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The existence of stable orbital motion in a static attractive inverse square potential is predicted for nonpolar
molecules with anisotropic polarizability interacting with a charged nanotube or nanowire. A simple three-
degree-of-freedom model is constructed to illustrate the underlying physics and the binding characteristics.
Numerical results using the diatomic molecule I2 as an example are also presented.
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I. INTRODUCTION

The centrifugal potential of a central field is one well-
known example of a repulsive inverse square �1/R2� poten-
tial. Much less familiar is the attractive inverse square
�−1/R2� potential that can either overcome or exactly com-
pensate a centrifugal barrier at all distances. Except for a
zero-measure stable orbit with zero total energy a classical
point particle in a −1/R2 potential will either collapse to
R=0 or escape from the potential field �1�. Quantum me-
chanically, a static −1/R2 potential for a point particle does
not support any bound states �1�.

A nonpolar but polarizable neutral particle subject to the
electric field of a charged nanowire or nanotube experiences
a cylindrical −1/R2 potential �2�, hence interest in the −1/R2

potential has grown considerably in recent years. It is be-
lieved that understanding and controlling the collapse and
escape dynamics associated with a −1/R2 potential will be
important for describing the scattering and adsorption of at-
oms and molecules by charged nanowires or nanotubes �3�,
for seeking future nanoscale building blocks for atom optics
and molecular optics, and for designing new atomic and mo-
lecular traps and storage rings with nanostructures. We note
that the main features of the attractive inverse square poten-
tial have been experimentally observed using cold atoms in-
teracting with a charged nanowire �4�, and Ristroph et al.
have proposed using a charged nanotube for high-efficiency
single-atom detection �5�.

The subject of this short paper is the orbital motion of
nonpolar molecules in a −1/R2 potential generated by a
charged nanowire or nanotube �only nanowire will be men-
tioned hereafter�. The anisotropic molecular polarizability in-
duces a coupling between the molecular rotation dynamics
and molecular orbital motion. These motions have very dif-
ferent characteristic time scales, hence their coupling can be
treated as adiabatic. As shown below with a simple three-
degree-of-freedom model, the resulting adiabatic effective
potential can significantly deviate from the inverse square
potential and, under certain conditions, can have a local
minimum whose location is sensitively dependent on the or-
bital angular momentum, molecular rotational state, and the
charge density of the nanowire. Our calculations lead to the
prediction of long-lived, state-selective, and tunable binding
of nonpolar molecules by a charged nanowire. A molecule
being tens or even thousands of nanometers away from, but

stably moving around, a charged nanowire is an intriguing
state of motion that suggests possible construction of a stor-
age ring for nonpolar molecules.

II. MODEL HAMILTONIAN

We consider a nonpolar but polarizable linear molecule
with zero electronic angular momentum interacting with a
nanowire carrying static charge Q per unit length. This uni-
form charge distribution assumption is appropriate for our
model, as shown by a recent experiment using single-walled
carbon nanotubes �6�. To construct a simple model we as-
sume that the nanowire, of infinite length, coincides with the
z axis, and describe the molecular rotational motion by a
planar rotor whose angular momentum is parallel to the z
axis. Then the longitudinal motion of the molecule is sepa-
rable from its transverse motion, and the latter experiences a
cylindrical −1/R2 potential,

VI�R,�1,�2� � − �1/R2 − �2 sin2���/R2, �1�

where R denotes the transverse distance between the mol-
ecule and the z axis,

�1 � ��Q2/8�2�0
2, �2�

�2 � ��� − ���Q2/8�2�0
2, �3�

with �� and �� being the molecular polarizability parallel to
and perpendicular to the molecular axis �7� �without loss of
generality, we assume below �2�0�, ���2−�1, with the
position of the molecule given by �R cos��1� ,R sin��1�� and
the angle between the molecular axis and the y axis given by
�2. Note that this interaction potential tends to align the mol-
ecule along different directions as �1 evolves. Higher-order
effects, such as van der Waals interaction and multipole in-
teractions due to charge redistribution induced by the mol-
ecule �8�, have been neglected, a valid assumption if the
molecule is far from the surface of the charged nanowire.
The model Hamiltonian is then given by

H = PR
2/2M + J2/2I + L2/2MR2 + VI, �4�

where PR is the momentum variable conjugate to R, J is the
rotational angular momentum variable conjugate to �2, M
and I are the mass and moment of inertia of the molecule,
and L denotes the orbital angular momentum variable conju-
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gate to �1. The competition between the centrifugal potential
L2 /2MR2 and the inverse square potential VI is crucial for
the associated collapse and escape dynamics of a molecule.
The significant difference from the atomic case, though, is
that the potential energy VI can also flow into the rotational
degree of freedom �DOF�. This interesting feature and its
implications are analyzed below using a classical effective
potential picture. For discussions on a particular symmetry of
the model Hamiltonian, please refer to the last paragraph of
the next section.

III. CLASSICAL THEORY WITH AN ADIABATIC
TREATMENT

To seek an effective potential for the R DOF, we first
consider the change in the kinetic energy PR

2 /2M �denoted
�Ek� as the molecule moves from R= +	 to an arbitrary
R�0. The conservation of the total energy of the system
yields

− �Ek = − �1/R2 + HROT − J	
2 /2I + L	

2 /2MR2 + V�L, �5�

where L	 and J	 denote the orbital and rotational angular
momentum at R= +	,

HROT � J2/2I − �2 sin2���/R2 �6�

is the Hamilton function responsible for the rotational dy-
namics of the molecule, and

V�L � ��L	 + �L�2 − L	
2 �/2MR2 �7�

results from the angular momentum exchange
�L�=−�J=J	−J� between the rotational and translational
DOF’s.

The HROT defined above appears to depend upon four dy-
namical variables J , R , �1, and �2. Because the rotational
motion is in general orders of magnitude faster than the
center-of-mass motion, it can be assumed that HROT adiabati-
cally changes with the slow variables R and �1. In accord
with the classical adiabatic theorem, the action associated
with HROT is a constant of motion and it is then found that
the value of HROT, denoted EROT, depends only on R. For
EROT
0, i.e., bounded rotational motion, we have

Jb = �1/���
�a

�b

d��2I�EROT + �2 sin2���/R2�	1/2

= R
8IEROTE1��� + 1�/��/�
�2

+ 
8I�2E2��� + 1�/��/�R , �8�

where ���2 /EROTR2, 0
�a, �b
� are the associated turn-
ing points of the molecular rotational dyanamics, Jb is the
action, and

E1�x� = ��/2��1 + �
n=1

+	

xn��2n − 1� !! /�2n� !! �2 �9�

and

E2�x� = ��/2��1 − �
n=1

+	

xn��2n − 1� !! /�2n� !! �2/�2n − 1�
�10�

are complete elliptic intergals of the first and second kind
�9�. For EROT�0, i.e., unbounded rotational motion, we find

J	 = 1/�2���
0

2�

d��2I�EROT + �2 sin2���/R2�	1/2

= �2/��
2IEROT�1 + ��E2��/�1 + ��� . �11�

In obtaining Eq. �11� we have used the fact that J	 itself
determines the constant rotational action. The boundary be-
tween bounded and unbounded rotational motion lies at
R=
8I�2 /�J	. One subtle point is that the rotational period
associated with EROT=0 diverges and the adiabaticity as-
sumption breaks down as the system crosses this boundary.
Nevertheless, by construction the EROT in the unbounded and
bounded cases can be continuously connected by imposing
the condition Jb=J	.

The V�L term in Eq. �5� is an oscillating term. As an
approximation we only consider its time average over one
period TROT of the fast molecular rotation,

V̄�L�R� � �V�L� = �− 2L	��J� + ���J�2��/2MR2, �12�

where

�x� � �1/TROT��
0

TROT

x dt . �13�

While a detailed examination of the validity of this treatment
is beyond the scope of this work, we note that our numeri-
cally exact results strongly support this treatment. Using Eqs.
�8� and �11�, one finds �see the Appendix�

��J� = − Jb, �14�

���J�2� = Jb
2 + 2IEROT + 2I�2E2��� + 1�/��/�R2E1��� + 1�/��	

�15�

for EROT
0; and

���J�2� = − J	��J� , �16�

��J� = J	„− 1 + �2/�4E1��/�1 + ���E2��/�1 + ���	…
�17�

for EROT�0.
The effective potential for the R DOF can now be defined

as

Vef f�R� � − ��Ek� = Vadia�R� + V̄�L�R� , �18�

where the adiabatic potential

Vadia�R� � L	
2 /2MR2 − �1/R2 + EROT�R� − J	

2 /2I , �19�

with EROT�R� satisfies Eqs. �8� or �11� �with Jb=J	�. Since
the analytical properties of Vef f�R� can be explicitly inferred
from Eqs. �3�–�5�, the existence or nonexistence of stable
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orbital motion of the molecule can be examined in terms of
the existence, and if any, the properties of local minima of
Vef f�R�. To that end we discuss below in detail two different
regimes of EROT, �a� −EROT��2 /R2, and �b� EROT��2 /R2,
both of which allow for a minimum of Vef f�R�. Note that for
EROT�0, it can be proved that Vef f�R� does not have a
minimum.

In regime �a�, molecular rotational motion is deeply
bounded: ��1−�2� undergoes only small oscillations and the
molecule is strongly aligned along the �1±� /2 direction. In
this case ��+1� /��0, E1�x� and E2�x� in Eq. �8� can be
expanded to the zeroth order of ��+1� /�, and one finds that

EROT�R� � − �2/R2 + J	

�2/2I/R . �20�

Hence the adiabatic potential Vadia acquires a Coulumb-like
repulsive component J	


�2 /2I /R in addition to the inverse
square components. Further using Eq. �15� one obtains

Vef f�R� � d−1/R − d−2/R2 + d−3/R3 − J	
2 /2I , �21�

where

d−1 = J	

�2/2I , �22�

d−2 = �1 + �2 − �L	 + J	�2/2M , �23�

and

d−3 = J	

I�2/2/M . �24�

If d−2�
3d−1d−3, then Vef f�R� has a minimum at
Rmin�3d−3 / �d−2+ �d−2

2 −3d−1d−3�1/2�. However, it can be eas-
ily proved that Rmin

3I /M, i.e., no larger than the scale of
the molecule itself. For example, in the case of a homo-
nuclear diatomic molecule, 
3I /M =
3r0 /2, where r0 is the
bond length. Hence the potential minimum of Vef f�R� located
at Rmin is unphysical because it would be inside the charged
nanowire. Clearly then, if a nonpolar molecule is strongly
aligned by the interaction potential VI, stable orbital motion
of the molecule is not expected.

In regime �b�, ��0 and we expand E2�� / �1+��� in Eq.
�11� to the second order of �, yielding

EROT�R� � J	
2 /2I − �2/2R2 + I�2

2/16J	
2 R4. �25�

Using similar expansions we obtain from Eq. �17�

��J� � − �2
2I2/8J	

3 R4. �26�

Equation �12� then shows that V̄�L�R� scales with 1/R6 and
is therefore negligible compared with EROT. This makes it
clear that to order 1 /R4 the effective potential Vef f is given
by

Vef f�R� � Vadia�R� � − C−2/R2 + C−4/R4, �27�

with

C−2 = �1 + �2/2 − L	
2 /2M , �28�

and

C−4 = I�2
2/�16J	

2 � . �29�

Equation �27� reveals that in the large-R regime Vadia plays a
decisive role in the dynamics and acquires a repulsive 1/R4

component due to the adiabatic coupling between the rota-
tional and translational DOF’s. If C−2�0 this repulsive com-
ponent leads to a potential minimum, with the associated
equilibrium position located at

Re � 
2C−4/C−2, �30�

the potential well depth given by

De � C−2
2 /4C−4, �31�

and the force constant given by

ke = d2Vef f�Re�/dR2 � C−2
3 /C−4

2 . �32�

The existence of stable orbits can therefore be predicted. As
C−2 is a function of L	 and C−4 is a function of the rotational
action J	, all the binding characteristics Re, De, and ke are
state sensitive. Note also that Re, De, and ke are functions of
the charge density Q. Hence one can, in principle, tune the
binding characteristics by adjusting Q. In particular, given
that �1 and �2 scale with Q2, one finds that Re scales with Q
for those L	 scaling linearly with Re. The associated ke then
scales with Q−2 and De scales with Q0, indicating that the
potential wells have similar depth but get wider as Q
increases.

Before ending this section, we discuss an interesting issue
related to the symmetry of the model Hamiltonian introduced
in Sec. II. Clearly, if we change �1 to �1�=�1+� /2, and
exchange �� and ��, then the model Hamiltonian remains
unchanged. Hence our solutions should reflect this symme-
try. This is indeed the case. In particular, if �� and �� are
exchanged, then �1→�1�=��Q2 / �8�2�0

2�, �2→�2�=−�2, and
the rotational Hamilton function HROT→HROT� =J2 /2I
−�2� sin2���� /R2, where ��=�2−�1�. Since �2�
0, one can-
not directly apply the above adiabatic treatment to HROT� .
Instead, one should further split H�ROT into

HROT� = − �2�/R
2 + HROT� , �33�

where

HROT� = J2/2I + ��2 cos2����/R2 = J2/2I − �2 sin2���/R2.

�34�

Our adiabatic treatment can then be applied to the HROT� �R�
term and the ��-independent term �2� /R2 will make a new
contribution to the adiabatic potential. It is then found that
the total adiabatic potential seen by the R DOF is given by

Vadia� � L	
2 /2MR2 − �1�/R

2 + EROT� �R� − J	
2 /2I − �2�/R

2,

�35�

where EROT� �R� denotes the value of HROT� as the
molecule adiabatically moves in space. Because HROT� �R�
takes the same functional form as HROT �see Eq. �6��,
EROT� �R�=EROT�R�. Further using the fact −��1�+�2��=−�1, we
obtain that Vadia� �R� gives exactly the same potential as Eq.
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�19�, a property expected from the symmetry of the model
Hamiltonian.

IV. NUMERICAL EXAMPLE OF THE CLASSICAL
DYNAMICS

As a numerical example of the classical dynamics we
consider a set of system parameters that mimic the diatomic
molecule I2 :�� −��=6.69 Å3 and ��=8.0 Å3 �10�,
I=0.037 37 cm−1, M =253.8 a.m.u. �2 is set to be
4000 K nm2, corresponding to a charge density of 4.24 unit
charge per nm. Figure 1 shows Vadia�R� and Vef f�R� for
L	=2600 and J	=5 ,7 ,9. The asymptotic behavior of
Vef f�R� is seen to be the same for different J	, and Vadia�R� is
almost indistinguishable from Vef f�R� in the potential-well
region. These observations confirm Eq. �27�. More impor-
tantly, the shape and location of the potential wells seen in
Fig. 1 agree quantitatively with our theoretical results in
terms of C−2 and C−4. In addition, a comparison between the
effective potentials shown in Fig. 1 suggests that rotational
state manipulation can be used to switch between different
bound orbits or between a bound orbit and a collapsing or
escaping trajectory. Also shown in Fig. 1 is one typical
bound orbit of 1.0 �s duration �which is about 30 times
longer than the radial oscillation period 2�
M /ke� obtained
from directly solving Hamilton’s equation of motion. The
pattern generated by the sample trajectory reflects the where-
abouts of radial turning points and the frequency ratio be-
tween radial and angular motion. The numerically exact re-
sults obtained from classical trajectories totally agree with
the effective potential picture presented above.

V. QUANTUM DYNAMICS

Our predictions and calculations so far have been based
solely on classical dynamics. Consider now a direct quanti-
zation of our simple model Hamiltonian, i.e.,

�R,PR� = ��1,L� = ��2,J� = i , �36�

where �·� is the quantum commutator. Upon quantization the
adiabatic evolution of the rotational energy EROT�R� is re-
lated to the stationary Schrödinger equation parametrized by
R, i.e.,

HROT��� = E�R���� , �37�

where � is understood to be a function of � for each fixed R.
That is, within the adiabatic treatment, the translational mo-
tion of the molecule is sufficiently slow as compared with
the rotational motion, such that as R changes the rotational
state of the molecule can adiabatically follow a particular
family of eigenstates parametrized by R. However, as seen
below, the adiabatic following of the quantum rotational state
with R may lead to subtle consequences that are absent in the
classical dynamics. In particular, the adiabatic states may no
longer correlate with a single L	 �the orbital angular momen-
tum at R=	� and hence the effective potential approach used
in the classical analysis, which is always associated with a
single value of L	, should be re-examined.

We first convert Eq. �37� to the familiar form of Mathieu’s
equation �9�:

d2�/d�2 + �a − 2q cos�2���� = 0, �38�

with

E�R� = �2a/2I − �2/2R2� �39�

and

q = I�2/22R2. �40�

The eigenfunctions and eigenvalues of Mathieu’s equation
are well known. Let ��J	

+ � and ��J	

− � be the even-parity and
odd-parity eigenfunctions that adiabatically correlate with
�1/
��cos�J	� /� and �1/
��sin�J	� /�, respectively. The
associated eigenvalues are denoted by EJ	

+ �R� and EJ	

− �R�.
Using the characteristic values of Mathieu’s equation, one
finds that for large J	 and R �e.g., J	�10, q�10�,
EJ	

+ �R��EJ	

− �R�. At first glance this seems to suggest an
almost-degeneracy problem that precludes the adiabatic
treatment of the rotational motion. This is certainly not true
because otherwise quantum-classical correspondence would
no longer exist. Specifically, cases of large J	 and R also
belong to the regime where EJ	

+ �R� and EJ	

− �R� assume, to
order q2, almost the same analytical form as EROT�R� in Eq.
�25� except that J	

2 is replaced by �J	
2 −2� �9�. Hence for

large J	 and R the classical effective potential picture should
apply. Motivated by this reasoning in the light of quantum-
classical correspondence, one finds that for large J	 and large
R a more reasonable representation for describing the quan-
tum dynamics should be the superposition states

� + J̃	� � ���J	

+ � + i��J	

− ��/
2,

�− J̃	� � ���J	

+ � − i��J	

− ��/
2, �41�

where state �+ J̃	� adiabatically correlates with a freely rotat-

ing state with angular momentum J	 and state �−J̃	� adiabati-

FIG. 1. Effective potential Vef f�R� �solid line� obtained from Eq.
�18� compared with the adiabatic potential Vadia�R� �dashed line�
obtained from Eq. �19�, for L	=2600. From left to right J	=9,
7, and 5. See the text for other parameters that mimic the di-
atomic molecule I2 moving around a charged nanowire. The inset
shows a numerically exact classical trajectory in the case J	=7 for
a duration of 1.0 �s. The pattern generated by the sample trajectory
agrees with the classical effective potential analysis presented in
Sec. III.
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cally correlates with a freely rotating state with angular mo-
mentum −J	. A simple analog of this procedure is that the
classical state of a particle moving freely with a certain mo-
mentum should be compared with a quantum eigenstate of
the momentum operator, which is a superposition state of
two degenerate eigenstates of the Hamiltonian. We can then
construct the quasistationary quantum state of the entire
model system as exp�iK�1 /����R���+ J̃	� or

exp�iK�1 /����R���−J̃	�, where ��R� is a quasi-bound state
of the local minimum of Vef f�R� and K is the conserved total
angular momentum. At R=	, the constructed state
exp�iK�1 /����R���+ J̃	� (exp�iK�1 /����R���−J̃	�) de-
scribes a free rotor with rotational angular momentum
J	 �−J	�, and with a definite orbital angular momentum K
−J	 �K+J	�. Indeed, this is why a single effective potential
Vef f, associated with the asymptotic orbital angular momen-
tum of L	=K−J	 �L	=K+J	�, and with the asymptotic ro-
tational angular momentum J	 �−J	�, can be used to account
for the dynamics of the constructed state

exp�iK�1 /����R���+ J̃	� (exp�iK�1 /����R���−J̃	�). We call

the states exp�iK�1 /����R���± J̃	� “quasi-stationary” be-
cause �a� any nonadiabatic transitions between
�+J	� and �−J	� are neglected, and �b� states �+J	� and
�−J	� are only approximate eigenstates of HROT before the
quantum Rabi-like oscillations between them become appre-
ciable �the oscillation period gets larger and larger as the
splitting between EJ	

+ �R� and EJ	

− �R� gets smaller and
smaller�.

For small J	 and large q the difference between the neigh-
boring even-parity and odd-parity eigenstates of HROT be-

comes non-negligible and states �± J̃	� no longer provide a
good representation to construct quasi-stationary binding
states due to the quantum oscillations between them. For
these cases in the deep quantum regime, the classical dynam-
ics no longer provides a reliable guide in understanding the
dynamics. Indeed, because the total angular momentum is
always conserved at K, the quantum oscillations between

�+ J̃	� and �−J̃	� imply that the orbital angular momentum L,
and its asymptotic value L	, can also have a characteristic
oscillation amplitude 2J	. This then suggests that the
adiabatically evolving quantum state can be asymptotically
correlated with different orbital angular momentum L	 and
it becomes impossible to describe the dynamics by consider-
ing one particular effective potential Vef f�R� or Vadia�R� that
is associated with one particular value of L	 �see Eqs. �18�
and �19��. As such, for observation times larger than

 / �EJ	

+ �R̄�−EJ	

− �R̄��, where R̄ is the characteristic binding ra-
dius, a simple form of quasistationary state no longer exists
and a single effective potential for fixed L	 and j	 will be
insufficient to describe the quantum dynamics. We stress that
this observation is unrelated to the possible nonadiabaticity
associated with the rotation-vibration coupling, i.e., it holds
even in the true adiabatic limit.

To gain more insight and help analyze the quantum results
in the deep quantum regime, we now return to the
���J	

+ � , ��J	

− �� representation and define a mean adiabatic po-
tential for either ��J	

+ � or ��J	

− �, i.e.,

Vadia
± �R� � ��K − J	�2 + �K + J	�2�/4MR2

− �1/R2 + EJ	

± �R� − J	
2 /2I . �42�

This consideration is motivated by the fact that for fixed total
angular momentum K and at R=	, state �+�J	

+ � �the same for
state �−�J	

+ �� must correlate with states with orbital angular
momentum of L	=K	+J	 and L	=K	−J	 �hence the cen-
trifugal potentials �K−J	�2 /2MR2 and �K+J	�2 /2MR2�.
Within the adiabatic treatment, the wave-packet dynamics on
different Vadia

± �R� correlated with different �J	� are not
coupled because an adiabatically evolving rotational state
does not change its number of nodes. However, it can be
proved that the two average potentials Vadia

+ and Vadia
− are

always coupled to each other. A simple proof of the intrinsic
coupling between Vadia

+ and Vadia
− lies in the properties of the

operator L2. Specifically, because the operator L2= �K−J�2

contain a term like 2K�d /d�� that is an odd function of �, it
is noncommutable with the parity operator associated with �
and therefore does not preserve the parity of the rotational
eigenstates as functions of �. From this analysis it becomes
clear that the long-lived binding of a quantum wave packet
necessarily requires that both Vadia

+ and Vadia
− have a local

minimum. For example, if Vadia
+ has a local minimum but

Vadia
− does not, then components of the system wave function

can first “jump” from the Vadia
+ surface to the Vadia

− surface
and then escape from the nanowire or collapse to the center
of the nanowire through Vadia

− . However, considering that the
average potentials Vadia

± are just one of many possible repre-
sentations to interpret the quantum dynamics, it is not totally
clear if both Vadia

+ and Vadia
− having a local minimum is a

sufficient condition for stable binding states.
Using the same system parameters as above, in Fig. 2 we

show Vadia
± for L	=2600, J	=5 ,7 ,9. It is seen that the

FIG. 2. Vadia
+ �R� �solid line� compared with Vadia

− �R� �dashed
line� for L	=2600 �see Eq. �42� for the definition of Vadia

± �R��.
From left to right J	=9, 7, and 5. Other parameters are the
same as in the classical calculations. The splitting between Vadia

+ and
Vadia

− is large in the case of J	=5, but is insignificant in the
potential-well region for J	=7, 9. �Vadia

+ +Vadia
− � /2 is seen to

qualitatively agree with the classical adiabatic potential Vadia�R�
shown in Fig. 1. The inset shows the long-lived binding of a quan-
tum wave packet in the case J	=7, in terms of the time depen-

dence of R̄ �upper curve� and �R �bottom curve�, the mean value,
and the variance of R.
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splitting between Vadia
+ and Vadia

− in the case of J	=5 is
dramatic insofar as Vadia

− does not have a minimum but Vadia
+

does �this is a common feature for �J	�5�. In cases of
J	=7 ,9 the splitting is insignificant in the potential-well
region. Interestingly, for all these cases with rather small J	,
the average behavior of Vadia

+ and Vadia
− , i.e., �Vadia

+ +Vadia
− � /2,

still qualitatively agrees with the classical adiabatic potential
Vadia shown in Fig. 1. It should also be noted that for larger
L	 the classical value of Re increases, q decreases, and the
system gets closer to the classical limit. For example, for
L	=2625 both Vadia

+ and Vadia
− have a minimum even in the

case J	=5.
Extensive quantum wave-packet dynamics calculations in

parallel with our classical calculations have also been carried
out. Initial quantum states were chosen to be a direct product
of exp�iK�1 /� , ��J	

+ � and the quasiground state associated
with Vadia

+ . Absorptive boundary conditions are applied to
both the R grid and the PR grid to account for any possible
adsorption and escape probability. When J	=5,
L	=2600, the quantum survival probability decreases at a
considerable rate, consistent with the finding that Vadia

+ has a
minimum but Vadia

− does not. However, for all the other cases
considered, i.e., L	=2625, J	=5 ,7 ,9, and L	=2600,
J	=7 ,9, long-lived binding of quantum wave packets is
observed: numerically the quantum survival probability for a
time interval of 1.5 �s is found to be �99.999%. A typical
quantum result displayed in Fig. 2 shows that the mean value
and the variance of R associated with a time-evolving quan-
tum state undergo only small-amplitude oscillations at all
times. Our numerical results also directly demonstrate that
the quantum tunneling out of a binding potential well can be
neglected, thus justifying a classical picture of the transla-
tional motion. Indeed, a rough estimate should give that even
for the rather shallow potential wells �dashed lines� shown in
Fig. 2, the tunneling transmission coefficient is extremely
small �
exp�−50�� due to the relatively large mass of a mol-
ecule �e.g., as compared with that of an electron�.

VI. CONCLUDING REMARKS

In conclusion, we have predicted a type of intriguing
molecule-nanostructure binding state, thus opening up a dif-
ferent direction that is of considerable interest to nanoscale
molecular physics. In particular, using a simple model we
have predicted long-lived binding and the associated tunable
binding characteristics for nonpolar molecules moving in a
static attractive inverse square potential of a charged nano-
wire. Experimental studies of systems like our model should
be possible with today’s nanotechnology and molecular cool-
ing technology. The adiabatic treatment developed in this
work should be also useful in describing the cold collisions
between nonpolar molecules and a charged nanowire. The
stable molecule-nanostructure binding states might find ap-
plications in designing molecular traps and molecular storage
rings, and provide an interesting setup for studying funda-
mental issues such as the quantum-classical correspondence
principle on the mesoscopic scale. In future studies we plan
to take into account all molecular degrees of freeom �thus
lifting the “planar-rotor” approximation�, and apply similar

approaches to the dynamics of polar molecules in the field of
a charged nanowire.
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APPENDIX: DERIVATION OF EQS. (14)–(17)

The oscillating term V�L results from the angular momen-
tum exchange between the molecular rotational and transla-
tional degrees of freedom. Consistent with the adiabatic
treatment of the rotation-vibration coupling, we only con-
sider its time average over one period TROT of the fast rota-
tional motion �see Eqs. �12�–�17��. Because the V�L term is
eventually neglected in the theoretical analysis, the results of
Eqs. �14�–�17� will not directly help predict the characteris-
tics of the molecule-nanostructure binding states. However,
they are of theoretical interest in their own right �e.g., for
understanding the difference between Vef f�R� and Vadia�R��.
Here we present some details associated with the derivation
of Eqs. �14�–�17�.

Consider first the case of EROT
0. Then the rotational
motion has two turning points denoted �a and �b. The rota-
tional period TROT

b is given by

TROT
b = 2�

�a

�b dt

d�
d� = 2I�

�a

�b d�

J

= 2I�
�a

�b d�


2IEROT�1 + � sin2����

= 
8I/EROTE1��� + 1�/��/
� . �A1�

Because the rotational motion has turning points, J changes
its sign over one period of motion. This directly leads to
�J�=0. It then follows that

��J� � �J − Jb� = − Jb, �A2�

which is identical with Eq. �14�. Further,

���J�2� � ��J − Jb�2� = Jb
2 + �J2�

= Jb
2 +

1

TROT
b �

0

TROT
b

J2dt

= Jb
2 +

I

TROT
b �

0

TROT
b

Jd�

= Jb
2 +

2�JbI

TROT
b , �A3�

where in the last step we have used the definition of the
rotational action Jb. Now inserting the explicit expression of
TROT

b in Eq. �A1� into the above result, we obtain

���J�2� = Jb
2 +

2�JbI

8I/�EROTE1��� + 1�/��

. �A4�

Substituting the analytical expression of Jb �see Eq. �8�� into
Eq. �A4�, we obtain Eq. �15�.
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For the unbounded case, the rotational period TROT
u is

given by

TROT
u = 2�

0

� dt

d�
d� = 4I�

0

�/2 d�


2IEROT�1 + � sin2����

= 
8I/EROTE1��/�1 + ���/
�1 + �� . �A5�

Using the definition of J	, i.e., J	�1/ �2���0
2�Jd�, we have

���J�2� =
1

TROT
u �

0

TROT
u

�J − J	�2 dt =
2�J	I

TROT
u + J	

2 −
4�J	I

TROT
u

= J	�J	 −
2�I

TROT
u  . �A6�

Noticing that

��J� = � 1

TROT
u �

0

TROT
u

J dt� − J	 =
2�I

TROT
u − J	 �A7�

we immediately get Eq. �16� by comparing Eqs. �A6� and
�A7�. We then substitute Eq. �A5� into Eq. �A6�, yielding

���J�2� = J	
2 �J	


2IEROT�1 + ��
2E1��/�1 + ���

. �A8�

Equation �A8� can be easily shown to be equivalent to Eq.
�17�, by making use of the expression of J	 shown in Eq.
�11�.
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