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We study the topological objects in two-component Bose-Einstein condensates. We compare two competing
theories of two-component Bose-Einstein condensates, the popular Gross-Pitaevskii theory, and the recently
proposed gauge theory of two-component Bose-Einstein condensate which has an induced vorticity interaction.
We show that two theories produce very similar topological objects, in spite of the obvious differences in
dynamics. Furthermore we show that the gauge theory of two-component Bose-Einstein condensates, with the
U�1� gauge symmetry, is remarkably similar to the Skyrme theory. Just like the Skyrme theory this theory
admits the non-Abelian vortex, the helical vortex, and the vorticity knot. We construct the lightest knot solution
in two-component Bose-Einstein condensates numerically, and discuss how the knot can be constructed in the
spin-1

2 condensate of 87Rb atoms.
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I. INTRODUCTION

Topological objects, in particular finite energy topological
objects, have played important roles in physics �1,2�. In
Bose-Einstein condensates �BEC� the best known topologi-
cal objects are the vortices, which have been widely studied
in the literature. Theoretically these vortices have success-
fully been described by the Gross-Pitaevskii Lagrangian. On
the other hand, the recent advent of multicomponent BEC, in
particular, the spin-1

2 condensate of 87Rb atoms, has widely
opened an interesting possibility for us to construct totally
new topological objects in condensed matter physics. This is
because the multicomponent BEC obviously has more inter-
esting non-Abelian structure which does not exist in ordinary
�one-component� BEC, and thus could admit new topologi-
cal objects which are absent in ordinary BEC �3,4�. As im-
portantly, the multicomponent BEC provides a rare opportu-
nity to study the dynamics of the topological objects
theoretically. The dynamics of multicomponent BEC could
be significantly different from that of ordinary BEC. This is
because the velocity field of the multicomponent BEC, un-
like the ordinary BEC, in general, has a nonvanishing vortic-
ity which could play an important role in the dynamics of the
multicomponent BEC �5�. So the multicomponent BEC pro-
vides an excellent opportunity for us to study non-Abelian
dynamics of the condensate theoretically and experimentally.

The purpose of this paper is to discuss the non-Abelian
dynamics of two-component BEC. We first study the popular
Gross-Pitaevskii theory of two-component BEC, and com-
pare the theory with the recent gauge theory of two-
component BEC which has a vorticity interaction �5�. We

show that, in spite of the obvious dynamical differences, two
theories are not much different physically. In particular, they
admit remarkably similar topological objects, the helical vor-
tex whose topology is fixed by �2�S2� and the vorticity knot
whose topology is fixed by �3�S2�. Moreover, we show that
the vorticity knot is nothing but the vortex ring made of the
helical vortex. Finally we show that the gauge theory of two-
component BEC is very similar to the theory of two-gap
superconductors, which implies that our analysis here can
have an important implication in two-gap superconductors.

A prototype non-Abelian knot is the Faddeev-Niemi knot
in Skyrme theory �6,7�. The vorticity knot in two-component
BEC turns out to be surprisingly similar to the Faddeev-
Niemi knot. So it is important for us to understand the
Faddeev-Niemi knot first. The Faddeev-Niemi knot is de-
scribed by a nonlinear sigma field n̂ �with n̂2=1� which de-
fines the Hopf mapping �3�S2�, the mapping from the com-
pactified space S3 to the target space S2 of n̂, in which the
preimage of any point in the target space becomes a closed
ring in S3. When �3�S2� becomes nontrivial, the preimages of
any two points in the target space are linked, with the linking
number fixed by the third homotopy of the Hopf mapping. In
this case the mapping is said to describe a knot, with the knot
quantum number identified by the linking number of two
rings. And it is this Hopf mapping that describes the topol-
ogy of the Faddeev-Niemi knot �6–8�.

In this paper we show that the vorticity knot in two-
component BEC has exactly the same topology as the
Faddeev-Niemi knot. The only difference is that here the
vorticity knot in two-component BEC has the extra dressing
of the scalar field which represents the density of the con-
densation.

The paper is organized as follows. In Sec. II we review
the Skyrme theory to emphasize its relevance in condensed
matter physics. In Sec. III we review the topological objects
in Skyrme theory in order to compare them with those in
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two-component BEC. In Sec. IV we review the popular
Gross-Pitaevskii theory of two-component BEC, and show
that the theory is closely related to Skyrme theory. In Sec. V
we discuss the helical vortex in the Gross-Pitaevskii theory
of two-component BEC, and show that it is a twisted vortic-
ity flux. In Sec. VI we discuss the gauge theory of two-
component BEC which includes the vorticity interaction, and
compare it with the Gross-Pitaevskii theory of two-
component BEC. In Sec. VII we discuss the helical vortex in
gauge theory of two-component BEC, and compare it with
those in the Gross-Pitaevskii theory and Skyrme theory. We
demonstrate that the helical vortex in all three theories are
remarkably similar to one another. In Sec. VIII we present a
numerical knot solution in the gauge theory of two-
component BEC, and show that it is nothing but the vortex
ring made of helical vorticity flux. Finally, in Sec. IX we
discuss the physical implications of our result. In particular,
we emphasize the similarity between the gauge theory of
two-component BEC and the theory of two-gap supercon-
ductors.

II. SKYRME THEORY: A REVIEW

The Skyrme theory has long been interpreted as an effec-
tive field theory of strong interaction with a remarkable suc-
cess �9�. However, it can also be interpreted as a theory of
monopoles, in which the monopole-antimonopole pairs are
confined through a built-in Meissner effect �6,8�. This sug-
gests that the Skyrme theory could be viewed to describe
very interesting condensed matter physics. Indeed the theory
and the theory of two-component BEC have many common
features. In particular, the topological objects that we discuss
here are very similar to those in the Skyrme theory. To un-
derstand this we will review the Skyrme theory first.

Let � and n̂ �with n̂2=1� be the massless scalar field and
the nonlinear sigma field in Skyrme theory, and let

U = exp� �

2i
�� · n̂� = cos

�

2
− i��� · n̂�sin

�

2
,

L� = U��U†. �1�

With this one can write the Skyrme Lagrangian as �2�

L =
�2

4
trL�

2 +
�

32
tr��L�,L���2

= −
�2

4
�1

2
�����2 + 2 sin2 �

2
���n̂�2�

−
�

16
�sin2 �

2
������n̂ − �����n̂�2

+ 4 sin4 �

2
���n̂ � ��n̂�2� , �2�

where � and � are the coupling constants. The Lagrangian
has a hidden local U�1� symmetry as well as a global SU�2�
symmetry. From the Lagrangian one has the following equa-
tions of motion:

�2� − sin ����n̂�2 +
�

8�2 sin �������n̂ − �����n̂�2

+
�

�2 sin2 �

2
���������n̂ − �����n̂� · ��n̂�

−
�

�2 sin2 �

2
sin ����n̂ � ��n̂�2 = 0,

��	sin2 �

2
n̂ � ��n̂ +

�

4�2 sin2 �

2
������2n̂ � ��n̂

− ��������n̂ � ��n̂� +
�

�2 sin4 �

2
�n̂ · ��n̂ � ��n̂���n̂


= 0. �3�

Notice that the second equation can be interpreted as a con-
servation of the SU�2� current, which, of course, is a simple
consequence of the global SU�2� symmetry of the theory.

With the spherically symmetric ansatz

� = ��r�, n̂ = r̂ , �4�

�3� is reduced to

d2�

dr2 +
2

r

d�

dr
−

2 sin �

r2 +
2�

�2� sin2��/2�
r2

d2�

dr2 +
sin �

4r2 �d�

dr
�2

−
sin � sin2��/2�

r4 � = 0. �5�

Imposing the boundary condition

��0� = 2�, ���� = 0, �6�

one can solve the Eq. �5� and obtain the well-known skyr-
mion which has a finite energy. The energy of the skyrmion
is given by

E =
�

2
�2�

0

� 	�r2 +
2�

�2 sin2 �

2
��d�

dr
�2

+ 8�1 +
�

2�2r2 sin2 �

2
�sin2 �

2

dr

= �����
0

� �x2�d�

dx
�2

+ 8 sin2 �

2
�dx  73��� , �7�

where x=� /�� is a dimensionless variable. Furthermore, it
carries the baryon number �2,9�

Qs =
1

24�2 � 	ijktr�LiLjLk�d3r = 1, �8�

which represents the nontrivial homotopy �3�S3� of the map-
ping from the compactified space S3 to the SU�2� space S3

defined by U in �1�.
A remarkable point of �3� is that

� = � , �9�

becomes a classical solution, independent of n̂ �6�. So re-
stricting � to �, one can reduce the Skyrme Lagrangian �2�
to the Skyrme-Faddeev Lagrangian
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L → −
�2

2
���n̂�2 −

�

4
���n̂ � ��n̂�2, �10�

whose equation of motion is given by

n̂ � �2n̂ +
�

�2 ���H�����n̂ = 0,

H�� = n̂ · ���n̂ � ��n̂� = ��C� − ��C�. �11�

Notice that H�� admits a potential C� because it forms a
closed two form. Again the equation can be viewed as a
conservation of SU�2� current,

���n̂ � ��n̂ +
�

�2H����n̂� = 0. �12�

It is this equation that allows not only the baby skyrmion and
the Faddeev-Niemi knot but also the non-Abelian monopole
�6,8�.

III. TOPOLOGICAL OBJECTS IN SKYRME THEORY

The Lagrangian �10� has non-Abelian monopole solutions
�6�

n̂ = r̂ , �13�

where r̂ is the unit radial vector. This becomes a solution of
�11� except at the origin, because

�2r̂ = −
2

r2 r̂, ��H�� = 0. �14�

This is very similar to the well-known Wu-Yang monopole in
SU�2� Q.C.D. �6,10�. It has the magnetic charge

Qm =
1

8�
� 	ijkHijd�k = 1, �15�

which represents the nontrivial homotopy �2�S2� of the map-
ping from the unit sphere S2 centered at the origin in space to
the target space S2.

The above exercise tells that we can identify H�� as a
magnetic field and C� as the corresponding magnetic poten-
tial. As important, this tells that the skyrmion is nothing but
a monopole dressed by the scalar field �, which makes the
energy of the skyrmion finite �6�.

It has been well known that the Skyrme theory has a
vortex solution known as the baby skyrmion �11�. Moreover,
the theory also has a twisted vortex solution, the helical baby
skyrmion �8�. To construct the desired helical vortex let
�� ,
 ,z� be the cylindrical coordinates, and choose the ansatz

n̂ = �sin f���cos�n
 + mkz�
sin f���sin�n
 + mkz�

cos f���
� . �16�

With this we have �up to a gauge transformation�

C� = − �cos f + 1��n��
 + mk��z� , �17�

and can reduce Eq. �11� to

�1 +
�

�2� n2

�2 + m2k2�sin2 f� f̈ + � 1

�
+

�

�2� n2

�2 + m2k2�
� ḟ sin f cos f −

�

�2

1

�
� n2

�2 − m2k2�sin2 f�
� ḟ − � n2

�2 + m2k2�sin f cos f = 0. �18�

So with the boundary condition

f�0� = �, f��� = 0, �19�

we obtain the non-Abelian vortex solutions shown in Fig. 1.
Notice that, when m=0, the solution describes the well-
known baby skyrmion. But when m is not zero, it describes a
helical vortex which is periodic in z coordinates �8�. In this
case, the vortex has a nonvanishing magnetic potential C�

not only around the vortex but also along the z axis.
Obviously the helical vortex has the helical magnetic field

made of

Hẑ =
1

�
H�
 =

n

�
ḟ sin f ,

H
̂ = − H�z = − mkḟ sin f , �20�

which gives two quantized magnetic fluxes. It has a quan-
tized magnetic flux along the z axis

�ẑ =� H�
d� d
 = − 4�n , �21�

and a quantized magnetic flux around the z axis �in a one
period section from 0 to 2� /k in z coordinates�

�
̂ = −� H�zd� dz = 4�m . �22�

Furthermore they are linked since �ẑ is surrounded by �
̂.
This point will be very important later when we discuss the
knot.

FIG. 1. The baby skyrmion �dashed line� with m=0, n=1 and
the helical baby skyrmion �solid line� with m=n=1 in Skyrme
theory. Here � is in the unit �� /� and k=0.8 � /��.
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The vortex solutions implies the existence of the Meissner
effect in Skyrme theory which confines the magnetic flux of
the vortex �8�. To see how the Meissner effect comes about,
notice that due to the U�1� gauge symmetry the Skyrme
theory has a conserved current,

j� = ��H��, ��j� = 0. �23�

So the magnetic flux of the vortex can be thought to come
from the helical electric current density

j� = − sin f�n� f̈ +
cos f

sin f
ḟ2 −

1

�
ḟ���


− mk� f̈ +
cos f

sin f
ḟ2 +

1

�
ḟ���z� . �24�

This produces the currents i
̂ �per one period section in the z
coordinate from z=0 to z=2� /k� around the z axis

i
̂ = − n�
�=0

�=� �
z=0

z=2�/k

sin f� f̈ +
cos f

sin f
ḟ2 −

1

�
ḟ�d�

�
dz

= �2�n

k

sin f

�
ḟ�

�=0

�=�

= −
2�n

k
ḟ2�0� , �25�

and iẑ along the z axis

iẑ = − mk�
�=0

�=�

sin f� f̈ +
cos f

sin f
ḟ2 +

1

�
ḟ��d �d


= � − 2�mk� ḟ sin f ��=0
�=� = 0. �26�

Notice that, even though iẑ=0, it has a nontrivial current
density which generates the net flux �
̂.

The helical magnetic fields and currents are shown in
Figs. 2 and 3. Clearly the helical magnetic fields are confined
along the z axis, confined by the helical current. This is noth-
ing but the Meissner effect, which confirms that the Skyrme
theory has a built-in mechanism for the Meissner effect.

The helical vortex will become unstable and decay to the
untwisted baby skyrmion unless the periodicity condition is

enforced by hand. In this sense it can be viewed as unphysi-
cal. But for our purpose it plays a very important role, be-
cause it guarantees the existence of the Faddeev-Niemi knot
in the Skyrme theory �6,8�. This is because we can naturally
enforce the periodicity condition of the helical vortex mak-
ing it a vortex ring by smoothly bending and connecting two
periodic ends together. In this case the periodicity condition
is automatically implemented, and the vortex ring becomes a
stable knot.

The knot topology is described by the nonlinear sigma
field n̂, which defines the Hopf mapping from the compacti-
fied space S3 to the target space S2. When the preimages of
two points of the target space are linked, the mapping �3�S2�
becomes nontrivial. In this case the knot quantum number of
�3�S2� is given by the Chern-Simon index of the magnetic
potential C�,

Qk =
1

32�2 � 	ijkCiHjkd
3x = mn . �27�

Notice that the knot quantum number can also be understood
as the linking number of two magnetic fluxes of the vortex
ring. This is because the vortex ring carries two magnetic
fluxes linked together, m the unit of flux passing through the
disk of the ring and n the unit of flux passing along the ring,
whose linking number becomes mn. This linking number is
described by the Chern-Simon index of the magnetic poten-
tial �8�.

The knot has both topological and dynamical stability.
Obviously the knot has a topological stability, because two
flux rings linked together cannot be disconnected by any
smooth deformation of the field.

The dynamical stability follows from the fact that the su-
percurrent �24� has two components, the one moving along
the knot and the other moving around the knot tube. Clearly
the current moving along the knot generates an angular mo-
mentum around the z axis which provides the centrifugal
force preventing the vortex ring to collapse. Put it differently,
the current generates the m unit of the magnetic flux trapped
in the knot disk which cannot be squeezed out. And clearly,

FIG. 2. The supercurrent i
̂ �in one period section in z coordi-
nates� and corresponding magnetic field Hẑ circulating around the
cylinder of radius � of the helical baby skyrmion with m=n=1.
Here � is in the unit �� /� and k=0.8 � /��. The current density j
̂

is represented by the dotted line.

FIG. 3. The supercurrent iẑ and corresponding magnetic field H
̂

flowing through the disk of radius � of the helical baby skyrmion
with m=n=1. Here � is in the unit �� /� and k=0.8 � /��. The
current density jẑ is represented by the dotted line.
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this flux provides a stabilizing repulsive force which prevent
the collapse of the knot. This is how the knot acquires the
dynamical stability. It is this remarkable interplay between
topology and dynamics which assures the existence of the
stable knot in Skyrme theory �8�.

One could estimate the energy of the knot. Theoretically it
has been shown that the knot energy has the following bound
�12�

c���Q3/4 � EQ � C���Q3/4, �28�

where c=8�2�33/8 and C is an unknown constant that is no
smaller than c. This suggests that the knot energy is propor-
tional to Q3/4. Indeed numerically, one finds �13�

EQ  252���Q3/4, �29�

up to Q=8. What is remarkable here is the sublinear Q de-
pendence of the energy. This means that a knot with large Q
cannot decay to knots with smaller Q.

IV. GROSS-PITAEVSKI THEORY OF TWO-COMPONENT
BEC: A REVIEW

The creation of the multicomponent Bose-Einstein con-
densates of atomic gases has widely opened new opportuni-
ties for us to study the topological objects experimentally
which so far have been only of theoretical interest. This is
because the multicomponent BEC can naturally represent a
non-Abelian structure, and thus can allow far more interest-
ing topological objects. Already the vortices have success-
fully been created with different methods in two-component
BECs �3,4�. But theoretically the multicomponent BEC has
not been well-understood. In particular, it needs to be clari-
fied how different the vortices in multicomponent BEC are
from the well-known vortices in the single-component BEC.
This is an important issue, because the new condensates
could have a new interaction, the vorticity interaction, which
is absent in single-component BECs. So in the following we
first discuss the vortex in the popular Gross-Pitaevskii theory
of two-component BEC, and compare it with that in the
gauge theory of two-component BEC which has been pro-
posed recently �5�.

Let a complex doublet �= ��1 ,�2� be the two-component
BEC, and consider the nonrelativistic two-component Gross-
Pitaevskii Lagrangian �14–17�

L = i


2
���1

†��t�1� − ��t�1�†�1� + ��2
†��t�2� − ��t�2�†�2��

−
2

2M
���i�1�2 + ��i�2�2� + �1�1

†�1 + �2�2
†�2

−
�11

2
��1

†�1�2 − �12��1
†�1���2

†�2� −
�22

2
��2

†�2�2, �30�

where �i are the chemical potentials and �ij are the quartic
coupling constants which are determined by the scattering
lengths aij

�ij =
4�2

M
aij . �31�

The Lagrangian �30� is a straightforward generalization of
the single-component Gross-Pitaevskii Lagrangian to the
two-component BEC. Notice that here we have neglected the
trapping potential. This is justified if the range of the trap-
ping potential is much larger than the size of topological
objects we are interested in, and this is what we are assuming
here. Clearly the Lagrangian has a global U�1��U�1� sym-
metry.

One could simplify the Lagrangian �30� noticing the fact
that experimentally the scattering lengths often have the
same value. For example, for the spin-1

2 condensate of 87Rb
atoms, all aij have the same value of about 5.5 nm within 3%
or so �3,4�. In this case one may safely assume

�11  �12  �22  �̄ . �32�

With this assumption �30� can be written as

L = i


2
��†��t�� − ��t��†�� −

2

2M
��i��2 −

�̄

2��†� −
�

�̄
�2

− ���2
†�2, �33�

where

� = �1, �� = �1 − �2. �34�

Clearly the Lagrangian has a global U�2� symmetry when
��=0. So the �� interaction can be understood to be the
symmetry breaking term which breaks the global U�2� sym-
metry to U�1��U�1�. Physically �� represents the differ-
ence of the chemical potentials between �1 and �2 �Here one
can always assume ���0 without loss of generality�, so that
it vanishes when the two condensates have the same chemi-
cal potential. Even when they differ the difference could be
small, in which case the symmetry breaking interaction could
be treated perturbatively. This tells us that the theory has an
approximate global U�2� symmetry, even in the presence of
the symmetry breaking term �18�. This is why it allows non-
Abelian topological objects.

Normalizing � to ��2M /�� and parametrizing it by

� =
1
�2

��, ���� =
1
�2

�,�†� = 1� �35�

we obtain the following Hamiltonian from the Lagrangian
�33� in the static limit �in the natural unit c==1�,

H =
1

2
��i��2 +

1

2
�2��i��2 +

�

8
��2 − �0

2�2 +
��2

2
�2�2

*�2,

�36�

where

� = 4M2�̄, �0
2 =

4�M

�
, ��2 = 2M�� . �37�

Minimizing the Hamiltonian we have
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�2� − ��i��2� = ��

2
��2 − �0

2� + ��2��2
*�2��� ,

	��2 − �†�2�� + 2
�i�

�
��i − �†�i�� + ��2��2

*�2�
�1 = 0,

	��2 − �†�2�� + 2
�i�

�
��i − �†�i�� − ��2��1

*�1�
�2 = 0,

�†�i��2�i�� − �i��2�i�
†�� = 0. �38�

The equation is closely related to Eq. �11� that we have in
Skyrme theory, although on the surface it appears totally
different from �11�. To show this we let

n̂ = �†�� � ,

C� = − 2i�†��� , �39�

and find

���n̂�2 = 4������2 − ��†����2�

= 4�����2 − C�
2 ,

n̂ · ���n̂ � ��n̂� = − 2i����†��� − ���†���� = ��C� − ��C�

= H��. �40�

Notice that here H�� is precisely the closed two form which
appears in �11�. Moreover, from �39� we have the identity

��� +
1

2i
�C�n̂ − n̂ � ��n̂� · ���� = 0. �41�

This identity plays an important role in the non-Abelian
gauge theory, which shows that there exists a unique SU�2�
gauge potential which parallelizes the doublet � �10�. For our
purpose this allows us to rewrite the equation of the doublet
� in �38� into a completely different form.

Indeed with the above identities we can express �38� in
terms of n̂ and C�. With �40� the first equation of �38� can be
written as

�2� − 1
4 ���in̂�2 + Ci

2�� = ��

2
��2 − �0

2� + ��2��2
*�2��� .

�42�

Moreover, with �41� the second and third equations of �38�
can be expressed as

1

2i
�A + B� · �� �� = 0,

A = �iCi + 2
�i�

�
Ci + i�2�2

*�2 − 1���2,

B� = n̂ � �2n̂ + 2
�i�

�
n̂ � �in̂ − Ci�in̂ − ��iCi + 2

�i�

�
Ci�n̂

+ i��2k̂ , �43�

where k̂= �0,0 ,1�. This is equivalent to

A + B� · n̂ = 0,

n̂ � B� − in̂ � �n̂ � B� � = 0, �44�

so that �43� is written as

n� � �2n� + 2
�i�

�
n� � �in� − Ci�in� = ��2k̂ � n̂ . �45�

Finally, the last equation of �38� is written as

�i��2Ci� = 0, �46�

which tells us that �2Ci is solenoidal �i.e., divergenceless�.
So we can always replace Ci with another field Bi

Ci =
1

�2	ijk� jBk = −
1

�2�iGij ,

Gij = 	ijkBk, �47�

and express �45� as

n̂ � �2n̂ + 2
�i�

�
n̂ � �in̂ +

1

�2�iGij� jn̂ = ��2k̂ � n� . �48�

With this �38� can now be written as

�2� −
1

4
���in̂�2 + Ci

2�� = ��

2
��2 − �0

2� + ��2��2
*�2��� ,

n̂ � �2n̂ + 2
�i�

�
n̂ � �in̂ +

1

�2�iGij� jn̂ = ��2k̂ � n� ,

�iGij = − �2Cj . �49�

This tells us that �38� can be transformed to a completely
different form which has a clear physical meaning. The last
equation tells us that the theory has a conserved U�1� current
j�,

j� = �2C�, �50�

which is nothing but the Noether current of the global U�1�
symmetry of the Lagrangian �33�. The second equation tells
that the theory has another partially conserved SU�2� Noet-
her current j��,

j�� = �2�n̂ � ��n̂ − C�n̂� , �51�

which comes from the approximate SU�2� symmetry of the
theory broken by the �� term.

More importantly this shows that �38� is not much differ-
ent from Eq. �11� in the Skyrme theory. Indeed in the ab-
sence of �, �11� and �49� acquire an identical form when
��2=0, except that here Hij is replaced by Gij. This reveals
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that the Gross-Pitaevskii theory of two-component BEC is
closely related to the Skyrme theory, which is really remark-
able.

The Hamiltonian �36� can be expressed as

H = ��0
4Ĥ ,

Ĥ =
1

2
��̂i�̂�2 +

1

2
�̂2��̂i��2 +

1

8
��̂2 − 1�2,

+
��

4�
�̂2�2

*�2, �52�

where

�̂ =
�

�0
, �̂i = ��i, � =

1
���0

.

Notice that Ĥ is completely dimensionless, with only one
dimensionless coupling constant �� /�. This tells that the
physical unit of the Hamiltonian is ��0

4, and the physical
scale � of the coordinates is 1 /���0. This is comparable to

the correlation length �̄,

�̄ =
1

�2�M
= �2� . �53�

For 87Rb we have

M  8.1 � 1010 eV, �̄  1.68 � 10−7 nm2,

�  3.3 � 10−12 eV, ��  0.1� , �54�

so that the density of 87Rb atom is given by

��†�� =
�

�̄
 0.998 � 1014/cm3. �55�

From �54� we have

�  1.14 � 1011, �0
2  3.76 � 10−11 eV2,

��2  5.34 � 10−2 eV2. �56�

So the physical scale � for 87Rb becomes about 1.84
�102 nm.

V. VORTEX SOLUTIONS IN THE GROSS-PITAEVSKII
THEORY

The two-component Gross-Pitaevskii theory is known to
have non-Abelian vortices �17,18�. To obtain the vortex so-
lutions in the two-component Gross-Pitaevskii theory we
first consider a straight vortex with the ansatz

� = ����, � =�cos
f���

2
exp�− in
�

sin
f���

2
� . �57�

With the ansatz �38� is reduced to

�̈ +
1

�
�̇ − �1

4
ḟ2 +

n2

�2 − � n2

�2 − ��2�sin2 f

2
�� =

�

2
��2 − �0

2�� ,

f̈ + � 1

�
+ 2

�̇

�
� ḟ + � n2

�2 − ��2�sin f = 0. �58�

Now, we choose the following ansatz for a helical vortex
�18�

� = ����, � =�cos
f���

2
exp�− in
�

sin
f���

2
exp�imkz� � , �59�

and find that the equation �38� becomes

�̈ +
1

�
�̇ − �1

4
ḟ2 +

n2

�2 − � n2

�2 − m2k2 − ��2�sin2 f

2
��

=
�

2
��2 − �0

2�� ,

f̈ + � 1

�
+ 2

�̇

�
� ḟ + � n2

�2 − m2k2 − ��2�sin f = 0. �60�

Notice that mathematically this equation becomes identical
to the equation of the straight vortex �58�, except that here
��2 is replaced by ��2+m2k2.

Now, with the boundary condition

�̇�0� = 0, ���� = �0,

f�0� = �, f��� = 0, �61�

we can solve �60�. With m=0, n=1 we obtain the straight
�untwisted� vortex solution shown in Fig. 4, but with m=n
=1 we obtain the twisted vortex solution shown in Fig. 5. Of
course �38� also admits the well-known Abelian vortices
with �1=0 or �2=0. But obviously they are different from the
non-Abelian vortices discussed here.

FIG. 4. The untwisted vortex in the Gross-Pitaevskii theory of
two-component BEC. Here we have put n=1, and � is in the unit of
�. Dashed and solid lines correspond to �� /�=0.1 and 0.2,
respectively.
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The untwisted non-Abelian vortex solution has been dis-
cussed before �16,17�, but the twisted vortex solution here is
new �18�. Although they look very similar on the surface,
they are quite different. First, when ��2=0, there is no un-
twisted vortex solution because in this case the vortex size
�the penetration length of the vorticity� becomes infinite.
However, the helical vortex exists even when ��2=0. This is
because the twisting reduces the size of the vortex tube.
More importantly, they are physically different. The un-
twisted vortex is made of a single vorticity flux, but the
helical vortex is made of two vorticity fluxes linked together
�18�.

In the Skyrme theory the helical vortex is interpreted as a
twisted magnetic vortex, whose flux is quantized due to the
topological reason. The helical vortex in the Gross-Pitaevskii
theory is also topological, which can be viewed as a quan-
tized vorticity flux �18�. To see this notice that, up to the
overall factor 2, the potential C� introduced in �39� is noth-
ing but the velocity potential V� �more precisely the momen-
tum potential� of the doublet � �5,18�

V� = − i�†���

=
1

2
C� = −

n

2
�cos f + 1���
 −

mk

2
�cos f − 1���z ,

�62�

which generates the vorticity

H̄�� = ��V� − ��V� =
1

2
H��

=
ḟ

2
sin f�n������
 − �����
� + mk������z − �����z�� .

�63�

This has two quantized vorticity fluxes �ẑ along the z axis

�ẑ =� H̄�̂
̂� d� d
 = − 2�n , �64�

and �
̂ around the z axis �in one period section from z=0 to
z=2� /k�

�
̂ = �
0

2�/k

H̄ẑ�̂d�dz = 2�m . �65�

Clearly two fluxes are linked together.
Furthermore, just as in the Skyrme theory, these fluxes

can be viewed to originate from the helical supercurrent
which confines them with a built-in Meissner effect

j̄� = ��H̄�� = − sin f�n� f̈ +
cos f

sin f
ḟ2 −

1

�
ḟ���


+ mk� f̈ +
cos f

sin f
ḟ2 +

1

�
ḟ���z�;

�� j̄� = 0. �66�

this produces the supercurrents i
̂ �per one period section in
z coordinates from z=0 to z=2� /k� around the z axis

i
̂ = � −
2�n

k

sin f

�
ḟ�

�=0

�=�

, �67�

and iẑ along the z-axis

iẑ = � − 2�mk� ḟ sin f ��=0
�=�. �68�

The vorticity fluxes and the corresponding supercurrents are
shown in Figs. 6 and 7. This shows that the helical vortex is
made of two quantized vorticity fluxes, the �ẑ flux centered
at the core and the �
̂ flux surrounding it �18�. This is almost
identical to what we have in Skyrme theory. Indeed the re-
markable similarity between Figs. 6 and 7 and Figs. 4 and 5
in the Skyrme theory is unmistakable. This confirms that the

FIG. 5. The helical vortex in the Gross-Pitaevskii theory of two-
component BEC. Here we have put m=n=1, k=0.25/�, and � is in
the unit of �. Dashed and solid lines correspond to �� /�=0, and
0.1, respectively.

FIG. 6. The supercurrent i
̂ �in one period section in z coordi-
nates� and corresponding magnetic field Hẑ circulating around the
cylinder of radius � of the helical vortex in the Gross-Pitaevskii
theory of two-component BEC. Here m=n=1, k=0.25/�, ��2=0,
and � is in the unit of �. The current density j
̂ is represented by the
dotted line.

CHO, KHIM, AND ZHANG PHYSICAL REVIEW A 72, 063603 �2005�

063603-8



helical vortex of two-component BEC is nothing but two
quantized vorticity fluxes linked together. We emphasize that
this interpretation holds even when the ��2 is not zero.

The quantization of the vorticity �64� and �65� is due to
the non-Abelian topology of the theory. To see this notice
that the vorticity �63� is completely fixed by the nonlinear �
field n̂ defined by �. Moreover, for the straight vortex n̂ natu-
rally defines a mapping �2�S2� from the compactified two-
dimensional space S2 to the target space S2. This means that
the vortex in two-component BEC has exactly the same to-
pological origin as the baby skyrmion in Skyrme theory. The
only difference is that the topological quantum number here
can also be expressed by the doublet �

Qv = −
i

4�
� 	ij�i�

†� j� d2x = n . �69�

Exactly the same topology assures the quantization of the
twisted vorticity flux �18�. This clarifies the topological ori-
gin of the non-Abelian vortices of the Gross-Pitaevskii
theory in two-component BEC.

The helical vortex will become unstable unless the peri-
odicity condition is enforced by hand. But just as in the
Skyrme theory we can make it a stable knot by making it a
twisted vortex ring smoothly connecting two periodic ends.
In this twisted vortex ring the periodicity condition of the
helical vortex is automatically guaranteed, and the vortex
ring becomes a stable knot. In this knot the n flux �ẑ winds
around m flux �
̂ of the helical vortex. Moreover the ansatz
�57� tells us that �ẑ is made of mainly the first component
while �
̂ is made of mainly the second component of two-
component BEC. So physically the knot can be viewed as
two vorticity fluxes linked together, the one made of the first
component and the other made of the second component
which surrounds it.

As importantly the very twist which causes the instability
of the helical vortex now ensures the stability of the knot.
This is so because dynamically the momentum mk along the
z axis created by the twist now generates a net angular mo-

mentum which provides the centrifugal repulsive force
around the z axis preventing the knot to collapse.

Furthermore, this dynamical stability of the knot is now
backed up by the topological stability. Again this is because
the nonlinear � field n̂, after forming a knot, defines a map-
ping �3�S2� from the compactified space S3 to the target
space S2. So the knot acquires a nontrivial topology �3�S2�
whose quantum number is given by the Chern-Simon index
of the velocity potential,

Q = −
1

4�2 � 	ijk�
†�i��� j�

†�k��d3x

=
1

16�2 � 	ijkViH̄jkd
3x = mn . �70�

This is precisely the linking number of two vorticity fluxes,
which is formally identical to the knot quantum number of
the Skyrme theory �6,7,18�. This assures the topological sta-
bility of the knot, because two fluxes linked together cannot
be disconnected by any smooth deformation of the field con-
figuration.

Similar knots in the Gross-Pitaevskii theory of two-
component BEC have been discussed in the literature
�14,15�. Our analysis here tells us that the knot in the Gross-
Pitaevskii theory is a topological knot which can be viewed
as a twisted vorticity flux ring linked together.

As we have argued our knot should be stable, dynamically
as well as topologically. On the other hand, the familiar scal-
ing argument indicates that the knot in the Gross-Pitaevskii
theory of two-component BEC must be unstable. This has
created a confusion on the stability of the knot in the litera-
ture �14,17�. To clarify the confusion it is important to realize
that the scaling argument breaks down when the system is
constrained. In our case the Hamiltonian is constrained by
the particle number conservation which allows us to circum-
vent the no-go theorem and have a stable knot �17,18�.

VI. GAUGE THEORY OF TWO-COMPONENT BEC

The above analysis tells that the non-Abelian vortex of
the two-component Gross-Pitaevskii theory is nothing but a
vorticity flux. And creating the vorticity costs energy. This
implies that the Hamiltonian of two-component BEC must
contain the contribution of the vorticity. This questions the
wisdom of the Gross-Pitaevskii theory, because the Hamil-
tonian �36� has no such interaction. To make up this short-
coming a gauge theory of two-component BEC which can
naturally accommodate the vorticity interaction has been
proposed recently �5�. In this section we discuss the gauge
theory of two-component BEC in detail.

Let us consider the following Lagrangian of U�1� gauge
theory of two-component BEC �5�

L = i


2
��†�D̃t�� − �D̃t��†�� −

2

2M
�D̃i��2 −

�

2
��†� −

�

�
�2

− ���2
†�2 −

1

4
H̃��

2 , �71�

where D̃�=��+ igC̃�, and H̃�� is the field strength of the

FIG. 7. The supercurrent iẑ and corresponding magnetic field H
̂

flowing through the disk of radius � of the helical vortex in the
Gross-Pitaevskii theory of two-component BEC. Here m=n=1, k
=0.25/�, ��2=0, and � is in units of �. The current density jẑ is
represented by the dotted line.
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potential C̃�. Two remarks are in order here. First, from now
on we will assume

�� = 0, �72�

since the symmetry breaking interaction can always be
treated as a perturbation. With this the theory acquires a glo-
bal U�2� symmetry as well as a local U�1� symmetry. Sec-
ondly, since we are primarily interested in the self-interacting

�neutral� condensate, we treat the potential C̃� as a compos-

ite field of the condensate and identify C̃� with the velocity
potential V� of the doublet � �5�,

C̃� = −
i

g
�†��� =

1

g
V�. �73�

With this the last term in the Lagrangian now represents the
vorticity �63� of the velocity potential that we discussed be-
fore

H̃�� = −
i

g
����†��� − ���†���� =

1

g
H̄��. �74�

This shows that the gauge theory of two-component BEC
naturally accommodates the vorticity interaction, and the
coupling constant g here describes the coupling strength of
the vorticity interaction �5�. This vorticity interaction distin-
guishes the gauge theory from the Gross-Pitaevskii theory.

At this point one might still wonder why one needs the
vorticity in the Lagrangian �71�, because in ordinary �one-
component� BEC one has no such interaction. The reason is
that in ordinary BEC the vorticity is identically zero, because
there the velocity is given by the gradient of the phase of the
complex condensate. Only a non-Abelian �multicomponent�
BEC can have a nonvanishing vorticity. More importantly, it
costs energy to create the vorticity in non-Abelian superflu-
ids �19�. So it is natural that the two-component BEC �which
is very similar to non-Abelian superfluids� has the vorticity
interaction. Furthermore, here we can easily control the
strength of the vorticity interaction with the coupling con-
stant g. Indeed, if necessary, we could even turn off the vor-
ticity interaction by putting g=�. This justifies the presence
of the vorticity interaction in the Hamiltonian.

Another important difference between this theory and the
Gross-Pitaevskii theory is the U�1� gauge symmetry. Clearly
the Lagrangian �71� retains the U�1� gauge invariance, in
spite of the fact that the gauge field is replaced by the veloc-
ity field �73�. This has a deep impact. To see this notice that
from the Lagrangian we have the following Hamiltonian in
the static limit �again normalizing � to �2M /��:

H =
1

2
��i��2 +

1

2
�2���i��2 − ��†�i��2� +

�

2
��2 − �0

2�2

−
1

4g2 ��i�
†� j� − � j�

†�i��2,

�0
2 =

2�

�
. �75�

Minimizing the Hamiltonian we have the following equation
of motion:

�2� − ���i��2 − ��†�i��2�� =
�

2
��2 − �0

2�� ,

	��2 − �†�2�� + 2� �i�

�
+

1

g2�2� j��i�
†� j� − � j�

†�i�� − �†�i��
���i − �†�i��
� = 0. �76�

But factorizing � by the U�1� phase � and CP1 field � with

� = exp�i��� , �77�

we have

�†�� � = �†�� � = n̂ ,

�����2 − ��†����2 = �����2 − ��†����2 = 1
4 ���n̂�2,

− i����†��� − ���†���� = − i����†��� − ���†���� = 1
2 n̂ · ���n̂

� ��n̂� = gH̃��, �78�

so that we can rewrite �76� in terms of �

�2� − ���i��2 − ��†�i��2�� =
�

2
��2 − �0

2�� ,

	��2 − �†�2�� + 2� �i�

�
+

1

g2�2� j��i�
†� j� − � j�

†�i�� − �†�i��
���i − �†�i��
� = 0. �79�

Moreover we can express the Hamiltonian �75� completely
in terms of the non linear � field n̂ �or equivalently the CP1

field �� and � as

H =
1

2
��i��2 +

1

8
�2��in̂�2 +

�

2
��2 − �0

2�2 +
1

16g2 ��in̂ � � jn̂�2

= ��0
4	1

2
��̂i�̂�2 +

1

8
�̂2��̂in̂�2 +

1

2
��̂2 − 1�2 +

�

16g2 ��̂in̂

� �̂ jn̂�2
 . �80�

This is because of the U�1� gauge symmetry. The U�1� gauge
invariance of the Lagrangian �71� absorbs the U�1� phase �
of �, so that the theory is completely described by �. In other
words, the Abelian gauge invariance of effectively reduces
the target space S3 of � to the gauge orbit space S2=S3 /S1,
which is identical to the target space of the CP1 field �. And
since mathematically � is equivalent to the nonlinear � field
n̂, one can express �75� completely in terms of n̂.
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This tells us that Eq. �76� can also be expressed in terms
of n̂. Indeed with �40�, �41�, and �78� we can obtain the
following equation from �76� �5�:

�2� − 1
4 ��in̂�2� =

�

2
��2 − �0

2�� ,

n̂ � �2n̂ + 2
�i�

�
n̂ � �in̂ +

2

g�2�iH̃ij� jn̂ = 0. �81�

This, of course, is the equation of motion that one obtains by
minimizing the Hamiltonian �80�. So we have two expres-
sions, �76� and �81�, which describe the equation of gauge
theory of two-component BEC.

The above analysis clearly shows that our theory of two-
component BEC is closely related to the Skyrme theory. In
fact, in the vacuum

�2 = �0
2,

1

g2�0
2 =

�

�2 , �82�

Eqs. �11� and �81� become identical. Furthermore, this tells
us that the equation �49� of the Gross-Pitaevskii theory is
very similar to the above equation of the gauge theory of
two-component BEC. Indeed, when ��2=0, �49� and �81�
become almost identical. This tells us that, in spite of differ-
ent dynamics, the two theories are very similar to each other.

VII. TOPOLOGICAL OBJECTS IN GAUGE THEORY OF
TWO-COMPONENT BEC

Now we show that, just like the Skyrme theory, the theory
admits monopole, vortex, and knot. We start from the mono-
pole. Let

� =
1
�2

�� �� = 0� ,

� = ��r�, � =�cos
�

2
exp�− i
�

sin
�

2
� , �83�

and find

n̂ = �†�� � = r̂ , �84�

where �r ,� ,
� are the spherical coordinates. With this the
second equation of �79� is automatically satisfied, and the
first equation is reduced to

�̈ +
2

r
�̇ −

1

2r2� =
�

2
��2 − �0

2�� . �85�

So with the boundary condition

��0� = 0, ���� = �0, �86�

we have a spherically symmetric solution shown in Fig. 8.
Obviously this is a Wu-Yang type vorticity monopole
dressed by the scalar field � �6,10�. In spite of the dressing,

however, it has an infinite energy due to the singularity at the
origin.

Next we construct the vortex solutions. To do this we
choose the ansatz in the cylindrical coordinates

� = ����, � =�cos
f���

2
exp�− in
�

sin
f���

2
exp�imkz� � , �87�

from which we have

n̂ = �sin f cos�n
 + mkz�
sin f sin�n
 + mkz�

cos f
� ,

C̃� = −
n

2g
�cos f + 1���
 −

mk

2g
�cos f − 1���z . �88�

With this Eq. �79� is reduced to

�̈ +
1

�
�̇ − 1

4� ḟ2 + �m2k2 +
n2

�2�sin2 f�� =
�

2
��2 − �0

2�� ,

�1 + � n2

�2 + m2k2� sin2 f

g2�2 � f̈ + � 1

�
+ 2

�̇

�
+ � n2

�2 + m2k2�
�

sin f cos f

g2�2 ḟ −
1

�
� n2

�2 − m2k2� sin2 f

g2�2 � ḟ

− � n2

�2 + m2k2�sin f cos f = 0. �89�

Notice that the first equation is similar to what we have in
the Gross-Pitaevskii theory, but the second one is remarkably
similar to the helical vortex equation in the Skyrme theory.
Now with the boundary condition

�̇�0� = 0, ���� = �0,

f�0� = �, f��� = 0, �90�

we obtain the non-Abelian vortex solution shown in Fig. 9.

FIG. 8. The monopole solution in the gauge theory of two-
component BEC. Here we have put �=1 and r is in the unit of 1 /�0.
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The solution is similar to the one we have in the Gross-
Pitaevskii theory. First, when m=0, the solution describes the
straight non-Abelian vortex. But when m is not zero, it de-
scribes a helical vortex which is periodic in z coordinates �5�.
In this case, the vortex has a nonvanishing velocity current
�not only around the vortex but also along the z axis�. Sec-
ondly, the doublet � starts from the second component at the
core, but the first component takes over completely at the
infinity. This is due to the boundary condition f�0�=� and
f���=0, which assures us that our solution describes a genu-
ine non-Abelian vortex. This confirms that the vortex solu-
tion is almost identical to what we have in the Gross-
Pitaevskii theory shown in Fig. 5. All the qualitative features
are exactly the same. This implies that physically the gauge
theory of two-component BEC is very similar to the Gross-
Pitaevskii theory, in spite of the obvious dynamical differ-
ences.

Clearly our vortex has the same topological origin as the
vortex in Gross-Pitaevskii theory. This tells us that, just as in
the Gross-Pitaevskii theory, the non-Abelian helical vortex
here is nothing but the twisted vorticity flux of the CP1 field
� confined along the z axis by the velocity current, whose
flux is quantized due to the topological reason. The only
difference here is the profile of the vorticity, which is slightly
different from that of the Gross-Pitaevskii theory. Indeed the
solution has the following vorticity:

H̃ẑ =
1

�
H̃�
 =

n

2g�
ḟ sin f ,

H̃
̂ = − H̃�z = −
mk

2g
ḟ sin f , �91�

which gives two quantized vorticity fluxes, a flux along the z
axis

�ẑ =� H̃�
d� d
 = −
2�i

g
� ����†�
� − �
�†����d�

= −
2�n

g
, �92�

and a flux around the z axis �in a one period section from 0
to 2� /k in z coordinates�

�
̂ = −� H̃�zd� dz =
2�i

g
� ����†�z� − �z�

†����
d�

k
=

2�m

g
.

�93�

This tells us that the vorticity fluxes are quantized in the unit
of 2� /g.

Just like the Gross-Pitaevskii theory the theory has a
built-in Meissner effect which confines the vorticity flux. The
current which confines the flux is given by

j̃� = ��H̃�� = −
sin f

2g
�n� f̈ +

cos f

sin f
ḟ2 −

1

�
ḟ���


+ mk� f̈ +
cos f

sin f
ḟ2 +

1

�
ḟ���z� ,

�� j̃� = 0. �94�

This produces the supercurrents i
̂ �per a one period section
in z coordinates from z=0 to z=2� /k� around the z axis

i
̂ = −
�n

gk
� sin f

�
ḟ�

�=0

�=�

, �95�

and iẑ along the z axis

iẑ = − ��mk

g
� ḟ sin f�

�=0

�=�

. �96�

The helical vorticity fields and supercurrents are shown in
Figs. 10 and 11. The remarkable similarity between these and
those in Skyrme theory �Figs. 2 and 3� and Gross-Pitaevskii
theory �Figs. 6 and 7� is unmistakable.

With the ansatz �88� the energy �per a one periodic sec-
tion� of the helical vortex is given by

E =
4�2

k
�

0

� 	1

2
�̇2 +

1

8
�2��1 +

1

g2�2� n2

�2 + m2k2�sin2 f� ḟ2

+ � n2

�2 + m2k2�sin2 f� +
�

8
��2 − �0

2�2
� d�

= 4�2�0
2

k
�

0

� 	1

2
�d�̂

dx
�2

+
1

8
�̂2��1 +

�

g2�̂2

��n2

x2 + m2�2k2�sin2 f�� df

dx
�2

+ �n2

x2 + m2�2k2�sin2 f�� +
1

8
��̂2 − 1�2
x dx� . �97�

One could calculate the energy of the helical vortex numeri-
cally. With m=n=1 and k=0.64� we find that the energy in

FIG. 9. The non-Abelian vortex �dashed line� with m=0, n=1
and the helical vortex �solid line� with m=n=1 in the gauge theory
of two-component BEC. Here we have put � /g2=1, k=0.64/�, and
� is in the unit of �.
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one period section of the helical vortex in 87Rb is given by

E  51
�0

��
 4.5 � 10−10 eV  0.7 MHz, �98�

which will have an important meaning later.

VIII. VORTICITY KNOT IN TWO-COMPONENT BEC

The existence of the helical vortex predicts the existence
of a topological knot in the gauge theory of two-component
BEC, for exactly the same reason that the helical vortices in
the Skyrme theory and the Gross-Pitaevskii theory assure the
existence of knots in these theories. To demonstrate the ex-
istence of knots in the gauge theory of two-component BEC
we introduce the toroidal coordinates �� ,� ,
� defined by

x =
a

D
sinh � cos 
, y =

a

D
sinh � sin 
 ,

z =
a

D
sin � ,

D = cosh � − cos � ,

ds2 =
a2

D2 �d�2 + d�2 + sinh2 � d
2� ,

d3x =
a3

D3 sinh � d� d� d
 , �99�

where a is the radius of the knot defined by �=�. Notice that
in toroidal coordinates, �=�=0 represents spatial infinity of
R3, and �=� describes the torus center.

Now we choose the following ansatz:

� =
���,��

�2 �cos
f��,��

2
exp�− in���,���

sin
f��,��

2
exp�im
� � . �100�

With this we have the velocity potential

C̃� = −
m

2g
�cos f − 1���
 −

n

2g
�cos f + 1���� , �101�

which generates the vorticity

H̃�� = ��C̃� − ��C̃�,

H̃�� =
n

2g
K sin f , H̃�
 =

m

2g
sin f ��f ,

H̃
� = −
m

2g
sin f ��f , �102�

where

K = ��f��� − ��f��� . �103�

Notice that, in the orthonormal frame ��̂ , �̂ , 
̂�, we have

C̃�̂ = −
nD

2ga
�cos f + 1���� ,

C̃�̂ = −
nD

2ga
�cos f + 1���� ,

C̃
̂ = −
mD

2ga sinh �
�cos f − 1� , �104�

and

H̃�̂�̂ =
nD2

2ga2K sin f ,

H̃�̂
̂ =
mD2

2ga2 sinh �
sin f��f ,

FIG. 10. The supercurrent i
̂ �in a one period section in z coor-
dinates� and corresponding magnetic field Hẑ circulating around the
cylinder of radius � of the helical vortex in the gauge theory of
two-component BEC. Here m=n=1, � /g2=1, k=0.64/�, and � is
in the unit of �. The current density j
̂ is represented by the dotted
line.

FIG. 11. The supercurrent iẑ and corresponding magnetic field
H
̂ flowing through the disk of radius � of the helical vortex in the
gauge theory of two-component BEC. Here m=n=1, � /g2=1, k
=0.64/�, and � is in the unit of �. The current density jẑ is repre-
sented by the dotted line.
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H̃
̂�̂ = −
mD2

2ga2 sinh �
sin f��f . �105�

From the ansatz �100� we have the following equations of
motion:

���
2 + ��

2 + � cosh �

sinh �
−

sinh �

D
��� −

sin �

D
���� −

1

4
����f�2

+ ���f�2 + �n2������2 + �����2� +
m2

sinh2 �
�sin2 f��

=
�a2

2D2 ��2 − �0
2�� ,

���
2 + ��

2 + � cosh �

sinh �
−

sinh �

D
��� −

sin �

D
��� f − �n2������2

+ �����2� +
m2

sinh2 �
�sin f cos f +

2

�
������f + �����f�

= −
1

g2�2

D2

a2 �A cos f + B sin f�sin f ,

���
2 + ��

2 + � cosh �

sinh �
−

sinh �

D
��� −

sin �

D
���� + 2���f���

+ ��f����
cos f

sin f
+

2

�
������� + ������� =

1

g2�2

D2

a2 C ,

�106�

where

A = n2K2 +
m2

sinh2 �
����f�2 + ���f�2� ,

B = n2��K��� − n2��K��� + n2K�� cosh �

sinh �
+

sinh �

D
����

−
sin �

D
���� +

m2

sinh2 �
���

2 + ��
2 − � cosh �

sinh �
−

sinh �

D
���

+
sin �

D
��� f ,

C = ��K��f − ��f��K + K�� cosh �

sinh �
+

sinh �

D
��� −

sin �

D
��� f .

Since �=�=0 represents spatial infinity of R3 and �=�
describes the torus center, we can impose the following
boundary condition:

��0,0� = �0, �̇��,�� = 0,

f�0,�� = 0, f��,�� = � ,

���,0� = 0, ���,2�� = 2� , �107�

to obtain the desired knot. From the ansatz �100� and the
boundary condition �107� we can calculate the knot quantum
number

Q =
mn

8�2 � K sin f d� d� d
 =
mn

4�
� sin f df d� = mn ,

�108�

where the last equality comes from the boundary condition.
This tells us that our ansatz describes the correct knot topol-
ogy.

Of course, an exact solution of �106� with the boundary
conditions �107� is extremely difficult to find �7,15�. But here
we can obtain the knot profile of �, f , and � which mini-
mizes the energy numerically. We find that, for m=n=1, the
radius of knots which minimizes the energy is given by

a  1.6� . �109�

From this we obtain the following solution of the lightest
axially symmetric knot in the gauge theory of two-
component BEC �with m=n=1� shown in Figs. 12–14. With
this we obtain a three-dimensional energy profile of the light-
est knot shown in Fig. 15.

We can calculate the vorticity flux of the knot. Since the
flux is helical, we have two fluxes, the flux ��̂ passing

FIG. 12. The � profile of the BEC knot with m=n=1. Here we
have put � /g2=1, and the scale of the radius a is �.

FIG. 13. The f profile of the BEC knot with m=n=1. Here we
have put � /g2=1.
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through the knot disk of radius a in the xy plane and the flux
�
̂ which surrounds it. From �105� we have

��̂ = �
�=�

H̃�̂

a2 sinh �

D2 d� d


= −
m

2g
�

�=�

sin f��f d� d
 = −
2�m

g
, �110�

and

�
̂ =� H̃
̂

a2

D2d� d� ,

=
n

2g
� K sin f d� d� =

2�n

g
. �111�

This confirms that the flux is quantized in the unit of 2� /g.
As importantly this tells that the two fluxes are linked, whose
linking number is fixed by the knot quantum number.

Just as in Gross-Pitaevskii theory the vorticity flux here is
generated by the helical vorticity current which is conserved

j̃� =
nD2

2ga2 sin f��� +
sin �

D
�K��� −

nD2

2ga2 sin f

���� +
cosh �

sinh �
+

sinh �

D
�K��� −

mD2

2ga2

����� −
cosh �

sinh �
+

sinh �

D
�

�sin f��f + ��� +
sin �

D
�sin f��f���
 ,

�� j̃� = 0. �112�

Clearly this supercurrent generates a Meissner effect which
confines the vorticity flux.

From �75� and �100� we have the following Hamiltonian
for the knot:

H =
D2

2a2	�����2 + �����2 +
�2

4
����f�2 + ���f�2 + �n2������2

+ �����2� +
m2

sinh2 �
�sin2 f�
 +

�

8
��2 − �0

2�2

+
D4

8g2a4A sin2 f . �113�

With this the energy of the knot is given by

E =� H a3

D3 sinh � d� d� d


=
�0

��
� Ĥ

a3

�3D3 sinh � d� d� d
 , �114�

where

Ĥ =
�2D2

2a2 	����̂�2 + ����̂�2 +
�̂2

4
����f�2 + ���f�2

+ �n2������2 + �����2� +
m2

sinh2 �
�sin2 f�


+
1

8
��̂2 − 1�2 +

�

8g2

�4D4

a4 A sin2 f . �115�

Minimizing the energy we reproduce the knot equation
�106�.

From this we can estimate the energy of the axially sym-
metric knots. For the lightest knot �with m=n=1� we find the
following energy:

E  54
�0

��
 4.8 � 10−10 eV  0.75 MHz. �116�

One should compare this energy with the energy of the heli-
cal vortex �98�. Notice that the lightest knot has the radius
r1.6�. In our picture this knot can be constructed bending
a helical vortex with k0.64/�. So we expect that the en-

FIG. 14. The � profile of the BEC knot with m=n=1. Notice
that here we have plotted �−�. Here again we have put � /g2=1.

FIG. 15. �Color online�. The energy profile of the BEC knot
with m=n=1 for the energetically stable vorticity knot. Here again
we have put �� /g2=1.
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ergy of the lightest knot should be comparable to the energy
of the helical vortex with k0.64/�. And we have already
estimated the energy of the helical vortex with k0.64/� in
�98�. The fact that two energies are of the same order assures
us that the knot can indeed be viewed as a twisted vorticity
flux ring.

As we have remarked the Q dependence of the energy of
Faddeev-Niemi knot is proportional to Q3/4 �12,13�. An in-
teresting question is whether we can have a similar Q depen-
dence of energy for the knots in BEC. With our ansatz we
have estimated the energy of knots numerically for different
m and n up to Q=6. The result is summarized in Fig. 16,
which clearly tells us that the energy depends crucially on m
and n. Our result suggests that, for the minimum energy
knots, we have a similar �sublinear� Q dependence of energy
for the knots in two-component BEC. It would be very in-
teresting to establish such Q dependence of energy math-
ematically.

IX. DISCUSSION

In this paper we have discussed two competing theories of
two-component BEC, the popular Gross-Pitaevskii theory,
and the U�1� gauge theory which has the vorticity interac-
tion. Although dynamically different two theories have re-
markably similar topological objects, the helical vortex and
the knots, which both have a nontrivial non-Abelian topol-
ogy.

We have shown that the U�1��U�1� symmetry of two-
component BEC can be viewed as a broken U�2� symmetry.
This allows us to interpret the vortex and knot in two-
component BEC as non-Abelian topological objects. Further-
more, we have shown that these topological objects are the
vorticity vortex and vorticity knot.

A major difference between the Gross-Pitaevskii theory
and the gauge theory is the vorticity interaction. In spite of
the fact that the vorticity plays an important role in two-
component BEC, the Gross-Pitaevskii theory has no vorticity
interaction. In comparison, the gauge theory of two-
component BEC naturally accommodates the vorticity inter-
action in the Lagrangian. This makes the theory very similar

to the Skyrme theory. More significantly, the explicit U�1�
gauge symmetry makes it very similar to the theory of two-
gap superconductors. The only difference is that the two-
component BEC is a neutral system which is not charged, so
that the gauge interaction has to be an induced interaction.
On the other hand, the two-gap superconductor is made of
charged condensates, so that it has a real �independent� elec-
tromagnetic interaction �20�.

As importantly the gauge theory of two-component BEC,
with the vorticity interaction, could play an important role in
describing multicomponent superfluids �5,19�. In fact we be-
lieve that the theory could well describe both non-Abelian
BEC and non-Abelian superfluids.

In this paper we have constructed a numerical solution of
knots in the gauge theory of two-component BEC. Our result
confirms that it can be identified as a vortex ring made of a
helical vorticity vortex. Moreover our result tells that the
knot can be viewed as two quantized vorticity fluxes linked
together, whose linking number becomes the knot quantum
number. This makes the knot very similar to the Faddeev-
Niemi knot in Skyrme theory. We close with the following
remarks:

�1� Recently a number of authors have also established
the existence of knots identified as the “skyrmions” in the
Gross-Pitaevskii theory of two-component BEC �14,15�,
which we believe is identical to our knot in the Gross-
Pitaevskii theory. In this paper we have clarified the physical
meaning of the knot. The knot in the Gross-Pitaevskii theory
is also of topological origin. Moreover, it can be identified as
a vorticity knot, a twisted vorticity flux ring, in spite of the
fact that the Gross-Pitaevskii Lagrangian has neither the ve-

locity C̃� nor the vorticity H̃�� which can be related to the
knot.

�2� Our analysis tells us that at the center of the topologi-
cal vortex and knot in two-component BEC lies the baby
skyrmion and the Faddeev-Niemi knot. In fact they are the
prototype of the non-Abelian topological objects that one can
repeatedly encounter in physics �5,6,8,21�. This suggests that
the Skyrme theory could also play an important role in con-
densed matter physics. Ever since Skyrme proposed his
theory, the Skyrme theory has always been associated to
nuclear and/or high energy physics. This has lead people to
believe that the topological objects in Skyrme theory can
only be realized at high energy, at the GeV scale. But our
analysis opens up a new possibility for us to construct them
in a completely different environment, at the eV scale, in
two-component BEC �5,8�. This is really remarkable.

�3� From our analysis there should be no doubt that the
non-Abelian vortices and knots must exist in two-component
BEC. If so, the challenge now is to verify the existence of
these topological objects experimentally. Constructing the
knots might not be a simple task at the present moment. But
the construction of the non-Abelian vortices could be rather
straightforward, and might have already been done �4,22�.
Identifying them, however, may be a tricky business because
the two-component BEC can admit both the Abelian and
non-Abelian vortices. To identify them, one has to keep the
following in mind. First, the non-Abelian vortices must have
a nontrivial profile of f���. This is a crucial point which

FIG. 16. The Q dependence of axially symmetric knots. The
solid line corresponds to the function E0Q3/4 with E0=E�1,1�, and
the dots represent the energy E�m ,n� with the different Q=mn.
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distinguishes them from the Abelian vortices. Secondly, the
energy of the non-Abelian vortices must be bigger than that
of the Abelian counterparts, again because they have extra
energy coming from the nontrivial profile of f . With this in
mind, one should be able to construct the non-Abelian vor-
tices in the new condensates without much difficulty. We
strongly urge the experimentalists to meet the challenge.
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