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The eigenvalue problem for the dressed bound state of unstable multilevel systems is examined both outside
and inside the continuum, based on the N-level Friedrichs model, which describes the couplings between the
discrete levels and the continuous spectrum. It is shown that a bound-state eigenenergy always exists below
each of the discrete levels that lie outside the continuum. Furthermore, by strengthening the couplings gradu-
ally, the eigenenergy corresponding to each of the discrete levels inside the continuum finally emerges. On the
other hand, the absence of the eigenenergy inside the continuum is proved in weak but finite coupling regimes,
provided that each of the form factors that determine the transition between some definite level and the
continuum does not vanish at that energy level. An application to the spontaneous emission process for the
hydrogen atom interacting with the electromagnetic field is demonstrated.
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I. INTRODUCTION

The theoretical description of the unstable quantum sys-
tem often refers to the system of a finite level coupled with
the spectral continuum. In weak coupling regimes, the initial
state localized at the finite level undergoes exponential decay
�1�. However, by changing the couplings to stronger regimes,
instead of the total decay a partial one can occur �2�. This
means that the superposition between the states localized at
the finite level and the continuum forms the dressed bound
state, that is, a bound eigenstate extended over the total Hil-
bert space. The formation of the bound eigenstate is of great
interest in the study of the various systems having to do with
such matters as the photodetachment of electrons from nega-
tive ions �3,4� and the spontaneous emission of photons from
atoms in photonic crystals �5–7�. It is then clarified that the
energy of the bound eigenstate depends not only on the
strength of the couplings but also on the relative location
between the electron bound-energy and the detachment
threshold �3,4�, or between the energy of the atomic fre-
quency and the continuum edge of the radiation frequency
�6,7�. Further research has been directed to those eigenstates,
aiming at the decoherence control �8,9�.

In these analyses, however, single-level systems are
treated often, while multilevel systems are examined less. In
the latter, some peculiar time evolutions are theoretically ob-
served; steplike decay �10�, decaying oscillation �11�, and
various long-time nonexponential decays �12,13�. These pe-
culiarities are never found in single-level approaches. Fur-
thermore, to the author’s knowledge, the possibility of a
bound-state eigenenergy “inside” the continuum has not been
studied except in a special multilevel case where all form
factors are assumed to be identical �8,14�.

In the present paper, we attempt to examine the eigen-
value problem for the dressed bound state in multilevel
cases, based on the N-level Friedrichs model �15,16�, allow-
ing some class of form factors, including identical cases. We
show that for the discrete energy levels lying outside the

continuum, the bound-state eigenenergy always remains be-
low each of them. Moreover, by increasing the couplings, the
bound-state eigenenergy corresponding to each of the dis-
crete levels inside the continuum can emerge out of that con-
tinuum. For the bound-state eigenenergy inside the con-
tinuum, we can only prove its absence in weak coupling
cases under the condition that the form factors do not vanish
at the energy of each level. This result is just an extension of
the lemma already proved for a system with identical form
factors �14�. An upper bound of the coupling constant for the
case of no bound-state eigenenergy being inside the con-
tinuum is also obtained explicitly. We apply this result to the
spontaneous emission process for the hydrogen atom under
the four-level approximation.

In Sec. II, we introduce the N-level Friedrichs model and
its eigenvalue problem. In Sec. III, we consider the eigenval-
ues outside the continuum, with resort to the perturbation
theory about the eigenvalue of the Hermitian matrix. The
discussion developed here helps us to undertake the problem
for the inside case, which is argued in Sec. IV. Concluding
remarks are given in Sec. V. We also present an Appendix
where both the small and large energy behaviors of the en-
ergy shift are studied in detail.

II. THE N-LEVEL FRIEDRICHS MODEL
AND THE EIGENVALUE PROBLEM

The N-level Friedrichs model describes the N-level sys-
tem coupled with the continuum system. The total Hamil-
tonian H is defined by

H = H0 + �V , �1�

where ��R is the coupling constant. We here define the free
Hamiltonian H0 as

H0 = �
n=1

N

�n�n��n� + 	
�

�����������d� , �2�

where it was assumed that �1��2� ¯ ��N. �n� and ���
satisfy the orthonormality condition: �n �n��=�nn�, �� ����
=���−��� /����, and �n ���=0, where �nn� is Kronecker’s*Electronic address: miyamo@hep.phys.waseda.ac.jp
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delta and ���−��� is Dirac’s delta function. ���� is a non-
negative function interpreted as, e.g., an electromagnetic
density of mode, and �= 
� ������0� is a specific region,
like the energy band allowed by the electromagnetic mode.
The interaction Hamiltonian V describing the couplings be-
tween �n� and ��� is

V = �
n=1

N 	
�

�vn�������n� + vn
*����n���������d� , �3�

where the asterisk denotes the complex conjugate and vn���
is the form factor characterizing the transition between �n�
and ���. We here assumed that vn�L2�0,��, i.e.,

	
�

�vn����2����d� � � . �4�

For clarity of discussion below, we assume that ����=1 for
�	0 and 0 otherwise, so that �= �0,��. Then, we merely
write �� by �0

�, and the outside of the continuum means the
half line �−� ,0�. An extension of � to more general cases,
such as gap structures, is not difficult, however, our facilita-
tion could extract the essential of the matter.

Let us next set up the eigenvalue problem for this model.
We suppose that the eigenstate corresponding to the eigen-
value E is of the form �uE�=�n=1

N cn�n�+�0
�f������d�, and it

is normalizable, i.e., �17�

�uE�uE� = �
n=1

N

�cn�2 + 	
0

�

�f����2d� � � . �5�

Then, the eigenequation H�uE�=E�uE� is equivalent to the
following ones:

�ncn + �	
0

�

vn
*���f���d� = Ecn, ∀ n = 1, . . . ,N , �6�

�f��� + ��
n=1

N

cnvn��� = Ef��� . �7�

Equation �7� immediately implies

f��� = − �

�
n=1

N

cnvn���

� − E
. �8�

By setting this into Eq. �5�, we have the normalization con-
dition

	
0

�

�f����2d� = �2	
0

�
�

n=1

N

cnvn���2

�� − E�2
d� � � , �9�

which is the essential of the localization of the dressed bound
state.

III. BOUND-STATE EIGENENERGY OUTSIDE THE
CONTINUUM

We first review the results on the negative-eigenvalue
problem for N=1, the single-level case �18�. If E�0, the
integral in Eq. �9� always converges under the condition �4�.
In fact,

�c1�2	
0

� �v1����2

�� + �E��2
d� �

�c1�2

�E�2 	0

�

�v1����2d� � � . �10�

Thus, the substitution of f��� into Eq. �6� is allowed. By
introducing the function 
�E� as


�E� = �1 − �2	
0

� �v1����2

� − E
d� , �11�

Eq. �6� reads �19�


�E� = E , �12�

which is either an algebraic or transcendental equation of E,
depending on v1���. 
�E� has two important properties as
follows:


�E�� 	 
�E� and 
�E� � �1, �13�

for all E and E� satisfying E��E�0. The former means that

�E� is monotone decreasing in E. Therefore, there is only
one solution �negative eigenvalue� E of Eq. �12� if and only
if

lim
E↑0


�E� = �1 − lim
E↑0

�2	
0

� �v1����2

� − E
d� � 0. �14�

When E�0, E should be a zero of v1��� so that Eq. �9�
holds. This is discussed in detail in Sec. IV.

Let us now turn to the N-level case. Corresponding to Eq.
�10�, this time we have that

	
0

�
�

n=1

N

cnvn���2

�� + �E��2
d� �

�
n=1

N 	
0

�

�vn����2d�

�E�2
� � , �15�

and Eq. �9� is satisfied again, where we used that
�n=1

N �cn�2�1. Substituting Eq. �8� into �6�, one obtains

�
n�=1

N

��n�nn� − �2Snn��E��cn� = Ecn, �16�

where

Snn��z� = 	
0

� vn
*���vn����

� − z
d� , �17�

with z�C \ �0,��. For convenience later, we introduce an
N�N matrix S�z� with the components Snn��z�. Note that
S�E� for E�0 turns out to be a Gram matrix �20�, which is
positive semidefinite. One obtains the following property of
S�E�:
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Lemma III.1. S�E���S�E� for E��E�0.
Proof: We have that

Snn��E� − Snn��E�� = �E − E��Tnn��E,E�� , �18�

for all E and E� satisfying E��E�0. We here introduce the
matrix T�E ,E�� whose components are

Tnn��E,E�� ª 	
0

� vn
*���vn����

�� − E��� − E��
d� . �19�

Note that since T�E ,E�� is a Gram matrix, it is positive
semidefinite. Therefore the proof is completed. �

We also introduce the matrices K0 and K�E�
=K0−�2S�E� with components

K0nn� ª �n�nn�, �20�

and

Knn��E� ª �n�nn� − �2Snn��E� , �21�

respectively. For any E�0, K�E� becomes a Hermitian ma-
trix, and thus there are N eigenvalues of K�E�. We denote
them by 

n�E��n=1

N , where 
1�E��
2�E�� ¯ �
N�E�. The
existence of a nontrivial solution 
cn� of Eq. �16� is guaran-
teed if and only if there exists a negative E to satisfy


n�E� = E , �22�

for a certain integer n. As in the former part of Eq. �13�,

n�E� has the following property:

Lemma III.2. For any fixed n, 
n�E��	
n�E� for
E��E�0.

Proof: We see from Eq. �18� that

K�E� − K�E�� = − �E − E���2T�E,E�� � 0, �23�

for E��E�0. Then, by using the Theorem 4.3.1 in Ref.
�20�, the following inequality between the eigenvalues of
K�E�, K�E��, and T�E ,E�� holds �21�:


n�E�� − �E − E���2N�E,E��

� 
n�E� � 
n�E�� − �E − E���21�E,E�� , �24�

where n�E ,E�� denotes the nth eigenvalue of T�E ,E��.
Note that since T�E ,E��	0, all n�E ,E��	0. Then,
−�E−E��1�E ,E���0 for E	E�, and the inequality


n�E� � 
n�E�� , �25�

immediately follows from the last part of Eq. �24�. �
We also have the statement below, which corresponds to

the latter part of Eq. �13�.
Lemma III.3. For any fixed n, 
n�E���n for all E�0,

and limE→−� 
n�E�=�n.
Proof: From Eq. �21� and Theorem 4.3.1 in Ref. �20�

again, one obtains that

�n − �2�N�E� � 
n�E� � �n − �2�1�E� , �26�

where �n�E� denotes the nth eigenvalue of S�E�. If we recall
the fact that S�E�	0 implies �n�E�	0 for every n, the
above inequality reads

0 � �2�1�E� � �n − 
n�E� � �2�N�E� . �27�

Asymptotic behavior of the right-hand side of the above can
be evaluated from Eq. �17� as

�N�E� � tr�S�E�� �
1

�E��n=1

N 	
0

�

�vn����2d� → 0, �28�

as E→−�, and thus the lemma is proved. �
Therefore, summarizing Lemmas III.2 and III.3, we ob-

tain the following theorem.
Theorem III.4. If limE↑0 
n�E��0 up to n=M, then each

of the 
n�E� for n=1, . . . ,M intersects E only once, so that
M negative eigenenergies of H exist. In particular, if H0 has
N− negative eigenenergies, i.e., �n�0 up to n=N−, then N−
negative eigenenergies of H, denoted by En, exist and satisfy
En��n.

We also see from Eq. �26� that


n�E� � �n − �2�1�E� . �29�

This means that when ��� is large enough, every 
n�E�, even
originating from a positive �n, becomes negative, unless
�1�E�=0, i.e., the vn���’s are linearly dependent �20�. More
precisely, the following statement holds:

Proposition III.5. Suppose that only Nind form factors are
linearly independent among them. Then, it follows that for
any E�0

− �2�N+1−n�E� + �1 � 
n�E� � − �2�N+1−n�E� + �N, �30�

and �N+1−n�E��0 for n=1, . . . ,Nind, while

�1 � 
n�E� � �N, �31�

for n=Nind+1 , . . . ,N. Therefore, only the first Nind eigenval-
ues of K�E� are ensured to be negative as ��� goes to infinity
without regard to the location of 
�n�n=1

N .
Proof: Taking −�2S�E� as the unperturbed part of K�E�,

we obtain Eq. �30� for all n. Note that if only Nind form
factors are linearly independent, it holds that �m�E�=0 for
m=1, . . . ,N−Nind and otherwise does not vanish. Then, the
assertion is proved straightforwardly. �

To illustrate the emergence of the negative eigenenergies,
described in Theorem III.4 and Proposition III.5, let us con-
sider the three-level system especially in the case where,
�1�0 while �2�0 and �3�0. We also choose three form
factors, such as

vn��� = �1/2
��/��1 + an��/��2�n−1��

�1 + ��/��2�1+n , �32�

where � is the cutoff constant, and an is a parameter. The
form factors described by such algebraic functions are often
found in various systems involving the process of the spon-
taneous emission of photons from the hydrogen atom
�22,23�, the photodetachment of electrons from negative ions
�3,4,24�, and quantum dots �25�. In the calculation depicted
in Figs. 1 and 2, we have chosen a set of parameters
�1 /�=−0.01, �2 /�=0.01, and �3 /�=0.02, and a1=0.0,
a2=2.0, and a3=1.0. These choices for an guarantee linear
independency among vn’s, so that Nind=3.
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Figure 1 shows �3−
n�0� for n=1,2 ,3, changing � from
0.1 to 10.0, and �3−�1, �3−�2 �two dashed lines� and �3
�dot-dashed line� for reference. The latter satisfy the relation
that �3−�1��3��3−�2�0. One may recognize three
different regions in this figure: for small ��0.2, one in-
equality �3−
1�0���3, i.e., 
1�0��0, holds. In the next
region 0.2���1.0, two inequalities, �3−
1�0���3 and
�3−
2�0���3, hold. For ��1.0 the last region, three in-
equalities, �3−
n�0���3 for all n=1,2 ,3, are satisfied.
Therefore, according to Theorem III.4, one sees that one,
two, and three negative eigenenergies of H exist in the first,
second, and third regions, respectively. It is worth noting that
the appearance of the negative eigenenergy in the first region
merely occurs from the fact that �1�0 �see, the latter part of
Theorem III.4�, whereas that in other regions could be un-
derstood as a strong-coupling effect �Proposition III.5�.

Figure 2 shows three curves of �3−
n�E� for n=1,2 ,3
�three solid lines� and �3−E �short dashed line�, plotted
against E. An intersection of the former and the latter means
an emergence of a negative eigenenergy. We also plot the
asymptotes �3−�1 and �3−�2 �two dashed lines�, to which
�3−
1�E� and �3−
2�E� are close from above as E→−�,
respectively �see Lemma III.3�. Figures 2�a�–2�c�, are in the
cases where �=0.1, belongs to the first region, �=0.7, of the
second one, and �=10.0, of the last one, respectively �see
Fig. 1�. It is seen in Fig. 2�a� that �3−E intersects
�3−
1�E� only, so that there is one negative eigenenergy. In
Fig. 2�b�, one distinguishes the two intersections between
�3−E and �3−
1�E�, and between �3−E and �3−
2�E�.
Thus two negative eigenenergies appear. The intersection be-
tween the latter pair still lies around E=0.0. In Fig. 2�c�,
where a relatively large � was chosen, �3−E finally inter-
sects all three lines, �3−
n�E� for n=1,2 ,3, which tells us
three negative eigenenergies exist.

IV. ABSENCE OF BOUND-STATE EIGENENERGY
INSIDE THE CONTINUUM

Let us next examine the non-negative-eigenvalue problem
for Eqs. �6� and �7�. In this case, the normalization condition

�9� does not hold automatically, unlike the case where
E�0, because of a possible divergence of f��� at �=E.
Before going to the N-level case, let us first observe the
single level one. Except in the trivial case where c1=0, the
condition �9� for an eigenvalue E	0, if any, imposes the
nontrivial condition or constraint that

v1�E� = 0, �33�

where we assume some extent of the smoothness of v1���
�26�. Then, f���=−�c1v1��� / ��−E� is ensured to be square
integrable, and Eq. �6� reads

�1 − �2	
0

� �v1����2

� − E
d� = E . �34�

FIG. 1. �3−
n�0� for n=1,2 ,3 �three solid lines� for a three-
level system with form factors �32�, plotted against �, and �3−�1,
�3−�2 �two dashed lines�, and �3 �dot-dashed line�, for reference,
where �3−�1��3��3−�2. Three different regions are distin-
guished, corresponding to the number of solid lines satisfying
�3−
n�0���3, that is, just the number of negative eigenenergies of
H, by Theorem III.4.

FIG. 2. �3−
n�E� for n=1,2 ,3 �three solid lines� for a three-
level system of the form factors �32�, �3−E �short-dashed line�, and
�3−�1 and �3−�2 �two dashed lines�. We plot them in �=0.1, 0.7,
and 10.0, in �a�, �b�, and �c�, respectively, choosing the parameters
as �1 /�=−0.01, �2 /�=0.01, and �3 /�=0.02. �a� For a relatively
small �, only �3−
1�E� intersects �3−E at E /��−0.02, which is
predicted by Theorem III.4. Thus there is one negative eigenenergy.
One also sees that �3−
1�E� and �3−
2�E� still lie closely above
the asymptotes �3−�1 and �3−�2, respectively. �b� Both
�3−
1�E� and �3−
2�E� intersect �3−E in the vicinity of
E=−0.3 and 0.0, respectively, so that there are two negative
eigenenergies. �c� All �3−
n�E� for n=1, 2, and 3 intersect �3−E,
and thus three negative eigenenergies exist. In this figure, only two
intersections for n=2 and 3 are depicted.
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To find the solution E of Eq. �34�, one may attempt to inter-
pret it as an intersection between the left-hand and the right-
hand sides, as in Eq. �12�. However, this approach seems
impossible at first, because the left-hand side of Eq. �34� is
not well defined for a general E except such points satisfying
Eq. �33�. This matter can be solved by alternatively consid-
ering the following equation:

�1 − �2P	
0

� �v1����2

� − E
d� = E , �35�

that is obtained from Eq. �34� by replacing �0
���v1����2 /

��−E��d� with its principal value P�0
���v1����2 / ��−E��d�.

In this case, the left-hand side can make sense for a general
E, and we can treat E as an independent variable. If we
find the solution for E of Eq. �35�, and furthermore if it
satisfies Eq. �33�, it becomes a true solution of the original
Eq. �34�. Indeed, in such a situation, we have that
�0

���v1����2 / ��−E��d�=P�0
���v1����2 / ��−E��d�, and thus

Eq. �35� just reproduces Eq. �34�.
In the N-level cases, the condition �9� for an eigenvalue

E	0, if any, can be translated into the equivalent condition
for both the coefficients 
cn�n=1

N and E, that is,

�
n=1

N

cnvn�E� = 0. �36�

Under this condition, we can safely substitute Eq. �8� into
Eq. �6�. However, similarly to Eq. �35�, we consider the al-
ternative equation in the N-level cases as

�
n�=1

N

��n�nn� − �2Dnn��E��cn� = Ecn, �37�

for n=1,2 , . . . ,N, where

Dnn��E� ª P	
0

� vn
*���vn����

� − E
d� , �38�

which are the components of the Hermitian matrix D�E� de-
fined for all E	0. One sees that Eq. �37� has the same form
as Eq. �16�, except the point that S�E� �E�0� is replaced by
D�E� �E	0�. Then, we can implement a formulation in the
matrix form, just as in the preceding section. In fact, the
solutions of Eq. �37� can be connected with those of Eq. �6�
under the condition �36�. We first note that

P	
0

�
vn

*��� �
n�=1

N

cn�vn����

� − E
d� = �

n�=1

N

cn�P	
0

� vn
*���vn����

� − E
d� ,

�39�

which is always valid for all E. Then, substituting this rela-
tion into Eq. �37�, we have

�ncn − �2P	
0

�
vn

*��� �
n�=1

N

cn�vn����

� − E
d� = Ecn, �40�

for n=1,2 , . . . ,N. For a comparison, see Eq. �6� again.
Therefore, if the solutions E and 
cn�n=1

N of Eq. �40�, i.e., Eq.
�37�, satisfy the condition �36�, Eq. �40� can reproduce Eq.
�6�, so that the solutions of Eq. �40� become the true ones of
Eq. �6�.

Our procedure for finding the coefficients 
cn�n=1
N and the

non-negative eigenvalue E of H that satisfy Eqs. �6� and �7�
consists of the two steps; we first solve Eq. �37�, and then we
check whether the solutions satisfy the condition �36�. For a
later convenience, we introduce the Hermitian matrix K�E�
for E	0 whose components are defined by

Knn��E� ª �n�nn� − �2Dnn��E� . �41�

Then, the existence of a nontrivial solution of Eq. �37� is
ensured if and only if there exists a non-negative E to satisfy


n�E,�� = E , �42�

for a certain integer n, where 

n�E ,���n=1
N are the eigenval-

ues of K�E�, arranged in increasing order. To summarize
again, if an eigenvalue of K�E� is E, then it is an eigenvalue
of H, provided that it also satisfies the condition �36�.

It is worth noting that the condition �36� seems not nec-
essarily to require the existence of a zero of vn���, unlike the
single-level case of Eq. �33�. However, the following state-
ment means that if vn��n��0 for all �n�0, the weak-
coupling condition results in no positive eigenvalue of H
strictly.

Theorem IV.1. Suppose that H0 has N+ positive eigenval-
ues without any degeneracy, and each vn��� is an L2 function
of the form, vn���=�pnfn���, where pn�0 and fn��� is a C1

function in �0,��. Furthermore, it is assumed that there is
some �0�0 such that sup���0

�vn
*���vn������� and

sup���0
�d�vn

*���vn����� /d���� for all n and n�. Then, if �

is sufficiently small but not zero and the condition that
vn��n��0 for all n	N−N++1 is satisfied, H has no positive
eigenvalues.

Proof: Under the assumption that E�0, we first consider
the eigenvalue problem

�
j=1

N

Kij�E�cnj = 
n�E,��cni, �43�

for i=1,2 , . . . ,N, where 
cni�i=1
N is the normalized eigenvec-

tor corresponding the nth eigenvalue 
n�E ,�� of K�E�. Then,
by Theorem 4.3.1 in Ref. �20�, one sees that

�
n�E,�� − �n� � �2 max
��1�E��, ��N�E���

= �2�D�E�� � �2 sup
E�0

�D�E�� , �44�

for all n, where �n�E� is the nth eigenvalue of D�E�. Note
that from the assumption in the theorem and the propositions
in the Appendix, it holds that supE�0�D�E����. Therefore,
by choosing � so that �����a, we have the fact that
�
n�E ,��−�n��Ra for all E�0 and all n, and in particular

n�E ,���0 for all E�0 for all n	N−N++1, where
�a= �Ra / supE�0�D�E���1/2 and
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Ra = min��N−N++1 � 3,min
n,m


��n − �m� � 3�n � m�� . �45�

The latter means that 
n�E ,�� only for n	N−N++1 be-
comes a candidate for positive eigenvalue of H. Note that

N−N+

cannot be such a candidate even if �N−N+
=0. Because

in such a case, putting �b= �Rb / supE�0�D�E���1/2, we find
from Eq. �44� that for �����b, �
N−N+

�E ,����Rb for all
E�0. We here choose such a Rb as to satisfy that D�E��
	0 for all positive E��Rb. Existence of such an Rb is en-
sured by Eq. �A.2� in Proposition 1. Then, from Theorem
4.3.1 in Ref. �20� again, we have the estimation that

− �2�N�E� � 
N−N+
�E,�� � − �2�1�E� � 0, �46�

for all E�Rb. Hence, we conclude that if �����b, it holds
that 
N−N+

�E ,���E for all E�0 �27�.
However, we can show that if we choose � sufficiently

small, any such a 
n�E ,�� and eigenvector �icni�i� cannot
satisfy Eq. �36�, no matter how well they satisfy Eqs. �37�
and �42�. To this end, let us look at Eq. �36�, which is rewrit-
ten as

�
i=1

N

cnivi�
n�2

= �Pn�E,���
i=1

N

vi
*�
n��i��2

�47�

= �vn
*�
n��2 + �

i=1

N

�i�vi�
n��Pn�E,�� − �n��n���
i�=1

N

vi�
* �
n��i�� ,

�48�
where Pn�E ,�� denotes the projection operator associated
with the nth eigenvalue 
n�E ,��. One sees that the first term
on the right-hand side of Eq. �48� behaves as

lim
�→0

�vn
*
„
n�E,��…�2 = �vn

*��n��2, �49�

for all E�0 uniformly, because of Eq. �44�. From the as-
sumption of the theorem, �vn

*��n��2 does not vanish. For the
second term on the right-hand side of Eq. �48�, we can use
the result on the perturbation of the projection operator �28�,
which leads to the fact that

Pn�E,�� = �n��n� + �
j=1

�

�2jPn
�j�, �50�

with

Pn
�j�
ª −

1

2�i
�

�n

�K0 − ��−1�D�E��K0 − ��−1� jd� , �51�

where �n is the closed positively oriented circle around
�=�n with radius minm��n�
��n−�m� /3�. Series �50� is en-
sured to converge uniformly for all � such that
����min
�a ,�b�, because

sup
���n

���2�D�E�� ��K0 − ��−1� � �a
2/�n

2 � 1, �52�

where

�n = � min
m��n�


��n − �m�/3� � sup
E�0

�D�E���1/2

. �53�

From the assumption of no degeneracy among 
�n�n=1
N and

the discussion after Eq. �44�, for such a �, all �n’s are dis-
connected from each other, and there should be only one
eigenvalue of K in each circle. This leads to
dim�Pn�E ,��CN�=dim��n��n�CN�=1, so that �=0 is not an
exceptional point �28�. It is worth noting that �n does not
depend on E. Thus, the second term on the right-hand side of
Eq. �48� is estimated as

�
i=1

N

�i�vi�
n��Pn�E,�� − �n��n���
i�=1

N

vi�
* �
n��i��

� ��
i=1

N

vi
*�
n��i��2

�Pn�E,�� − �n��n�� �54�

���
i=1

N

sup
��−�n��Ra

�vi����2� ��/�n�2

1 − ��/�n�2 → 0, �55�

as �→0, for all E�0 uniformly, where it was used that
sup���n

��n
��K0−��−1� �d���2�. Equation �48� with the re-

sults �49� and �55� means that Eq. �36� is never satisfied
for sufficiently small � with ����min
�a ,�b�, even if

n�E ,��=E holds. �

It is worth considering the opposite condition that
vn��n�=0. In this case, we could infer the existence of an
eigenvalue inside the continuum, from the decay process
arising from the pole zp,n. Indeed, if we recall the explicit
form of the decay rate �29�, if the opposite condition holds,
the decay rate comes small so that a much slower decay
occurs. Then, one may associate such a behavior with the
presence of a bound state �30�, though it is not obvious
whether this pole actually becomes an eigenenergy of H.

Let us now evaluate an explicit value of � for which there
is no positive eigenvalue of H. Under the assumption of the
analyticity of vn, one sees that if ����min
�a ,�b�, Eq. �49� is
rewritten by using Eqs. �44� and �53� as

��vn
*�
n�E,����2 − �vn

*��n��2�

� sup
��−�n��Ra

d�vn����2

d�
�
n�E,�� − �n� �56�

=
�2

�n
2 min

m��n�

��n − �m�/3�sup

��0
d�vn����2

d�
 . �57�

Therefore, by setting Eqs. �55� and �57� into Eq. �47�, the
left-hand side of Eq. �47� is ensured to be positive, and no
positive eigenenergy of H exists, providing that � is chosen
to satisfy the N++1 inequalities,

��� � min
�a,�b� , �58�

and
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�vn
*��n��2 �

�2

�n
2 min

m��n�

��n − �m�/3�sup

��0
d�vn����2

d�


+ ��
i=1

N

sup
��−�n��Ra

�vi����2� �2/�n
2

1 − �2/�n
2 , �59�

for n=N−N++1, . . . ,N. By solving Eq. �59� for � explicitly,
Eqs. �58� and �59� are reduced into the single inequality

��� � min
�a,�b,�̄N−N++1, . . . ,�̄N� , �60�

with

�̄n =� �n
2

2�n
��n + �n + �n − ���n + �n + �n�2 − 4�n�n� � �n,

�61�

where

�n = �vn
*��n��2,

�n = minm��n�
��n − �m�/3�sup��0�d�vn����2/d�� ,

and

�n = �i=1

N
sup��−�n��Ra

�vi����2.

In order to demonstrate Theorem IV.1, we apply it to the
spontaneous emission process for the hydrogen atom inter-
acting with the electromagnetic field �23�. We suppose that
�n� is the product state between the �n+1�p state of the atom
and the vacuum state of the field, and also ��� the product
state between the 1s state of the atom and the one-photon
state. Then, an initially excited atom is expected to make a
transition to the ground state by emitting a photon. We treat
the atom as a four-level system composed of the ground state
and the three excited states: the 2p, 3p, and 4p state. The
form factors corresponding to the 2p-1s, 3p-1s, and 4p-1s
transitions were obtained as follows �13,22,23�:

v1
*��� = i�1

1/2 ��/�1�1/2

�1 + ��/�1�2�2 , �62�

v2
*��� = i81�1

1/2 ��/�2�1/2�1 + 2��/�2�2�
128�2�1 + ��/�2�2�3

, �63�

v3
*��� = i54�3�1

1/2��/�3�1/2 45 + 146��/�3�2 + 125��/�3�4

15 625�1 + ��/�3�2�4 ,

�64�

where �1=8.498�1018 s−1, �2= �8/9��1 s−1, and �3

= �10/12��1 s−1 are the cut-off constants. One sees that these
form factors satisfy all conditions required in Theorem IV.1.
The coupling constant is also given by �2=6.435�10−9. The

eigenvalues of H0 are given by �n= 4
3��1− �n+1�−2� with

�=1.55�1016 s−1, all of which are embedded in the
energy continuum. The Hamiltonian �1� is then derived
under the four-level approximation �i.e., N=N+=3� and the
rotating wave approximation. The various parameters are nu-
merically obtained as follows: Ra= ��2−�3� /3= �7/324��,
supE�0�D�E��=−�1�E�=11.332�1 at E=0.6145�1,
�1

2=5.45�10−3� /�1, �2
2=�3

2=�a
2=1.91�10−3� /�1, �1

=1.82�10−3�1, �2=4.87�10−4�1, �3=1.99�10−4�1,
�1=6.17�10−2�, �2=4.87�10−3�, �3=1.88�10−3�,
�1=2.45�10−3�1, �2=3.04�10−3�1, �3=2.45�10−3�1,

from which Eq. �61� reads �̄1
2=4.18�10−6, �̄2

2=5.01�10−7,

and �̄3
2=2.14�10−7. Then, it follows that

min
�a
2,�̄1

2,�̄2
2,�̄3

2� = �̄3
2 � �2, �65�

and thus Eq. �60� holds. This conclusion indicates that the
intrinsic values of the parameters characterizing the system
does not allow any bound state. In fact, we have not ob-
served any such state. It is worth noticing that the upper
bound estimated in Eq. �65� is dominated by the factor �3

2,
roughly speaking, the minimum level-spacing over the maxi-
mum cut-off constant.

V. CONCLUDING REMARKS

We have considered the eigenvalue problem for unstable
multilevel systems, on the basis of the N-level Friedrichs
model, where the eigenenergies are supposed outside or pos-
sibly inside the continuum. The outside case is essentially
determined by the location of the discrete level �n of the free
Hamiltonian and the strength of the coupling constant �. If
�n lies outside the continuum, the corresponding eigenvalue
always lies below �n. If �n lies inside the continuum, by
choosing a � large enough the eigenvalue originating from
�n can emerge from the continuum. Such behaviors are simi-
lar to those seen in single-level cases, however, this is not the
case if the form factors vn are linearly dependent. On the
other hand, we have shown the absence of the eigenvalue
lying inside the continuum in the weak coupling cases, under
the condition that vn��n��0 if �n lies inside the continuum.
This statement is just an extension of Lemma 2.1 in Ref.
�14�, where only identical form factors were considered, and
the upper bound for ��� required in the lemma was not esti-
mated. We have evaluated this upper bound in our case,
which proves to be proportional to the minimum level-
spacing over the maximum cut off constant. Hence, compar-
ing this value with the actual �, one can check at least the
absence of the eigenvalue, even in the case that one cannot
evaluate the reduced resolvent explicitly. At first sight, the
normalization condition, i.e., Eq. �36�, seems not necessarily
to require the zeros of the form factors for a presence of a
bound-state eigenenergy inside the continuum, though it is
misplaced in weak-coupling regimes. However, we still do
not have a definite answer to this matter in other coupling
regimes where the multilevel effect may allow a presence of
a bound-state eigenenergy inside the continuum without ze-
ros of the form factors.
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APPENDIX

In this section, we present Propositions 1 and 2. The
former and the latter state that the behavior of the energy
shift D�E� at small and large energies is quite regular without
any divergence, respectively, under some form-factor condi-
tions that are often satisfied by actual systems.

Proposition 1. Suppose that the function ���� belonging
to L1��0,��� is of the form

���� ª �pr��� , �A.1�

where p�0 and r��� is a C1-function defined in �0,��. It
then holds that ���� /��L1(�0,��) and

	
0

� ����
�

d� = lim
E↑0

	
0

� ����
� − E

d� = lim
E↓0

P	
0

� ����
� − E

d� . �A.2�

Proof: From the proof of Proposition 3.2.2 in Ref. �16�,
the principal value of the integral on the right-hand side is
written by the absolutely integrable function as follows:

P	
0

� ����
� − E

d� = 	
0

� ���� − ��E����� − E�
� − E

d� , �A.3�

for all E�0, where ����� is a C0
� function with support

�−� ,�� �0� ∀��E�, even with respect to the origin, and
such that ���0�=1. In the following, we choose
�����=exp
1−1/ �1− �� /��2�� for �� �−� ,�� or 0 other-
wise, and �=E /2. On the other hand, since from the assump-
tion �A.1� ���� /� is absolutely integrable, the first equality
in Eq. �A.2� is obvious. Therefore, it is sufficient to show
that

lim
E↓0

	
0

� �����
�

−
���� − ��E����� − E�

� − E
�d� = 0. �A.4�

Note that the above integrand can be rewritten as

����
�

−
���� − ��E����� − E�

� − E

= − E
����

��� − E�
+

��E����� − E�
� − E

�A.5�

=
��E����� − E�

�
− E

���� − ��E����� − E�
��� − E�

. �A.6�

Let us first consider the case where �� I
ª �0,E /2�� �3E /2 ,��. Then, since ����−E�=0, we can
use Eq. �A.5� to estimate the integrand

E
����

��� − E�
 � 2����

�
 , �A.7�

where the right-hand side is absolutely integrable and inde-
pendent of E. Furthermore, it follows that
limE↓0 E�I������� / ����−E��=0 for every �� �0,��,
where �I���=1 ��� I� or 0 ��� I�, being the characteristic
function. Thus, by the dominated convergence theorem, we
can see that

lim
E↓0
�	

0

E/2

+ 	
3E/2

� �E
����

��� − E�
d� = 0. �A.8�

For �� �E /2 ,3E /2�, we can use Eq. �A.6�. The integration
of the first term of Eq. �A.6� is estimated by

	
E/2

3E/2 ��E����� − E�
�

d� �
��E�
E/2

	
E/2

3E/2

���� − E�d�

= ��E�	
−1

1

�1�x�dx → 0, �A.9�

as E↓0. The second term of Eq. �A.6� is also estimated by

����� − ��E����� − E�� � ����� − ��E��

+ ���E���1 − ���� − E�� . �A.10�

The integration of the first term on the right-hand side right-
hand side of the above is evaluated as

	
E/2

3E/2

E
����� − ��E��

��� − E�
d� � �ln 3�E sup

E/2���3E/2
������� �A.11�

��ln 3�E�pEp−1 max��1

2
�p−1

,�3

2
�p−1� sup

���0,3E/2�
�r����

+ �3E

2
�p

sup
���0,3E/2�

�r������ → 0 as E↓0, �A.12�

where the prime on ����� implies the differentiation of ����
and so on. The integral corresponding to the last term on the
right-hand side of Eq. �A.10� is also estimated as

	
E/2

3E/2

E
���E���1 − ���� − E��

��� − E�
d�

� �ln 3�E���E�� sup
E/2���3E/2

������ − E�� �A.13�

=2�ln 3����E�� sup
�x��1

��1��x�� → 0 �E↓0� . �A.14�

Thus, we can obtain

lim
E↓0

	
E/2

3E/2

E
���� − ��E����� − E�

��� − E�
d� = 0. �A.15�

Equations �A.8�, �A.9�, and �A.15� mean the completion of
the proof of �A.4� �

Proposition 2. Suppose that the function ���� belongs to
L1(�0,��)�C1��0,���, and satisfies that sup�	�0

��������

and sup�	�0
��������� for some �0�0. Then,
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sup
E��0

P	
0

� ����
� − E

d� � � . �A.16�

Proof: To examine this integral, we use the expression
�A.3� and divide the interval �0,�� into I�,E= �E−� ,E+��
and I�,E= �0,�� \ I�,E, again, where we assume �0���0. In
the latter interval, it is estimated that �I�,E

�������� / ��−E��
� ������ /��L1��0,���. Then,

sup
E��0

	
0

�

�I�,E
���

����
� − E

d� �
1

�
	

0

�

������d� � � . �A.17�

In the former interval, the integrand in Eq. �A.3� is evaluated
as

���� − ��E����� − E�
� − E

� sup
��I�,E

������� + ���E�� sup
�����

�������� ,

�A.18�

which results in

sup
E��0

	
0

�

�I�,E
���

���� − ��E����� − E�
� − E 

� 2�� sup
E��0

����E�� + sup
E��0

���E�� sup
�����

��������� � � ,

�A.19�

where we used the assumption for ���� in the statement.
Incorporating Eq. �A.17� with Eqs. �A.19� and �A.16� is
obtained. �
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