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Perturbation theory for the Siegert pseudostates �Phys. Rev. A 58, 2077 �1998� and Phys. Rev. A 67, 032714
�2003�� is studied for the case of two energetically separated thresholds. The perturbation formulas for the
one-threshold case are derived as a limiting case whereby we reconstruct More’s theory for the decaying states
�Phys. Rev. A 3, 1217 �1971�� and amend an error. The perturbation formulas for the two-threshold case have
additional terms due to the nonstandard orthogonality relationship of the Siegert pseudostates. We apply the
theory to a two-channel model problem, and find that the rate of convergence of the perturbation expansion
should be examined with the aide of the variance D= �E−�n�nE�n�� instead of the real and imaginary parts of
the perturbation energy individually.

DOI: 10.1103/PhysRevA.72.062718 PACS number�s�: 03.65.Nk, 31.15.�p

I. INTRODUCTION

Resonances occur in a variety of fields of physical sci-
ences. Despite their diversity, they are characterized by two
parameters, the resonance energy position and width, apart
from the coupling with the background continuum repre-
sented by the Fano profile �1�. A great deal of discussions
have been given to the interpretation of resonance phenom-
ena �1�. The most familiar parametrization of the resonances
is condensed into the dispersion formula due to Breit and
Wigner. Back in 1939, Siegert �2� developed a compact
mathematical viewpoint for characterizing resonances as sin-
gular points of the dispersion relation. His idea requires the
solution of the Schrödinger equation subject to the outgoing
wave boundary condition,

�� d

dr
− ik	��r��

r=a
= 0,

where a is the radius beyond which the potential energy is
negligible. The solution ��r� is called the Siegert state �SS�
and it behaves like eikr near r=a and beyond. This boundary
condition destroys the hermiticity of the Hamiltonian, thus
entailing complex-valued eigenenergies, i.e.,

E =
k2

2
= Eres − i

�

2
.

This is a most direct representation of both the resonance
position and width. This mathematically appealing represen-
tation had been implemented with tedious iterations due to
lack of suitable computational techniques until Tolstikhin et
al. �3� made a breakthrough by introducing Siegert pseu-
dostates �SPSs� for the one-threshold case. Their idea incor-
porates the boundary condition into the Schrödinger equation
so that the dispersion relation is obtained by a single diago-
nalization of the Hamiltonian matrix. Previous applications
of SPSs to resonances in three-body Coulomb problems in-
dicate that it is not only a valid procedure but also a different
perspective for the SPS representation of resonances and de-
cay processes �4�. Another immediate application of the SPS
theory is to the time-dependent problem �5,6� where the re-

flection off the exterior boundary incurs numerical instabil-
ity. Tanabe and Watanabe �7� succeeded in describing the
reflectionless time propagation based on the Siegert pseu-
dostates. Indeed, applied to the half-cycle optical pulses, the
Siegert boundary condition indeed was seen to eliminate the
outgoing wave component perfectly.

Recently, Sitnikov and Tolstikhin �8,9� stretched the scope
of the SPS theory by enabling the treatment of the two-
threshold problem. Despite such progress, there remains in
the theory of SPS a chapter still incompletely worked out.
This is the Siegert perturbation theory. A pioneering work on
this subject is due to More �10,11� who extended the Siegert
state theory specifically to handle the decaying state. The
main purpose of this paper is to complete the Siegert pertur-
bation theory from the recently developed SPS viewpoint for
both one- and two-threshold cases. Particularly, in the one-
threshold case, we are able to reconstruct More’s theory for
decaying states �10� in terms of SPS but with an unexpected
amendment to his theory. The SPS perturbation theory
�SPSPT� is by no means straightforward owing to the non-
standard orthonormality of the eigenfunctions. This con-
straint also serves to fix the phase of the perturbed wave
function, a feature which is absent from the standard pertur-
bation theory. It is hoped that this paper serves to expose
such noteworthy features of the SPSPT.

This paper is thus constructed as follows. In Sec. II, we
review some basic ideas about the SPS as needed for an
elementary presentation of the perturbation theory. Section
III gives the details of the SPSPT for both one- and two-
threshold cases. And Sec. III deals with a specific mathemati-
cal model as an example of the SPSPT. Atomic units are used
throughout.

II. SIEGERT PSEUDOSTATES

Since the two-threshold SPS theory contains the one-
threshold case in itself, we review the two-threshold case
only, leaving the one-threshold case as the limit where the
two thresholds become degenerate �8�.
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A. Mathematical settings

Suppose first that there are as many as q independent
channels. The Schrödinger equation reads


−
1

2

d2

dr2 + V�r� − E���r� = 0, �1�

where

V�r� =�
V1 V12 ¯ V1q

V12 V2 ¯ V2q

  � 
V1q V2q ¯ Vq

� ,

��r� =�
�1

�2


�q

� ,

and Vi pertains to the potential energy of channel i, and Vij
represents the interchannel coupling between channels i and
j. We consider the situation where there are only two ener-
getically distinct thresholds so that we separate Vi into two
groups. A first group contains channels 1 , . . . ,q1 and they
converge to v1 as r→a while the other group contains chan-
nels q1+1 , . . . ,q and they converge to v2, that is,

where v1 and v2 are the two constants representing the
threshold energies. This allows us to use the two-channel
SPS scheme even in the presence of more than two channels.
The two-channel momenta are k1=�2�E−v1� and k2

=�2�E−v2�. The boundary conditions are thus

�i�0� = 0

at r=0 and

�� d

dr
− ikj	�i�

r=a
= 0

at r=a where j=1 for the first group, i=1, . . . ,q1, and j=2
for the second group, i=q1+1 , . . . ,q. Now, consider to ex-
pand the wave function �i by a complete orthonormal basis
set ��l�r� , �l=1, . . . ,N�� over r� �0,a� such that

�i�r� = �
l=1

N

ci,l�l�r� .

Substituting this into Eq. �1�, and integrating over the inter-
val �0,a�, we obtain the M =q�N-dimensional eigenvalue
problem,


H̃ −
i

2
B − EIM�c� = 0, �2�

where

H̃ =�
H̃�1� U�12�

¯ U�1q�

U�12�
H̃�2�

¯ U�2q�

  � 

U�q1� U�q2�
¯ H̃�q�

� ,

B =�
k1L

� 0

k1L

k2L

0 �

k2L

�
1 ¯ q1 q1+1 ¯ qth block

,

c� =�
c1,1


c1,N


cq,1


cq,N

� ,

and

H̃ij
�n� =

1

2
�

0

a d�i

dr

d� j

dr
dr + �

0

a

�iVn� jdr ,

Uij
�mn� = �

0

a

�iVmn� jdr ,

Lij = �i�a�� j�a� .

In Eq. �2�, IM is an M-dimensional unit matrix. The eigen-
system Eq. �2� involves a pair of eigenvalues, k1 and k2,
which may be rewritten as a standard eigenvalue equation for
a single variable u according to the following heuristic pro-
cedure. Let us note that energy E can be represented by both
k1 and k2, namely

E =
1

2
k1

2 + v1 =
1

2
k2

2 + v2

so that

�k1 + k2��k1 − k2� = 4�2, �3�

where

� =�v2 − v1

2
.

�Here, we assume v2�v1 for simplicity.� Since the product
of linearly independent combinations of k1 and k2 becomes
constant, we require k1±k2 to satisfy the following condi-
tions:

k1 + k2 = 2i�u ,
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k1 − k2 = − 2i�u−1.

Thus

k1 = i��u − u−1� ,

k2 = i��u + u−1� ,

and

E = v̄ − �21 + u4

2u2

with

v̄ =
v1 + v2

2
.

This procedure of replacing a pair of variables k1 and k2 by a
single variable u is called uniformization.

B. Tolstikhin-Siegert equation

The uniformization described above reduces Eq. �2� to

M�u�c� = 0 �4�

with

M�u� = IM + uB− + u2A + u3B+ + u4IM , �5�

where

A =
2

�2�
H̃�1� − v̄IM U�12�

¯ U�1q�

U�12� H̃�2� − v̄IM ¯ U�2q�

  � 

U�1q� U�2q�
¯ H̃�q� − v̄IM

� ,

and

B± =
1

��
±L

� 0

±L

L

0 �

L

�
1 ¯ q1 q1+1 ¯ qth block

.

By introducing a new vector

�
c�

uc�

u2c�

u3c�
� ,

the nonlinear eigenvalue problem, Eq. �4�, is reduced to a
linear one such that

�
0 IM 0 0

0 0 IM 0

0 0 0 IM

− IM − B− − A − B+
��

c�

uc�

u2c�

u3c�
� = u�

c�

uc�

u2c�

u3c�
� . �6�

Furthermore, the above equation is symmetrizable as fol-
lows:

�
0 0 0 IM

0 0 IM B−

0 IM B− A

IM B− A B+
��

c�

uc�

u2c�

u3c�
� = u�

0 0 IM 0

0 IM B− 0

IM B− A 0

0 0 0 − IM

�
��

c�

uc�

u2c�

u3c�
� . �7�

Let us refer to Eqs. �4�, �6�, and �7� as the Tolstikhin-Siegert
equations �TSEs�.

III. FIRST- AND SECOND-ORDER PERTURBATION
THEORY

A. Derivation of perturbation formulas

Let us formulate the perturbation theory as appropriate for
the SPS whose orthonormality relation is different from the
standard one. Relegating the one-threshold case to the next
subsection, we treat the general two-threshold case. We as-
sume the perturbing potential energy V��r� vanishes beyond
r=a, i.e.,

V��r� =�
V11� V12� ¯ V1q�

V12� V22� ¯ V2q�

  � 
V1q� V2q� ¯ Vqq�

� = 0 �r 	 a� .

The TSE for the nth state including perturbing potential en-
ergy reads

�IM + unB− + un
2A + 2�

un
2U�

�2 + un
3B+ + u4IM	c�n = 0, �8�

where

U� =�
U��11� U��12�

¯ U��1q�

U��12� U��22�
¯ U��2q�

  � 
U��1q� U��2q�

¯ U��qq�
� ,

Uij�
�mn� = �

0

a

�iVmn� � jdr .

Differentiating Eq. �8� with respect to � and using the ortho-
normal relationship �see Eq. �44� in Ref. �8��
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c�m
T
IM +

umun�B− − umunB+�
�um + un��1 − um

2 um
2 ��c�n = 
mn,

we obtain the Hellmann-Feynman theorem �HFT� in the
present context, namely,

c�n
TU�c�n = �21 − un

4

un
3

dun

d�
=

d

d�
�v̄ − �21 + un

4

2un
2 	 =

dEn

d�
. �9�

Now, we consider the perturbation series of un and c�n such
that

un = un
�0� + �un

�1� + �2un
�2� + ¯ , �10�

c�n = c�n
�0� + �c�n

�1� + �2c�n
�2� + ¯ , �11�

where un
�0� and c�n

�0� are the nth solution to the unperturbed
equation, Eq. �4�,

M�un
�0��c�n

�0� = 0.

Substituting the perturbation series, Eqs. �10� and �11�, into
Eq. �9� and then comparing each power of �, we obtain

�0:�21 − un
�0�4

un
�0�3 un

�1� = c�n
�0�TU�c�n

�0�, �12�

�1:
�2

2un
�0�3
2un

�2��1 − un
�0�4� −

3un
�1�2 + un

�1�2un
�0�4

un
�0� � = c�n

�0�TU�c�n
�1�.

�13�

Next, let us evaluate the expansion coefficients over the un-
perturbed eigenstates. To this end, we rewrite Eq. �8� using
Eq. �5�, namely,

M�un�c�n = −
2�un

2

�2 U�c�n

so that

c�n = −
2�un

2M−1�un�
�2 U�c�n. �14�

The spectral representation of M−1 is given by

M−1�un� = �
l=1

4M
ul

�0�c�l
�0�c�l

�0�T

2�1 − ul
�0�4��ul

�0� − un�
.

�See Eq. �59� in Ref. �8�.� Using the relations

�
l=1

4M
ul

�0�pc�l
�0�c�l

�0�T

1 − ul
�0�4 = 0 �p = 1,2� �15�

�see Eqs. �51� and �52� in Ref. �8��, we have

un
2M−1�un� = �

l=1

4M
ul

�0�3c�l
�0�c�l

�0�T

2�1 − ul
�0�4��ul

�0� − un�
. �16�

Substituting this into Eq. �14� and comparing both hand sides
power by power for �, and then using Eqs. �12� and �13�, we
have

�0:c�n
�0� =

1

�2

un
�0�3c�n

�0�c�n
�0�T

�1 − un
�0�4�un

�1�U�c�n
�0� = c�n

�0�, �17�

�1:c�n
�1� =

1

�2 �
l�n

4M
ul

�0�3Wln�

�1 − ul
�0�4��un

�0� − ul
�0��

c�l
�0�

−
un

�0�4 + 3

2un
�0��1 − un

�0�4�
un

�1�c�n
�0�

=
1

�2 �
l�n

4M
ul

�0�3Wln�

�1 − ul
�0�4��un

�0� − ul
�0��

c�l
�0�

+
Wnn�

2
� 1

k1n
�0�2 +

1

k2n
�0�2 −

1

k1n
�0�k2n

�0�	c�n
�0�, �18�

where

Wmn� = c�m
�0�TU�c�n

�0�

and, as before,

k1n
�0� = i��un

�0� − �un
�0��−1�, k2n

�0� = i��un
�0� − �un

�0��−1� .

Let us note that for c�n
�1�, there is a term on top of the sum-

mation, which is made absent in a standard perturbation
theory because the normalization is unchanged in so far as
this term is purely imaginary under the standard orthogonal-
ity relation. This freedom is not warranted in the present
case.

Finally, we have the perturbation formulas for the two-
threshold SPS,

En
�1� = c�n

�0�TU�c�n
�0�, �19�

En
�2� = c�n

�0�TU�c�n
�1� =

1

�2 �
l�n

4M
ul

�0�3Wln�
2

�1 − ul
�0�4��un

�0� − ul
�0��

+
Wnn�

2

2
� 1

k1n
�0�2 +

1

k2n
�0�2 −

1

k1n
�0�k2n

�0�	 . �20�

In the same manner, it is possible to go on to the third- and
higher-order formulas, and to examine how the complex ei-
genvalues converge to the exact ones. However, as seen from
the unfortunate flaw in More’s study, a careful and thorough
assessment of each order of the expansion is absolutely nec-
essary due to the manifestation of nonstandard terms. There-
fore we forego this task as well as the derivation of partial
widths by the perturbation theory at present.

B. One-threshold case as a degenerate limit

It is important to clarify the relationship between one- and
two-threshold cases. In the following, we prove that pertur-
bation formulas for the one-threshold case are obtained when
we implement a limit of v2→v1. In this limit, the following
scaling clarified in Ref. �8�:

A →
1

�2 Ã, B± →
1

�
B̃±, u →

− �

�
�21�

reduces the two-threshold TSE to a one-threshold one,
namely,
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�Ã + �B̃ + �2IM�c� = 0, �22�

where

Ã = 2�
H̃�1� − v̄IM U�12�

¯ U�1q�

U�12� H̃�2� − v̄IM ¯ U�2q�

] ] � ]

U�1q� U�2q�
¯ H̃�q� − v̄IM

� ,

and

B̃ = �− L ¯ 0

] � ]

0 ¯ − L
�

1 ¯ qth block

.

and �= ik1= ik2. This scaling corresponds to the solution k1
=k2 in Eq. �3� when v1→v2. Note that the solution k1=−k2
in Eq. �3� is unphysical since the degenerate threshold here
means the equivalence of asymptotic wave functions in this
limit.

Thus the scaling leads us to the perturbation formulas for
the one-threshold case, namely

c�n
�1� = �

l�n

2M
Wln�

kl
�0��kn

�0� − kl
�0��

c�l
�0� +

Wnn�

2kn
�0�2c�n

�0�,

En
�1� = Wnn� = c�n

�0�TV�c�n
�0�,

En
�2� = �

l�n

2M
Wln�

2

kl
�0��kn

�0� − kl
�0��

+
Wnn�

2

2kn
�0�2 .

Note that the summation runs over the branch of k1=k2, that
is only over a half of the full nondegenerate space. These
correspond to the SPS representation of More’s formulas
�10�. Our expressions for the first-order eigenvector and for
the second-order eigenenergy are different from his �11�. The
origin of the discrepancy has been traced to an algebraic
error in More’s derivation of the first-order wave function.
�One necessary term is unfortunately dropped during his
derivation.� As a result of this, an extra term is restored in
either formula. Here, one important difference from the stan-
dard perturbation theory is that no Hermitian conjugates ap-
pear in these formulas. This might suggest at first that there
would remain phase ambiguity. However, any ad hoc addi-
tive phase would instead mar the orthogonality relation, that
is, what is the relative phase in the standard theory is fixed in
the SPS theory, thus leaving no ambiguity with the phase of
eigenfunctions. It is thus worthwhile to see the consistency
of the orthonormality relation and the Siegert boundary con-
dition for the particular case of c�n

�1�. This verification is
worked out in the Appendix.

C. A model problem

Let us present an example of the perturbation theory for
the two-threshold case. We revisit the two-channel model
potential with two thresholds that is taken up in Ref. �8�, i.e.,

V�r� = �15e−0.5r 5re−r

5re−r 15�r2 − r − 1�e−r + 15
	 . �23�

Here, the threshold energies of the first and second channels
are 0 and 15, respectively. The potential V�r� supports three
resonances. The adiabatic potential energy curve of the first
channel supports one shape type resonance �a� while the
other channel supports one Feshbach type �b� and one shape
type �c� resonance. These resonances are depicted in Fig. 1.
We carried out the diagonalization of the TSE, Eq. �6�, using
the discrete variable representation �DVR� functions as a ba-
sis set. The calculated resonance energies and widths with
different numbers of the basis functions are given in Table I.
Let us call these results direct numerical solutions. To imple-
ment perturbation calculations, we separate V�r� into

V�r� = V0�r� + V��r� ,

where

V0�r� = �15e−0.5r 4re−r

4re−r 15�r2 − r − 1�e−r + 15
	 ,

V��r� = � 0 re−r

re−r 0
	 .

We regard V0 as the unperturbed potential energy and V� as
the perturbation potential energy. We calculate perturbation
energies using the unperturbed solutions of TSE for the same
box size a=50 as in Ref. �8�. Table I shows the results of
first- and second-order perturbation calculations, and Figs.
2–4 epict how the numerical solutions converge in the com-
plex plane. In the present model problem, the first-order
resonance energy agrees with the direct numerical solutions
to about two to four digits while the width agrees to about
two to three digits. And the second-oder resonance energy
agrees to about three to five digits while the width agrees to
about one to three digits. An important fact which we must
remark is that the resonance energy and width do not appear
to converge in pace. For instance, the width of resonance “c”

FIG. 1. �Color online� Broken lines: Diagonal elements of the
potential matrix in Eq. �23�. Solid lines: adiabatic potential ener-
gies. This system supports three resonances: shape type �a� in chan-
nel 1, Feshbach type �b�, and shape type �c� in channel 2.
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evaluated by the second-order perturbation theory appears
less accurate than the first-order one while the resonance
energy appears to have improved. The seeming deterioration
of the width is a little overwhelming, all the more so for the
improvement of the resonance energy. Nonetheless, the dis-
tance between the second-order result and the direct numeri-
cal one becomes rather small �see Fig. 4� in the complex

plane, that is, in the Siegert state perturbation theory the
convergence is to be measured with respect to the variance

D = �E − �
n

�nE�n�� �24�

rather than with respect to the real and imaginary parts of the
sum, individually.

TABLE I. Columns Re, Im, D, and N represent the real and imaginary parts of resonance energies, error variance in the complex plane,
and the dimension of the DVR basis set, respectively.

N

Resonance a Resonance b Resonance c

Re Im D Re Im D Re Im D

E�0�

100 7.13731291 −0.04777819 0.17022398 14.36514823 −0.00441589 0.08759123 18.25940438 −0.04709964 0.02402711

300 7.13739307 −0.04774929 0.17034758 14.36548638 −0.00426431 0.08762023 18.26200618 −0.04826379 0.02526594

500 7.13739307 −0.04774929 0.17034758 14.36548638 −0.00426431 0.08762023 18.26200618 −0.04826379 0.02526594

700 7.13739307 −0.04774929 0.17034758 14.36548638 −0.00426431 0.08762023 18.26200619 −0.04826379 0.02526594

E�0�+E�1�

100 6.98368137 −0.06730063 0.01543038 14.44177638 −0.00607880 0.01094681 18.27770236 −0.05762106 0.00327772

300 6.98382603 −0.06744164 0.01560641 14.44219720 −0.00577079 0.01089678 18.28142974 −0.05926301 0.00330703

500 6.98382602 −0.06744165 0.01560641 14.44219720 −0.00577079 0.01089678 18.28142974 −0.05926301 0.00330703

700 6.98382603 −0.06744162 0.01560643 14.44219720 −0.00577079 0.01089678 18.28142974 −0.05926301 0.00330702

E�0�+E�1�+E�2�

100 6.96760487 −0.06783608 0.00067084 14.45258871 −0.00611007 0.00013451 18.28074487 −0.05788235 0.00031413

300 6.96755505 −0.06807440 0.00074684 14.45297412 −0.00575530 0.00011988 18.28452186 −0.05952953 0.00031773

500 6.96755905 −0.06807406 0.00074312 14.45297384 −0.00575631 0.00012019 18.28452397 −0.05952538 0.00031324

700 6.96756395 −0.06807313 0.00073832 14.45297366 −0.00575513 0.00012033 18.28452412 −0.05952393 0.00031208

E �Direct numerical solution�
100 6.96825547 −0.06767254 14.45272315 −0.00610584 18.28097965 −0.05767365

300 6.96822245 −0.06773922 14.45309397 −0.00575250 18.28473661 −0.05929537

500 6.96822245 −0.06773921 14.45309397 −0.00575250 18.28473661 −0.05929537

700 6.96822244 −0.06773923 14.45309397 −0.00575250 18.28473661 −0.05929536

FIG. 2. �Color online� Complex energies for resonance a. FIG. 3. �Color online� Complex energies for resonance b.
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IV. CONCLUSIONS

In this paper we formulated one- and two-threshold
SPSPT. The unusual orthonormality relationship of the SPSs
results in somewhat nontrivial additional terms in SPSPT,
and also it determines the phase of the perturbation wave
function. In the degenerate threshold case, the one-threshold
SPSPT formulas are obtained by appropriate scaling, and we
also obtained an up-to-date correction to More’s theory. The
numerical calculations show how the perturbation results
converge. The convergence is achieved in the sense of the
variance, Eq. �24�, but not the resonance energy and width
independently.

It is of interest to speculate on possible uses of SPSPT.
One immediate application would be to the manipulation of
Siegert poles. The shadow poles located near the physical
sheet may be transformed to physical resonances by an ap-
propriate perturbation. We leave issues such as this for a
future task.
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APPENDIX: CONSISTENCY WITH ORTHONORMALITY
RELATIONSHIP AND SIEGERT BOUNDARY

CONDITION IN FIRST ORDER

Here, we prove that the first-order wave function satisfies
the orthonormality relationship and the Siegert boundary
condition consistently. First of all, we expand

c�n
T�IN +

1

�n + �m
B	c�m = 
mn, �A1�

into perturbation series, and compare both sides power by
power for �. The first-order equation shows

c�n
�0�T�IN −

i

kn
�0� + km

�0�B	c�m
�1� + cn

�0�T i�kn
�1� + km

�1��
�kn

�0� + km
�0��2Bc�m

�0�

+ c�n
�1�T�IN −

i

kn
�0� + km

�0�B	cm
�0� = 0. �A2�

And each term of the above equation reduces to

�1st term� = �
l�m

2N
Wlm� c�n

�0�Tc�l
�0�

kl
�0��kn

�0� + km
�0��

+
2Wnm�

�kn
�0� + km

�0���km
�0� − kn

�0��

+
Wmm�

2km
�0�2
nm,

�2nd term� =
Wnn� /kn

�0� + Wmm� /km
�0�

kn
�0� + km

�0� �c�n
�0�Tc�m

�0� − 
mn�

and

�3rd term� = �
l�n

2N
Wln� c�l

�0�Tc�m
�0�

kl
�0��kn

�0� + km
�0��

−
2Wnm�

�kn
�0� + km

�0���km
�0� − kn

�0��

+
Wnn�

2kn
�0�2
nm.

Hence the left-hand side of Eq. �A2� reduces to

�left-hand side �A2��

= �
l=1

2N
Wlm� c�n

�0�Tc�l
�0�

kl
�0��kn

�0� + km
�0��

+ �
l=1

2N
Wln� c�l

�0�Tc�m
�0�

kl
�0��kn

�0� + km
�0��

+
Wmm�

km
�0� � 1

2km
�0� −

1

kn
�0� + km

�0�	
mn

+
Wmm�

km
�0� � 1

2km
�0� −

1

kn
�0� + km

�0�	
mn

=
1

kn
�0� + km

�0���
l=1

2N
Wlm� c�n

�0�Tc�l
�0�

kl
�0� + �

l=1

2N
Wln� c�l

�0�Tc�m
�0�

kl
�0� 	 .

By using a SPS sum rule,

�
l=1

2N
1

kl
�0�c�l

�0�c�l
�0�T = 0,

we obtain

�
l=1

2N
1

kl
�0�Wlm� c�n

�0�Tc�l
�0� = c�n

�0�T��
l=1

2N
1

kl
�0�cl

�0�c�l
�0�T	U�c�m

�0� = 0

and

�
l=1

2N
1

kl
�0�Wln� c�l

�0�Tc�m
�0� = �

l=1

2N
1

kl
�0�Wnl� c�l

�0�Tc�m
�0�

= c�n
�0�TU���

l=1

2N
1

kl
�0�c�l

�0�c�l
�0�T	c�m

�0� = 0.

Therefore the first-order wave function is consistent with the
orthonormality relationship.

FIG. 4. �Color online� Complex energies for resonance c.
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Next, let us consider the Siegert boundary condition. We
expand the Siegert boundary condition and compare both
sides power by power for �. The first-order equation shows

�� d

dr
− ikn

�0�	�n
�0� − ikn

�1��n
�0��

r=a
= 0.

Then by using the coordinate representation of the SPS sum
rule, namely

�
l=1

2N
1

kl
�0��l

�0��r��l
�0��r�� = 0,

we get

�� d

dr
− ikn

�0�	�n
�0��

r=a
= �

l�n

2N
Wln�

kl
�0��kn

�0� − kl
�0��

�d�l
�0�

dr
	

r=a

− kn
�0��

l�n

2N
Wln�

kl
�0��kn

�0� − kl
�0��

�l
�0��a�

= − i�
l�n

2N
1

kl
�0�Wln� �l

�0��a�

= − i�
l=1

2N
1

kl
�0�Wln� �l

�0��a� + i
Wnn�

kn
�0� �n

�0��a�

= − i�
0

a ��
l=1

2N
1

kl
�0��l

�0��a��l
�0�	U��n

�0�dr

+ ikn
�1��n

�0��a� = ikn
�1��n

�0��a� .

Hence the first-order wave function is consistent with the
Siegert boundary condition.
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