or through can-
cellation between different terms. The statistical two-point
functions are also evaluated at equal times, and we denote
the different matrix elements occuring as

F(x,y30) = (00|, = 54 (0,0, W (y,0)),, (51)

Fuy30 = FRE) |y, = 300000, P (D). (52)

Equation (50) is the well-known nonlinear dynamic equation
for the condensate mean field, where the contribution from
the three-point connected Green’s function or cumulant
(‘IAIT(y)‘IA'(y)‘IA’(X»C has been neglected, cf., e.g., Ref. [52].
The equation, however, involves the symmetrized two-point
cumulants instead of the normal ordered ones, the time-
dependent noncondensate and anomalous density matrices, 77
and 71, respectively:

Al y;1) = Py, 0¥ (x,0))., (53)

i(x,y;1) = (U(y, )W (x,0),. (54)

The reason for this is that the functional integral Z, as de-
fined in Egs. (12) and (28), is equivalent to a Hilbert-space

formulation with a Weyl-ordered Hamiltonian operator H,

i.e., an H which is invariant under permutations of noncom-
muting field operators. Hence, the effective-action approach
yields dynamic equations involving symmetrized correlation
functions F, and F,,. In order to rewrite Eq. (50) in terms of
normal ordered cumulants one can use the commutation re-
lations which give F,(x,y;f)=n(x,y;f)+d8(x-y)/2 and
F,(x,y;t)=m(x,y;t). This introduces, in Eq. (50), infinite
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terms involving the combination V(0,t)+[,V(y,?)&(0),
which also appear if the mean-field equation is derived by
means of the Schrodinger equation for the density matrix in
Eq. (3), with a Weyl-ordered Hamiltonian. These contribu-
tions disappear when shifting the zero of the energy scale
through normal ordering of the Hamiltonian.

The mean-field equation (50) shows that, in order to ob-
tain a closed set of dynamic equations, the equations of mo-
tion for F,(x,y) and F,(x,y) are required only for equal
times, xy=y,. The equation for F,(x,y) is obtained from the
equivalent of Eq. (36) in the representation (43), by sub-
stracting the expression for the time derivative z?yOGzl(y,x)
from that for &xoGlz(x, y). Taking the equal-time limit [68]
Xo=Yo—0, the resulting equation reads

[ihd,— Hyp(x) + Hip(y) IF,(X,y:1)

= {f V(x - 2.0)[($(x,0)$(2,1) + F,,(x,2;0)F,(2,y31)

z

+ ¢ (2 )(HZN)F,(X,¥31) + G(x,0)F,(2,y;1))
+F(2,2;0F,(X,y31) + F,(x,2;0)F(2,y;0] = {x = y}".

(55)

The last term denotes the complex conjugate of the first term
in curly brackets, with x and y interchanged. Similarly, the
time evolution of F,(x,y;?) is derived by adding the equa-
tions for 3XOG12(X, y) and for &YO(GZI(y,x))*, and taking the
same equal time limit as above:

[i#:0, — H,p(x) — H g(y)F,,(x.y:1)
= f V(X - Z’t)[(¢(xst)¢(z’t) + Fm(X7Z;t))Fn(y7Z;t)

+ ¢ (2,0)(p(2,0)F,(x,y:1) + $(X,0)F,,(z,y:1))
+F,(z,2;0)F,(X,y;t) + F(x,z;0)F,(z,y;1)] ¢ +{x < y}.

(56)

Reexpressing Eqs. (55) and (56) in terms of normal ordered
cumulants 77 and 2 [69], one recovers, together with the non-
linear mean-field equation (50), the familiar closed set of
dynamical Hartree-Fock-Bogoliubov equations describing
the exchange of atoms between the condensate and thermal
fractions of the gas; cf., e.g., Ref. [52]. These equations have
been extensively used to describe the short-time, far-from-
equilibrium dynamics of strongly interacting Bose-Einstein
condensates. Applications include the production of corre-
lated atom pairs in four-wave mixing of condensates [52],
the atom-molecule coherence in a Ramsey-type interferom-
eter [53,70], the condensate and molecular dynamics in
Feshbach crossing experiments [71-73], as well as the many-
body dynamics near a photoassociative resonance [74,75].
Note that the “diagonal” part of the equation of motion
(56) for F,, i.e., the term in square brackets on the left-hand
side, receives an additional term V(x-y,f)ni(x,y;f) when
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the equation is reexpressed in terms of the density matrices 77
and m:

[ihd,— Hip(x) — Hig(y) — V(X —y,0) ]im(x,y;1)
=V(x-y,)px,0)(y,0) + -+ . (57)

Hence, the diagonal part of the dynamic equation for 7 con-
tains the two-body Hamiltonian H,g(x,y)=Hg(x)+H g(y)
+V(x—y) instead of the free Hamiltonian without V. It was
shown in Ref. [52] that this is crucial when deriving the
Gross-Pitaevskii equation (GPE) from a many-body Hamil-
tonian with a nonlocal coupling V(x—y), in the limit where
the gas is weakly interacting, i.e., dilute, and the interaction
strength g is constant in time. In the GPE, this coupling
constant g multiplies the term nonlinear in ¢ and is defined
in terms of the s-wave scattering length a as g=4wha/m.
The reason for this is that g is equal to the zero-energy limit
g=Qmh)lim, . (p|Top(p?/m+i0)|p) of the quantum-
mechanical two-body transition (7)-matrix

(p|ToR(E)p") = (p|V(1 + Go(E)V)|p"). (58)

Without the term proportional V in Eq. (57), the full two-
body Greens function G,5=(E-H,p)~' in the T-matrix (58)
would be replaced by the free Green’s function G,p¢=(E
—H,p+V)™! (see Ref. [52]). As a consequence, the coupling
g involves only the second-order Born approximation
T§§°r“(E)=V(1+G23YO(E)V) of the T matrix, which, in gen-
eral, does not give the s-wave scattering length in the zero-
energy limit. This also shows that the nonlocal bare cou-
plings V(r) at different interatomic distances r do not form a
suitable set of small parameters for a perturbative expansion.

In summary, taking into account the double-bubble dia-
gram as the single contribution to I'; yields the closed set of
Hartree-Fock-Bogoliubov many-body equations for normal-
ordered equal-time one- and two-point correlation functions,
i.e., the mean field and the normal and anomalous density
matrices. Moreover, starting with a nonlocal (bare) coupling
V(x—y), the full GPE requires contributions from the double-
bubble diagram, i.e., beyond one-loop order. On the other
side, when starting with a local coupling V(x—y)=gd&(x—y),
the underlying assumption is that the Hamiltonian defines an
effective theory which is valid only at low collision energies.
In such a theory, the GPE directly results as the “tree-level”
approximation, where all contributions from two- and higher
n-point functions are neglected.

We finally remark that the spectral functions pl-j do not
appear in the HFB equations for the equal-time correlators.
Hence, the HFB equations remain invariant for vanishing
commutators of the Bose fields and can therefore be regarded
as fully classical.

IV. NONPERTURBATIVE EXPANSION

The dynamics of nondilute ultracold Bose gases cannot,
in general, be described using a loop or coupling expansion.
In three spatial dimensions, this is the case, for instance,
when the mean interparticle distance is considerably smaller
than the scattering length, p=na®> 1. This means that the
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approximation needs to be based on an expansion parameter
different from the interaction strength.

An expansion in powers of the inverse 1/ of the number
of field components provides a controlled expansion param-
eter which is not based on weak couplings. It can be applied
to describe physics characterized by large fluctuations, such
as encountered near second-order phase transitions [47], or
for extreme nonequilibrium phenomena such as parametric
resonance [26] or spinodal decomposition dynamics [28].
For the latter cases a 2PI coupling or loop expansion is not
applicable.

In the following sections we develop such a scheme for a
single-component Bose-gas, on the basis of an expansion in
inverse powers of the number A of field components. For
detailed studies of such an expansion in the context of rela-
tivistic quantum field theory, see Refs. [24,25]. The method
can be applied to bosonic or fermionic theories alike if a
suitable field number parameter is available, and we exem-
plify it here for the case of a scalar O(N)-symmetric theory.
Again, we point out that the apparently rapid convergence of
the 2PI expansion even for small values of N'=2 is crucial
for our approach [47,48].

We will first provide the relevant terms in a 1/ expan-
sion of the 2PI effective action to next-to-leading order and
use these to derive the dynamic equations.

A. 1/N expansion of the 2PI effective action

In the following we consider a systematic nonperturbative
approximation scheme for the 2PI effective action. It classi-
fies its contributions according to their scaling with powers
of 1/N, where N denotes the number of field components.
We will assume that no further U(1) symmetry characterizes
the theory, i.e., we choose all A field components ®; to be
real. For N'=2 the O(2)-symmetric theory for real fields,
which we again denote as ®; and ®,, is equivalent to the
U(1)-symmetric theory considered in Sec. III for the com-
plex field W=(D,+id,)/2.

The 2PI 1/N approximation scheme has been derived for
a relativistic field theory with local interactions in Refs.
[24,25]. Before we proceed, we would like to point out that
the 2PI 1/N scheme is different from the standard 1PI 1/N
resummation which involves the free instead of the full two-
point Greens function. Here we consider a nonrelativistic
field theory with the classical action given by Eq. (28). Re-
call that connected n-point Green’s functions with n=2 are
equivalent to ordinary n-point functions for the fluctuation

field @;(x) obtained by substracting the mean field from the
field operator, ®,(x)= ¢,-(x)+q~>,»(x). Hence, the diagrammatic
expansion of the 2PI effective action part I', can be derived
by use of the nonlocal effective interaction [V(x—y)=V(y

-x)]
Sulgel=— 1 f Vix= 208, F,(0)B:2)

+ ®,()D;(y)D () Di(x)], (59)
which is obtained from Eq. (31) by shifting ®;(x) — ¢;(x)
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+<I~),-(x) and collecting all terms cubic and quartic in the fluc-

tuating field @;(x). One observes that, in the presence of a
nonvanishing macroscopic field ¢;(x), there exists an effec-
tive three-vertex in addition to the four-vertex.

The 1/N classification scheme is based on invariants un-
der O(N) rotations which parametrize the 2PI diagrams con-
tributing to I'[¢,G]. The 2PI effective action is, like the
underlying quantum action S[®], a singlet under O(N) rota-
tions. As mentioned already in Sec. II D, only the O(N) in-
variant tr¢pp= ’=h;¢p;~ N can be constructed from the
mean field alone. All other functions of ¢ and G, which are
singlets under O(N), can be built from the irreducible invari-
ants given in Eq. (42) above. From these, for a given N, only
the invariants with n<\ are linearly independent—there
cannot be more invariants than fields [76]. In particular, for
the next-to-leading order approximation one finds that only
invariants with n <2 appear, which makes it very suitable for
practical calculations.

The factors of NV in a given graph contributing to I'[¢,G]
have two origins: Each irreducible invariant is taken to scale
proportional to A since it contains exactly one trace over the
field indices, while each vertex provides a factor of 1/, cf.
Eq. (59). The factors of N arising from the irreducible in-
variants (42) correspond to the number of closed lines fol-
lowing the field indices in a diagram, plus the number of
lines connecting two insertions of the classical field ¢.

The expression (19) for the 2PI effective action contains,
besides the classical action, the one-loop contribution pro-
portional to Tr(ln G™'+G;'[4]G), and a T,[¢,G] which
contributes if higher loops are taken into account. The one-
loop term contains both leading order (LO) and next-to-
leading-order (NLO) contributions in an expansion in powers
of 1/N. The logarithmic term corresponds, in absence of
other terms, to the free-field effective action and scales pro-
portional to . To separate the LO and NLO contributions at
the one-loop level consider the second term Tr(Gal[d)]G).
From the form of the classical propagator, cf. Egs. (29) and
(32), one observes that it can be decomposed into a term
proportional to tr(G)~N and terms ~(V/N)[tr(¢pd)tr(G)
+2tr(¢ppG)]. This can be seen as the sum of two “2PI one-
loop graphs” with field insertion ~ ¢;¢; and ~ ¢;¢;, respec-
tively, as shown in Fig. 1. Counting the factors of A/ coming
from the traces and the prefactor, one finds that only the term
~tr(¢pp)tr(G) contributes at LO, i.e., it scales proportional to
N, while the term ~tr(¢¢G) is of NLO.

The LO contribution to I';)[ ¢, G] consists of only one
two-loop graph, which is ¢-independent and corresponds to

the first contribution to F?FB in Eq. (46) (cf. Fig. 4):
1
Io[Gl=- — f Gi(x,x)V(x=y)G;i(y,y).  (60)
aN .

It is shown diagrammatically in Fig. 5(a). In NLO [Fig. 5(b)]
there is an infinite series of contributions which can be
summed up analytically [24,25]:
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FIG. 5. (Color online) Diagrammatic representation of the dia-
grams contributing, in leading order (LO) and next-to-leading order
(NLO) of the 1/N-expansion, to the 2PI part I';[¢,G] of the 2PI
effective action, cf. Egs. (60) and (61). At each vertex, it is summed
over double field indices and integrated over double space-time
variables. For an explanation of the symbols see the caption of
Fig. 1.

FIZ\ILO[QI)’ Gl= éTr In(B[G])

+ /L\/f 1(x,2:G)V(z = y) pi(x) G ;(x,y) ().

(61)
Here,
1
B(x,y;G) = 8x-y) + iJT/ f V(x = 2)G;i(2,y)Gi(z.y),
(62)
with
Tr In[B(G)] = f (’%/ f Vi(x- y)G,j(y,x)Gi,-(y,x))
1 1
- EJ;” IJT/JZ V(x - Z)Gij(z’y)Gij(Z’y)
1
X (le/JW V(y - W)le(W,x)le(W,x)> +
(63)

1(x,y;G) = V(x - 2)Gij(z,y)Gj(z,y)

N
- l—f 1(x,w;G)V(w = 2)Gi(2,y)G;(z,y)
A(x,2:G)Gi{(z.y)Gij(z.y), (64)

1
/\f

A(x,y;G)=V(x—y)—if I(x,2:G)V(z=y),  (65)
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FIG. 6. (Color online) Recursive definition of the resummed
local interaction function A(x,y;G), cf. Egs. (65) and (64), in NLO
of the 1/N expansion. The thick wiggly line represents A, while G
is, again, depicted as a thick (blue) line, and V(x—y) as a thin
wiggly line.

The diagrammatic representation of A is shown in Fig. 6.
The first term on the rhs of Eq. (63) corresponds to the two-
loop graph with the index structure exhibiting one trace such
that the contribution scales as tr(G?)/ N~ A°. This graph is
the first in the expansion of I'"® shown in Fig. 5(b). One
observes that each additional contribution scales as well pro-
portional to [tr(G?)/NT'~AP for all n=2. Thus all terms
contribute at the same order.

The functions I(x,y;G) and the inverse of B(x,y;G) are
related by [24,25]

B '(x,y;G)=8x-y) -

which follows from convoluting (62) with B~! and using Eq.
(64). We note that B and I do not depend on ¢, and

o[, Gl=T5[G]+ Y[, G] + - - (67)

is only quadratic in ¢ at NLO. It was shown in Ref. [48] that
invariants containing more than two three-vertices, i.e., field
insertions, are two-particle reducible and therefore cannot
contribute to I'5. Furthermore, it was shown that graphs con-
taining other invariants, e.g., tr(G?), are of higher order

~O(1/N).

il(x,y;G), (66)

B. Dynamic equations

In this section we employ the stationarity conditions (17)
and (18) to derive the equations of motion for the mean field
¢ and the two-point function G to NLO in the 1/N expan-
sion of the 2PI effective action, Eq. (67). In the following,
we restrict ourselves again to a single complex Bose field,
N'=2, which, in order to simplify the equations, we describe
by its rescaled real and imaginary parts ®=(P;+id, )/\2,
Eq. (27). In this representation all fields occuring in the
equations will be real valued. We can take over all equations
from earlier sections by lowering all indices and identifying
d=,, ¢"=,. The equation of motion for ¢,(x) can then be
read off Egs. (35) and (61):

[ s 5, Hyp(X) 10

-3 f V= B0+ Gulr )T )
+ [>Gi,~(x,y) +G(y,x)]d;(y)}

- in Z 1(x,2;G)V(z=y)Gy(x,y) pi(y),  (68)

where we have used G;;(x,y)=G(y,x) and the representa-
tion of the inverse free propagator given in Eq. (29).
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To derive the dynamic equation (36) for G;; in NLO of the
1/N expansion, we need

Sl(u,v) B
5Gij(st)

) . oB(w,z)
_lfsz (M’W)éGij(x9y)B (Z,U)

= %f B~ (u,w)[V(w — x)B~(y,v)

+V(w = y)B™ (x,0)]Gy(x.), (69)

where we have used Egs. (62) and (66) and suppressed the
functional argument G in B and I. We use Egs. (60), (61),
and (69) to derive the self energy X;;(x,y), Eq. (22), in NLO.

We then express the dynamic equations for ¢; and G;; in
terms of the generalized “mass” matrix

Mij(x7y; ¢,G) = fsijfsc(x —}’)(HlB(x)

. f Vix— bl be(z) + Gkk<z,z>])

+V(x = y)[¢i(x);(y) + Gjj(x,y)] (70)
and the non-local self-energy [77]
3(x.y:$.G) = = i[A(x.y:G) = V(x - y)]
X [di(x) () + Gjj(x,y)]
_P(x’y;¢aG)Gij(x’y)' (71)

Here, the function P is defined as

P(x,y;¢,G)=f A(x,v;G)H(,w;¢,G)A(w,y;G),

(72)
with

H(x7y»¢s G) = ¢I(X)G1](x7y)¢](y)’ (73)

where, as usual, it is summed over double field indices.
The dynamic equations then assume the compact form:

(— iO’z,ijﬁxo - ‘Sz,%f V(x = 2)dy(2) ¢k(Z)) ¢j(x)

= f [M(x,y:=0,G) +iZ;(x,y;: 6= 0;G) ], (y),

) (74)
— 10,40y, Gij(x,y) = i6:(x = y) §j;

= fz [M(x,2;6,G) +iS3(x,2;6,.G)1Gy(z,y). (75)

The dynamic equation (75) for the propagator, multiplied
from the left by the free classical propagator D, can be
diagrammatically represented as the Dyson series shown in
Fig. 7.
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+ R +M_+:§5_,

FIG. 7. (Color online) Diagrammatic representation of the
Schwinger-Dyson equation for the full propagator G(x,y), in NLO
of the 1/N expansion. A thin (green) line represents the classical
free propagator D(x,y), cf. Eq. (29). The (red) crosses represent
classical fields ¢(x), the thick (blue) lines the full propagator
G(x,y). The thick wiggly lines represent the resummed nonlocal
interaction A(x,y;G) recursively defined in Eq. (65) as illustrated
in Fig. 6. Each end of the solid lines as well as the external fields
carry, as before, a field index and a space-time argument, which are
summed/integrated over at the vertices.

Note that one recovers, from Egs. (74) and (75), the dy-
namic equations in two-loop approximation of the 2PI effec-
tive action by setting A(x,y)=V(x-y) in Eq. (71), and the
Hartree-Fock-Bogoliubov equations by additionally setting

P=0, i.e., by setting 5,,=0.
To obtain numerically tractable equations of motion we
finally express all functions in terms of their spectral and

statistical components defined in Eq. (25) and, for i,-j, I, P,
and H accordingly:

S(xy) =3 (xy) - éEf}(x,y) sgnc(xg = yo), ete.
(76)

Using, furthermore,

pij(x.3) 0y, sgnclxo = yo)/2 = pij(x.y) 8c(xo = yo)
== iUZ,ij5C(x -y) (77)

we obtain the dynamic equations
. 1
=107 40y, = 5[,5 V(x = 2) (2) Pyl2) | i(x)
Z
—f M;j(x,y; = 0,F);(y)
¥

=f Odyzf}(x,y;qﬁf 0:G) (), (78)

0

— io'z,ikaxOij(x’y) - f Mik(x’z;¢9F)ij(Z’y)
Z

X0
= J dz25(x,2;$,G)Fy(z,y)

0

- f " dz3(x,2:$,G)py(2.), (79)

0
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= 10 530y Prj(x,Y) = f Mil(x,2; . F)py(z.y)
4

= f ' dz25(x,2;$,G)py(z,y) (80)

Yo

where f;’dXEf;’dxofd%c. The real functions M;;(x,y; $,F),
EiFj(x,y ;$,G), and Ef}(x,y; ¢,G) are all regular in x,, and are
explicitly provided, in terms of the fields ¢;(x), F;;(x,y), and
p;j(x,y), in Appendix B.

Note that, as discussed in Sec. II D, the effective action, to
any order of the 1/N expansion, is manifestly invariant un-
der O(N) rotations, i.e., for N'=2, the dynamic equations
locally conserve, to any order in the expansion, the particle
number density.

V. NONEQUILIBRIUM DYNAMICS IN ONE SPATIAL
DIMENSION

In the following we will apply the dynamic equations de-
rived from the 2PI effective action, to next-to-leading order
(NLO) in the 1/N\ expansion, to the case of an ultracold
atomic Bose gas in one spatial dimension. A full dynamical
theory of the formation of a Bose-Einstein condensate out of
a gas with nonequilibrium distribution of single-particle en-
ergies, as occurring in everyday experiments, is still an open
and intriguing problem in the field of atomic matter-wave
physics [22]. As a first step towards a more complete de-
scription of the dynamics of crossing the Bose-Einstein
phase transition we study the time evolution of a uniform
one-dimensional Bose gas which is, initially, characterized
by a nonequilibrium distribution of particle momenta. In this
chapter, we present results for the time evolution of such a
system as obtained from numerically solving the dynamical
equations introduced above.

In one spatial dimension, there is no phase transition to a
Bose-Einstein condensate, i.e., to a state where only the low-
est energy mode is macroscopically populated. Conse-
quently, there is no condensate mean field. Nevertheless, at
very low temperatures, equilibrium states with a macro-
scopic occupation of the lowest energy levels are possible, a
phenomenon which manifests itself in approximate off-
diagonal long-range order (ODLRO), i.e., in a first-order
phase coherence which extends over the entire gas sample
[7] but can, under specific experimental conditions, be bro-
ken more easily than in three dimensions. On general
grounds one expects that, starting with a nonequilibrium mo-
mentum distribution, the system is driven towards a state
described by a Bose-Einstein equilibrium distribution with a
suitable dispersion relation.

For vanishing mean field, the NLO dynamical equations
for the statistical and spectral correlation functions F and p,
respectively, are given in Egs. (79) and (80), with ¢=0, and
space-time variables x=(xy,x;), etc. We have chosen a local
coupling

Vix-y)=gipdx-y), (81)

where the coupling constant in one dimension, g;p, is related
to the dimensionless y parameter and the total line density of
atoms n; by [7]
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2
8ip= A Y- (82)
m

For the approximation in Eq. (81) to be justified we assume
that bound states of two and more atoms are unlikely to be
formed, that three-body collisions can be neglected, and that
the interaction potential V is constant in time.

We solve the corresponding system of equations in mo-
mentum space,

[=iop ud,— Mylt,p; F)JF (11" ;p)

t
= f a2 (6,1 p;G)F(t",t" s p)
0

t/
—f "S5 (1,0 p,G)py (1.1’ p), (83)
0
(= iop 0, — My(t,p; F)]py(t,t";p)
t
=f dt"25 (11" p:G)py(t".t":p), (84)
[/

where

2
14 81D
Mij(l‘7P;F)=5ij(E+ ) LEKU%))+g1DLF,’j(f,t;k)-

(85)

The nonlocal self-energies Eg’p(t,t’ ;p), to NLO in the 1/N
expansion, are given in Appendix B.

With initial values for F;;(0,0;p), p;j(0,0;p), the above
coupled system of integro-differential equations with first-
order time derivative yields the time evolution of the corre-
lation functions, in particular, for =7, of the momentum
distribution

n(t,p) = 5[F\i(t,t:p) + Fay(t,t:p) = 11. (86)
As initial conditions we chose a Gaussian distribution
n
n(0,p) = ———e 7 (87)
\NTOo

Furthermore, we chose the initial pair correlation function
(52) to vanish,

0=(U(p,)W(p,1), = 1[F1(1,1;:p) = Fo(t,1:p) ] + iF 5(1,13p),
(88)

for t=0, in accordance with total atom number conservation
at nonrelativistic energies [78]. As a consequence,

Fll(O’O;p)=F22(090;p)=n(0,p)+%9 (89)

F15(0,0;p) = F5,(0,0;p) = 0. (90)

Indeed, the condition (88) proved to be conserved in time, as
required by number conservation, such that n(z,p)
=F,,(t,1; p)—%. The Bose commutation relations, further-
more, require that

pui(t.t;p) = pyo(t,t;p) =0, 91)
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FIG. 8. (Color online) Time evolution of occupation numbers of
different momentum modes of a uniform one-dimensional gas of
interacting 2Na atoms, for a dimensionless interaction parameter
y=7.5X10"* and an initially Gaussian distribution, Eq. (87), with
width 0=1.3X10°> m~!, according to the dynamic equations (83)
and (84) in next-to-leading order in the 1/ approximation. Shown
are the relative populations n(z,p;)/n;L on a logarithmic scale as a
function of evolution time 7, where n(t,p)=F,(t,;p)—1/2 [cf.
Egs. (86) and (89) and the discussion in the text], and n,
=107 m~! is the total line density. The momenta p,=2mi/L in the
periodic box of length L=32 um are labelled by their mode num-
bers i. The lattice spacing is a;=2 um such that the figure shows
the entire momentum spectrum. The dashed lines labelled by “HF”
show the time evolution of the lowest momentum modes i=0,1,2
resulting from the Hartree-Fock approximation to the dynamic
equations (83) and (84). In this approximation, the momentum dis-
tribution is constant in time! The full NLO dynamics given by the
solid lines shows that a quasistationary momentum distribution is
reached quickly.

- pp(t.t;p) = pyy(t.15p) = 1. (92)

As a specific example we consider an ultracold gas of
2Na atoms with a line density of n;,=107 m™!. The dimen-
sionless interaction parameter is chosen to be y=7.5X107*
[cf. Eq. (82)]. In an experiment such an interaction parameter
could be realized, for a given line density and s-wave scat-
tering length, by confining the gas in the transverse direction
by a sufficiently steep potential. Assuming a transverse har-
monic potential, the chosen value for y corresponds to an
oscillator  length €, =v2a/n,;y=0.88 um, where a
=54.6ag,,,=2.89 nm is the s-wave scattering length of the
»Na atoms in the commonly trapped state |[F=1,mp=—1)
[11]. The width of the initial momentum distribution is taken
to be 0=1.3X10° m™'.

Figure 8 shows the time evolution of the occupation num-
bers n(t,p;), normalized to the total number of particles in
the box, n;L, according to the dynamic equations (83) and
(84) in next-to-leading order in the 1/N approximation. The
relative populations n(t,p;)/n,L are shown on a logarithmic
scale. The momenta p;=21i/L in the periodic box of length
L=32 pum are labelled by their mode numbers i. The lattice
spacing is a,=2 um, so the figure shows the entire momen-
tum spectrum.

We point out that the dynamic equations (83) and (84) in
the Hartree-Fock (HF) approximation, where the nonlocal
self-energies 25;” vanish identically, do not give any change

PHYSICAL REVIEW A 72, 063604 (2005)

F(t,O;pl.) InL; p(t,O;pl.) /n,L

10-5 L L | L | L L ]
0 0.005 0.01 0.015 0.02
t[s]

FIG. 9. (Color online) Envelopes of the two-point statistical and
spectral functions F;(r,0:p;) and p,(t,0:p;), a,b e{1,2}, respec-
tively, normalized to the total number of particles in the box nL, as
a function of time ¢ for different momentum modes p;=2mi/L.
These envelopes have been calculated as F(z,0;p))
= [2(24=1F1a(l’0 ;pi)z]l/2 and p(tyo ;pi) = [23=1p1a(t’0 ;pi)Z]l/Z, re-
spectively. All parameters are chosen as in Fig. 8. The statistical
functions F are depicted by thick lines, with pattern (and color)
labelling a particular momentum mode. The spectral functions p are
given by the correspondingly drawn thin lines. One observes that at
time =0 the normalized spectral functions all go to the fixed value
1/(2nL), in accordance with the equal time commutator. At times
1=0.01 s, the respective statistical and spectral functions for a par-
ticular momentum mode show an exponential behaviour with the
same decay constant Ygamp(P)-

of the initial momentum distribution in time. This is due to
the absence of direct scattering in the HF approximation. The
HF- as well as the LO 1/A approximation suffers from an
infinite number of spurious conserved quantities, which are
not present in the fully interacting theory. These spurious
constants of motion are associated to an infinite lifetime of
quasi-particle momentum modes, which prevent relaxation to
a thermal distribution [24,79]. In Fig. 8 this is indicated by
the dashed lines labelled “HF” which give the occupation of
the lowest three momentum modes i=0,1,2.

In contrast to this, the full NLO dynamics given by the
solid lines shows that a quasistationary momentum distribu-
tion is reached after a short evolution time [80]. The charac-
teristic time 7y,y, of the damping of initial oscillations cor-
responds to the time over which the detailed information
about the initial state is lost. We have checked explicitly that
for different initial momentum distributions, which are
peaked around a finite value of |p|, but have a smaller width,
such that their total particle number and energy content are
the same, the momentum distribution settles to the same qua-
sistationary distribution within 74,n,.

This loss of information shows up in the decrease of the
two-point functions at large time differences t—1¢’, where the
time dependence of its envelope becomes an exponential of
t—t'. Figure 9 shows, for different momentum modes p;
=21i/L, the envelopes of the two-point statistical and spec-
tral functions F;;(t,0:p;) and p,(t,0:p;), a,be{l,2}, re-
spectively, normalized to the total number n,L, as a function
of time 7. One observes that at times greater than about
0.01 s, the respective statistical and spectral functions for a
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particular momentum mode show an exponential behavior
F(t,1";p) ~ expl= Yaamp(p)(t = 1)/2], (93)

with the same decay constant Ygump(p;). In Fig. 10, we show
the corresponding time scale Tdamp(p)=)/;;mp(p) for the dif-
ferent momentum modes p;, at time r=0.02 s. Within the
resolution of the figure, no difference between the results for
the statistical and spectral functions appear. Comparing with
Fig. 8 it becomes clear that 7y,y,(p) corresponds to the time
when, for a particular momentum mode, the strong initial
oscillations of the occupation number are damped out, and
the systems enter the quasistationary period. However, the
time scale 7y, is, in the weak-coupling regime considered
here, orders of magnitude smaller than the time scale 7, for
the thermalization of the system, cf. also Refs. [24,29,81].

It is important to realize that for times smaller than
Taamp(P) the statistical and spectral functions are not charac-
terized by the same damping. This reflects the fact that the
far-from-equilibrium dynamics is not characterized by a
fluctuation-dissipation relation, which would relate the
damping of F and p [see Eq. (26)]. On the other hand, our
results indicate the approximate validity of a fluctuation-
dissipation relation for times larger than 7y,

The occupation numbers of the different momentum
modes are shown in Fig. 11, for the same parameters as in
Fig. 8, laid out versus the momentum p=2 sin(a,p;/2)/a,
corresponding to the discretized Laplacian for a lattice con-
stant a,. The relative populations n(z,p;)/n,L are again
shown on a logarithmic scale such that a Gaussian corre-
sponds to an inverted parabola.

The (red) circles show the far-from-equilibrium initial
Gaussian momentum distribution [Eq. (87)], the (black)
squares the momentum distribution at =7;=0.03 s (their lin-
ear interpolation being added as a guide to the eye). The
(brown) triangles interpolated by dashed lines which corre-
spond to intermediate times #;=0.01 s and #,=0.02 s demon-
strate that the distribution quickly converges. No significant
change of the momentum distributions have been found for a
larger momentum cutoff 1/a,. From the initial momentum
distribution we have calculated the initial total energy

1 2
-> l(—” +E23 Faa(o,o;k,)) By
ki

Ey=
2 i 2m

+ %2 Fab(ovo;ki):|Fah(O,0;pi)
k;

2

=2 5_’1(0’17)‘*'811)”1("1L+ 1). (94)
pi <M

Given this energy and total density n;, as well as the fact that
the gas is weakly interacting (n,a=0.03<1), we derived an
estimate for the equilibrium momentum distribution in the
HFB  approximation,  ngy(p)= (u§+ vlz,){exp[ﬁ(w(p) -w)]
-1} +vlz,, where w is the chemical potential, 3 is the inverse
temperature, u,=(1-{[p*/2-w(p)]/y;+1}»""* and v,
={[p?*/2-w(p)]/ yn%+ 1}72—1)""2 are the HFB coefficients,
and w(p) is defined by the Bogoliubov dispersion relation

w(p)=(p/m)\yn>+p*/4. This estimate was obtained using
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FIG. 10. Decay time Tgmp=Yqamp derived from the slope
—%Ydaamp/ 2 of the envelopes of the two-point statistical and spectral
functions on the logarithmic scale shown in Fig. 9, for the different
momentum modes, at time =0.02 s. 74, is shown as a function of
momentum. p=2 sin(a,p;/2)/a, is the momentum corresponding to
the discretized Laplacian for a lattice constant a,. Within the reso-
Iution of the figure, the results for the statistical and spectral func-
tions are identical. 74,y is the characteristic decay time over which
specific information about the initial state is lost. This corresponds
to the time when, for a particular momentum mode, the strong
initial oscillations seen in Fig. 8 are damped out, and the systems
enters the quasistationary period. The time scale gy, iS, in the
weak-coupling regime considered here, orders of magnitude smaller
than the time scale 74 for the thermalization of the system.

number and energy conservation, i.e., n1L=Zpineq(p,-) and
Ey=%, o(p)ne(p;), respectively. The resulting equilibrium
distribution is shown in Fig. 11 by the (blue) diamonds.
Hence, as can be seen in the figure, the quasistationary mo-
mentum distribution reached at the end of the evolution
shown in Fig. 8 is already close to the expected equilibrium
distribution.

In experiment, a usual procedure for determining the
temperature of an ultracold gas is to fit a Gaussian to the
observed momentum distribution of the atoms. It is therefore
interesting to compare the temperature one would obtain for
the nonequilibrium distribution during the quasistationary
period with the temperature of the anticipated equilibrium
distribution indicated by the diamonds in Fig. 11. For suffi-
ciently large momenta p the dispersion relation of the weakly
interacting atoms will be close to that of free particles:
o(p) =p?/2m. Hence, assuming a Bose-Einstein distribution
we define an effective temperature variable as

I

This is shown, as a function of p, for different evolution
times 1,=vX0.01 s, v=0,...,3, in Fig. 12, and compared to
the temperature 7" of the anticipated equilibrium distribution
(diamonds in Fig. 11). For large p, where the dispersion is
approximately quadratic, the value for @ derived from the
equilibrium distribution is far from the equilibrium tempera-
ture 7=37 nK. However, at small momenta, where the occu-
pation numbers are large and can be more easily measured in
experiment, the order of magnitude of the derived tempera-

ka 07
O(t,p) = {—— ln(l +
b p dp n(t,p)
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FIG. 11. (Color online) Occupation numbers of the modes ver-
sus momentum, for consecutive time steps of the evolution of the
one-dimensional gas. Shown are the normalized populations
n(t,p;)/n L on a logarithmic scale as a function of momentum p,
for a box length L=32 um and a lattice spacing a,=1.73 um. The
(red-color online) circles show the far-from-equilibrium initial
Gaussian momentum distribution, Eq. (87), the (black) squares the
momentum distribution at t=73=0.03 s, and the (brown) triangles
the distribution at times 7,=vX 0.01 s, v=1,2 (their linear interpo-
lation being added as a guide to the eye). The latter, quasistationary
distribution developed after a short time is close to the thermal
equilibrium distribution, which is expected, however, to be reached
only much later. The (blue) diamonds represent an estimate for the
true equilibrium distribution corresponding to the initial density and
energy.

ture variable ®(p) coincides with that of the anticipated tem-
perature. In contrast to this, the values ® derived from the
nonequilibrium distribution deviate significantly from the
equilibrium temperature over the entire range of momenta
and times. Hence, our results show that during the nonequi-
librium quasistationary period, which sets in very quickly,
the amount of information about the final temperature which
can be deduced from the momentum distribution of the gas is
limited.

VI. CONCLUSIONS

We have presented a dynamical many-body theory of an
ultracold Bose gas which systematically extends beyond
mean-field and perturbative quantum-field theoretical proce-
dures. The approach is valid for large interaction strengths
and/or long evolution times, two conditions which have
gained a great importance in experiments with ultracold
atomic gases. Examples include the Feshbach-enhanced col-
lisions, dilute gases in one- and two-dimensional trapping
geometries, the superfluid-to-Mott-insulator transition in op-
tical lattices, and the transition from a Bose-Einstein-to a
Bardeen-Cooper-Schrieffer-type superfluid in a degenerate
Fermi gas. The methods described in this article are based on
an expansion of the two-particle (2PI) effective action in
powers of the inverse 1/A of the number of field compo-
nents.

To our knowledge, this work represents the first full treat-
ment of the nonrelativistic dynamics of ultracold atomic
gases to next-to-leading order in the 2PI 1/A-expansion. We
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FIG. 12. (Color online) The temperature variable O(z,,p) de-
rived, using Eq. (95), from the nonequilibrium momentum distribu-
tion at times ¢,=vX0.01 s, v=0,1,2,3, shown in Fig. 11. Since a
quadratic, i.e., free dispersion relation, w(p)=p?/2m, has been as-
sumed, the data indicate the curvature of inverted parabolae locally
fitted to the momentum distributions at different times 7, and mo-
menta p;. For t— oo, the values of © are expected to approach the
temperature 7=37 nK of the equilibrium distribution indicated by
the (blue) solid line.

have reviewed the general framework for obtaining, from the
2PI effective action, (exact) dynamic equations for the low-
est order many-body correlation functions, the mean field
and the two-point functions which define the noncondensate
and anomalous density matrices. To be able to solve these
equations we discussed different approximation schemes,
which, in the present approach, are implemented at the level
of the effective action. This ensures the dynamic equations to
preserve crucial symmetries such as leading to energy and
number conservation. We first described how the well-known
time-dependent Hartree-Fock-Bogoliubov (HFB) equations,
which, in the recent past, have been used extensively in the
context of nonequilibrium dynamics of ultracold atomic
gases, result as the lowest-order approximation. In the sub-
sequent sections we have described the setting up of the non-
perturbative 2PI dynamic equations to next-to-leading order
in the 1/N expansion and their application to the dynamics
of an ultracold quantum-degenerate gas of sodium atoms in
one spatial dimension. As a specific example we have stud-
ied the time evolution of a uniform gas with an initially
far-from-equilibrium momentum distribution. We have
shown that the many-body system quickly loses the precise
information about the details of its initial state and enters a
quasi-stationary evolution period. During this period, the
momentum distribution is still far from equilibrium, and the
drift towards the anticipated Bose-Einstein equilibrium dis-
tribution is found to be extremely slow. Fitting a Bose-
Einstein distribution during the quasi-stationary period yields
effective temperatures far away from the expected final tem-
perature.

Summarizing, we point out that, in order to describe non-
equilibrium dynamics of strongly interacting and/or dense
atomic gases, an approach beyond the conventional Hartree-
Fock(-Bogoliubov) approximation is required. In fact, in the
case where the system is described solely by the two-point
functions, i.e., whenever the mean field vanishes, the HF
dynamic equations do not describe any dynamical change in
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the mode occupation numbers such that thermal equilibration
is not accounted for. This is due to the fact that the HF
approximation neglects multiple scattering and therefore
conserves an infinite number of spurious conserved quanti-
ties.

We emphasize that the 2PI 1/N expansion to next-to-
leading order represents an approximation scheme which is
capable of describing the dynamics of strongly interacting
many-body systems far from thermal equilibrium. The study
of its implications in the context of ultracold atomic gases is
an exciting and demanding task for near-future research.

ACKNOWLEDGMENTS

We are very grateful to Szabolcs Borsanyi, Joachim
Brand, Elmar Haller, Peter Kriiger, Markus Oberthaler, Jorg
Schmiedmayer, and Julien Serreau for valuable discussions
and suggestions, and to Werner Wetzel for support concern-
ing computers. This work has been supported by the Deut-
sche Forschungsgemeinschaft (T.G.) and the Ministerio de
Educacién y Ciencia of Spain (M.S.), under Grant No.
EX2003-0696.

APPENDIX A: DERIVATION OF I'[ ¢,G] TO ONE-LOOP
ORDER

In Eq. (19) the 2PI effective action is explicitly given up
to one-loop order while all higher order contributions are
denoted by I';[¢,G]. The one-loop expression can be de-
rived as follows: We first note that the 2PI effective action
can be viewed as the 1PI effective action

TK[¢]=W[J,K]—f $i(x)J(x) (A1)

for a theory governed by the modified classical action

$@)=50)+ 3 | BRI, (42

xy
which contains an additional “potential” term quadratic in
the fields. For K=0, I'[ ¢] is equivalent to the conventional
1PI effective action. The 1PI effective action I'5[¢] then
assumes, to one-loop order, the well-known form
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DO ] = $g] + STe Gy 6] - iK),  (A3)

where iGy(x,y; )= S[p]/ 5¢,(x)5;(y) is the classical
inverse propagator.
Using the definition (A1) one finds that

ST¥[¢]  oWIJ.K]
5Kij(X,y) 5Kij(xay)
and, together with Eq. (16), the Legendre transform of ['X[ ¢]

with respect to K, i.e., the 2PI effective action, can be written
as

(A4)

ST 4]

R;i(y,x)
OK;(x,y)

F[¢,G]=FK[¢]—f

1 1
=T ¢]- > J di(X)K;(x,y) i (y) = ETrKG- (AS)
xy

Now we insert Eq. (A3) into Eq. (A5) to obtain the 2PI
effective action in one-loop approximation:

[ o[, G] = S[p] + %Tr(i In[G;'[#] - iK] - KG).

(A6)

Using the one-loop relation G =G61—iK between the exact
inverse propagator G~!' and the classical inverse propagator
of the modified action S,
ST ¢]
iGyj(x.y) = = i[Gyjj(x.y) = iK;j(x.y) = Zji(x.y)],
! O¢p;(x) 5¢j()’) 0 ! !

(A7)
with Eg(x, y) being the proper self-energy to which only
one-particle irreducible diagrams contribute, one obtains,
from Eq. (A6), the one-loop terms of I'[ ¢, G] in Eq. (19).

APPENDIX B: THE FUNCTIONS M;;, X, 3£, AND 3£ IN

NLO OF THE 1/N EXPANSION
In Sec. IV B we have derived the dynamic equations for
the real fields ¢,(x), F;(x,y), and p;(x,y) in NLO of the
1/N expansion of the 2PI effective action, cf. Egs.
(78)—(80), respectively. In these equations, the real functions
Myxi¢.F), 300y F),  3fx.yi4,G),  and
Ef}(x,y; ¢,G) are given in terms of ¢, F, and p as follows:

1
Mj(x,y;é,F) = 8;00(x - y)<H1B(x) + EJ V(x = 2)[i(2) dilz) + Fkk(Z,Z)]> + V(x = y)[x) #i(y) + Fij(x’y)]’ (B1)

Z

3H00y:.6) = = Apx, )0 () + Fij(e, )1+ 1A, (0, 0)pij(x,y) = Pl ) Fiey) + 5 Po(x.) ]pij(.y).

30(x,y:6.G) == A (x,y) [ i(x) (y) + Fiy(x.3)] = Aplx,y)pyj(x.y) = Po(x,y)[Fyj(x.y) = Pp(x,y)]pi;(x.y).

In here, the functions KF,p(x, y) are given as

(B2)

(B3)
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— 2

AF,p(x’y) = X/JZIF,p(x’Z)V(Z_y)’ (B4)
1 o 1
Ip(x,y) = f Vix- z)(F(z,y)2 - Zp(z,y)2) - J {f dzl ,(xc,u) V(u —z)<F(z,y)2 - Zp(z,y)2>
z u 0
-2 f ; dzlp(x,u)V(u = 2)F ,-,-(z,y)pij(z,y)} , (B5)
0

Ip('x’y) = 2<f Vix - Z)Fij(Z,y)Pi_,'(Z,y) - f f dZIp('x’ u)V(u— Z)Fij(Z,y)Pi_,'(Z,y)> , (B6)

where F2=FF;;, etc., and the functions P ,(x,y) as

ij»

Yo
Pr(x,y) = %J (J V(x—v)Hp(v,w)V(w—y) + J aw[V(x = v)Hp(w,w),(w,y) + 1p(x,w)H,(w,0)V(v - y)]

0

- JXO dwl[V(x = v)H,(v,w)Ip(w,y) + 1 ,(x,w)Hp(w,0) V(v - y)]) - JXO dv f—"o awl (x,v)Hp(v,w)l,(w,y)
0 0 0

X0 vy Yo Yo
+ J dvf awl (x,v)H ,(v,W)Ip(w,y) + J dvf awlp(x,v)H (v, w)I,(w,y), (B7)
0 0 0 20

P(x,y) = %f (f V(x—v)H,(v,w)V(w—-y) - J ' dwl[V(x = v)H,(v,w)I,(w,y) + I,(x,w)H ,(w,0) V(v — y)])
v Yo

w

+ fxo a’vfu0 awl (x,v)H ,(v,w)[(w,y), (B8)
Yo Yo
with
Hp(x,y) = ¢i(x)Fij(x’y)¢j(y)9 (B9)
Hp(-x’y) = ¢l(x)pl]('x9y)¢](y)v (BIO)

where it is, as usual, summed over double indices. In Egs. (B7) and (B8) it has been used that all time integrals over the closed
path C of Hglp, IpHp, and IpH I vanish.

Finally, we provide the momentum-space self energies Efj’p (¢,¢;p) in 1+1 dimensions which enter the dynamical equations
(83) and (84). From Egs. (B2)—(B6), one obtains, for a homogeneous system, with ¢;=0, and a coupling given in Eq. (81), by
Fourier transformation

1
36t :p:G)=— ngf {Ip(t,t’ :p =~ k) Fy(t.1" k) - le(t,t’ sp = Kk)py(t,t’ ;k)} , (B11)
k
30t p:G) =—gip f (6.t sp = K)F (1" k) + I(t,t"sp = k) pyj(t.t"5k)], (B12)
k

t
Ip(t,t’;p)=2g1Df lF,-j(t,t’;p—k)p,-j(t,t’;k)—f a’t”lp(t,t”;p)Fij(t”,t’;p—k)p,-j(t”,t’;k)}, (B13)
l/

k
i ! ! 1 ! !
Ip(t,t"sp)=gip | | Fi(t.t"sp - Fy(tt ;k)—Zp,;;(t,t ;p = K)pij(t,t'5k)
k

! 1
— lL d[’,lp(t,t”;p)(Fij(t,,,t, P — k)Fij(tH,tl ,k) - Zpij(t”,t, P — k)pl](t",t, ,k))

tl
+ Zf dt'lp(t,t";p)Fi(t".t" ;p = k) p (", ;k)} } (B14)
0

Here, [,=(2m)~' [dk denotes the one-dimensional momentum integral.
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