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We study the influence of electronic scattering on the angular distributions of ions and atoms moving
through a free-electron gas. We present a general formulation based on the multiple-scattering formalism, using
two alternative descriptions: a linear approach based on Lindhard’s dielectric function, and a nonlinear treat-
ment based on density functional calculations. We obtain analytical expressions for the multiple-scattering
function and for the half-width of the distribution. We show the results of several calculations for slow
hydrogen and helium and their isotopes. We analyze the results and obtain analytical approximations for all of
the cases. The magnitude of the electronic effects on the multiple scattering distribution is determined and
compared with previous estimations.
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I. INTRODUCTION

Multiple scattering is one of the characteristic processes
in the interaction of ionized projectiles with matter. As a
result of the multiple interactions produced when a beam of
particles penetrates a medium, the angular distribution of the
incident particles is progressively spread. This process has
been extensively studied. The basic theory of this phenom-
enon was developed by several authors using various statis-
tical approaches �1–8�, and applied in numerous studies deal-
ing with the penetration of electrons and ion beams in matter.
A complete review of the earlier developments was given in
Ref. �6�.

One question of basic interest which has not been ad-
equately studied so far is the contribution to the angular dis-
persion produced by the interaction between the incident
ions and the target electrons. This contribution is frequently
neglected on the basis of the very small mass ratio between
the electrons and the incident ions. However, in special
cases, like in the channeling of light ions �9� �including, in
particular, muons and pions �10–12��, where the atomic col-
lisions with target atoms is strongly reduced and the angular
spread of the beam is significantly narrow, the contribution
of scattering processes due to interactions with the valence
electrons inside the channel may produce a non-negligible
effect on the final channeling results.

To the best of our knowledge, a first estimation of the
effects of electronic scattering in the case of swift ions was
given by Lindhard �13� who derived a formula that relates
the angular spread produced by electronic interactions to the
corresponding stopping power, in the form

���2�L =
m

�M1v�2Senex , �1�

where m is the electron mass, M1 and v are the mass and
velocity of the incident ion, ne and x are the electron density
and thickness of the target, and Se is the electronic stopping
cross section. However, this relation only applies to the case
of swift ions due to the condition that the target particle is
assumed to be at rest before the collision, a situation that

does not apply to the case of ions with velocities smaller than
the Fermi velocity of the target electrons.

A complementary estimation based on Lindhard’s argu-
ments, but for slow ions, was given by Bonderup �14� who
derived an upper limit to the angular spread ���2� due to
electronic interactions, in the form: ���2�� ���2�B with

���2�B = 8�mvF

M1v
�2

�trnex , �2�

where vF is the Fermi velocity of the electron gas and �tr is
the transport cross section. Note that this expression may be
also related to the stopping power using the low-energy ex-
pression �14�, Se=mvvF�tr, in the form

���2�B =
8m

�M1v�2

vF

v
Senex , �3�

an expression that may be readily compared with the high-
energy approximation of Eq. �1�.

However, as stated by Bonderup �14�, it is difficult to
assess the degree of the overestimate contained in this ex-
pression. Hence, the contribution of electronic processes to
the multiple scattering of slow ions is a question that clearly
deserves a quantitative study.

Here we provide the theoretical description of the effects
of the electronic interactions on the angular spread of the
beam for the case of slow ions interacting with a free-
electron gas �FEG� representing the valence electrons of a
solid. The formulation is based, on the one side, on the stan-
dard theory of multiple scattering in random media �which is
particularly appropriate for a FEG�, and on the other, on two
alternative representations of the interaction between slow
ions and the electrons in a solid: the linear description pro-
vided by the dielectric function formalism �15,16�, and the
nonlinear representation emerging from previous density
functional calculations �17,18�.

The basic formulation of the momentum transfer prob-
ability in single-scattering theory is described in Sec. II, con-
sidering first the linear or dielectric approximation, and then
we reformulate the analysis within the framework of nonlin-
ear calculations �density functional theory�. In Sec. III we
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introduce the previous results in the formalism of the
multiple-scattering theory.

In Sec. IV we discuss in a general way the various results
and obtain analytical fitting formulas for the value of the half
angle of the multiple-scattering distributions, which apply on
the wide range of electron densities in solids. The magnitude
of the electronic contribution to the multiple-scattering effect
is illustrated with examples for some cases of interest. Fi-
nally, we compare the present results with Bonderup’s esti-
mation. The summary and conclusions are contained in Sec.
V.

II. SINGLE SCATTERING

A. Linear approach

We consider first the elementary process of inelastic scat-
tering of an incident ion due to the interaction with the va-
lence electrons of a solid. The electrons will be represented
as a free-electron gas with density ne and Fermi velocity
vF=1.919/rs �in atomic units� using the parameter rs defined
as usual by 4�rs

3 /3=1/ne.
Here we first formulate the scattering process following

the dielectric function formalism �16,19�. According to Ref.
�16�, in the dielectric formulation the scattering probability
may be expressed as

d4P

d3qd�
=

	F�q�	2

�2q2 Im
 − 1

��q,�����	� − 	q� · v�� , �4�

where ��q ,�� denotes the dielectric function, v� is the initial
ion velocity before the scattering event, and F�q� is the ion
form factor defined by

F�q� =� d3r 
�r�eik.r, �5�

where 
�r� is the ion charge density �assumed as spherically
symmetric�.

Then, by integrating over the frequency � we obtain the
momentum-loss spectrum

d3P

d3q
=� d4P

d3q d�
d� =

	F�q�	2

	�2q2 Im
 − 1

��q,����=q� ·v�
. �6�

We can separate the momentum transfer into parallel �q�
and perpendicular �q�� components relative to the initial
beam direction, d3q=d2q�dq, and by integrating over q we
get

d2P

d2q�

=� d3P

d3q
dq

=
1

	�2 � dq

�q
2 + q�

2 �
	F�q�	2 �Im
 − 1

��q,�����=q.v
.

�7�

This expression contains the required information on the
probability of the differential scattering of the incident ion
which produces its angular deflection in single-scattering
events, and includes also the collective screening effects pro-
duced by the electron gas.

For the evaluation of Eq. �7� we use the low-energy ap-
proximation corresponding to ion velocities v�vF, vF being
the Fermi velocity of the FEG. Since the available frequen-
cies are restricted by ��qv, the approximations of interest
for the real ��1� and imaginary ��2� parts of the dielectric
function, become �15�

�1�q,�� � �1�q� = 1 +
qTF

2

q2 �8�

�2�q,�� � �2K1�/q3, q � 2kF

0, q  2kF
� , �9�

where qTF=�3�P /vF and K1=m2e2 /	3.
Using this, we approximate the integral in Eq. �7�, assum-

ing 	�2	� 	�1	, by

d2P

d2q�

=
1

	�2 � dq

�q
2 + q�

2 �
	F�q�	2�
�2�q,��

�1�q�2 ��
�=qv

,

�10�

=
1

	�2�
0

Q dq

�q
2 + q�

2 �
	F��q

2 + q�
2 �	2

�
2K1vq
�q

2 + q�
2

�q
2 + q�

2 + qTF
2 �2� . �11�

The value of Q is restricted by the condition stemming
from Eq. �9�, namely q=�q

2+q�
2 �2kF, or: q �Q

=�4kF
2 −q�

2 .
Finally, due the azimuthal symmetry we may replace

d2q�=2�q�dq� and obtain

dP

dq�

� vG�rs,q�� = 4K1v
1

	�
q��

0

Q dq

�q
2 + q�

2 �
	F��q

2 + q�
2 �	2

�
 q
�q

2 + q�
2

�q
2 + q�

2 + qTF
2 �2� . �12�

This equation defines the dimensionless function
G�rs ,q��, which is independent of the ion velocity v, but
depends on the Fermi velocity vF �or electron gas density ne�
through the parameter rs. The expression for G�rs ,q�� may
be further simplified by expressing the integration in terms of
q as follows:

G�rs,q�� =
4m2e2

	4�
q��

q�

2kF 	F�q�	2

�q2 + �2�2dq , �13�

where �=qTF=�3�P /vF is the FEG screening constant
within the linear approximation. In particular, for bare ions,
F�q�=Ze, this expression has a simple analytical solution,

G�rs,q�� = 2m2e2 �Ze�2

	4�

q�

�2 �
 q

q2 + �2 +
1

�
arctan� q

�
���

q=q�

q=2kF

.

�14�
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B. Nonlinear approach

As is well known, the linear formulation provides a sim-
plified description of the interaction of slow ions with a free-
electron gas, but for quantitative studies, an additional con-
sideration of nonlinear effects must be included
�17,18,20–22�. These effects may be described either by in-
troducing higher-order corrections to the scattering ampli-
tude or by reformulating the calculations in a full nonlinear
way. The best available representation of the interaction of
slow ions with a free-electron gas is the one provided by the
density functional approach �18,23�. In this formulation a
fixed impurity �either an atom or an ion� is strongly screened
by the jellium and the whole system is considered in the
ground state. In this case the system is neutralized, which
corresponds to the usual picture of hydrogen or helium atoms
immersed in a jellium �24,25�. We also note that the usual
Density Functional Theory �DFT� calculations actually as-
sume a fixed ion, which is, in fact, appropriate only for the
case of very slow ions �there is a more recent extension of
the DFT method to the case of moving ions �26� but we will
not consider dynamical screening effects in the present
analysis�.

To introduce the nonlinear approach in the present treat-
ment we will use a direct connection between the scattering
amplitudes, in linear and nonlinear descriptions, which was
formulated in Ref. �27�. First, we note that Eq. �13� may be
written as

G�rs,q�� =
q�

�
�

q�

2kF

	f���	2dq , �15�

where

f��� =
me

	2

2F�q�
�q2 + �2�

�16�

is the scattering amplitude in the linear description of the
scattering process �corresponding to the first-order Born ap-
proximation�, with the usual relation between q and �: q
=2kF sin�� /2�.

The transition from the linear to the nonlinear formulation
can be made by replacing the scattering amplitude by the
nonlinear value, which is given by the partial-wave expan-
sion, namely

f��� =
1

k
�

l

�2l + 1�ei�l sin��l�Pl�cos �� , �17�

where �l denotes the phase shift corresponding to the l-wave
component and Pl�x� are the Legendre polynomials.

It may be shown that this simple procedure permits us to
obtain in a straightforward way all the known expressions for
the energy loss moments, including the stopping power �28�,
the straggling �29�, and the total scattering probability �also
called “width” of the particle state� �27�.

We may further note that if we integrate the present ex-
pression for the G function of Eq. �15� over all the possible
momentum transfers �0�q��2kF� we then obtain the cor-
rect expression for the total scattering probability per unit
time, namely

P = v�
0

2kF

G�rs,q��dq� =
v

2�
�

0

2kF

	f���	2q2dq �18�

which is equivalent to the expression given in Ref. �27�.
The present calculations of the multiple-scattering distri-

butions �to be described below� have been made using the
expressions of Eqs. �15� and �17� and using the phase shift
values calculated for a point charge Ze in an electron gas by
Puska and Nieminen �18� with the density functional formu-
lation �30�.

III. MULTIPLE SCATTERING

From the previous formulation we obtain an expression
for the differential cross section for electron-ion scattering in
a FEG, with transverse momentum transfer 	q�, of the form

d� =
1

nev
dP =

1

ne
G�rs,q��dq� �19�

and we recall also the relation between the momentum trans-
fer q� and the ion angular deflection �, in the small-angle
approximation, namely 	q�=M1v�, as well as the differen-
tial relation, dq�=M1vd� /	.

The convolution of the multiple-scattering events, as the
particle penetrates a distance x within the solid, is usually
represented by the multiple-scattering �MS� function f�� ,x�
�1–8�, which yields the statistical distribution of particles
with a total angular deflection �.

Following the formulation of Ref. �8� we express the elec-
tronic multiple-scattering �EMS� function �Eq. �1� of Ref.
�8�� in the form F�� ,x�d�= f�� ,x�d� /2�, where f�� ,x� is
given in the small-angle approximation by

f��,x� = �
0

�

� d� J0����exp�− nex�0���� . �20�

The function �0��� is determined from the previously de-
fined scattering function G�rs ,q��, for the present case of an
electron gas, by

�0��� =� �1 − J0�����d�

=
1

ne
�

0

2kF

�1 − J0��q�	/M1v��G�rs,q��dq� �21�

with d� given by �19� and �=	q� /M1v.
Note that the density factor ne cancels out in Eqs. �20� and

�21�, so that we finally obtain the simple expression

f��,x� = �
0

�

� d� J0����exp�− x�0����� �22�

with

�0���� = �
0

2kF

�1 − J0��q�	/M1v��G�rs,q��dq�. �23�

Introducing the variable �=q� /kF in Eq. �23�, it may be
seen that �0���� becomes a function of the variable �
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=�	kF /M1v �and depends parametrically on the density
through rs�,

�0���� = �̃0��,rs� = kF�
0

2

�1 − J0�����G�rs,�kF�d� .

�24�

Then Eq. �22� may be parametrized in terms of ��
=�M1v� /	kF,

f��,x� = �2/2��
0

�

� d� J0�����exp�− x�̃0��,rs�� �25�

with �=� /�=M1v /	kF. Hence, the angular dependence of
the EMS function f�� ,x� is parametrized in terms of ��
=M1v� /	kF. In particular, this implies that the angular width
of the distribution scales like �M1v�−1. However, we note that
a simple scaling with kF is not obtained due to the additional
rs dependence of the function G�rs ,q�� implicit in Eq. �15�.

The scaling with �M1v�−1 is a new result characteristic of
the electronic multiple-scattering process. As is well known,
the general scaling of the atomic multiple-scattering function
corresponding to ion-atom scattering follows a�1/E depen-
dence in the energy range considered here �8,31�, being E
=M1v2 /2 the incident-ion energy.

IV. RESULTS AND DISCUSSION

We analyze first the distribution of momentum transfers
produced by single-collision events, described by the func-
tion G�rs ,q�� in Eq. �15�.

For slow projectiles, the momentum transfer to the target
electrons is restricted by q�2kF, and the probability func-
tion has the characteristics shown in Fig. 1, where we show
the functions G�rs ,q�� for hydrogen and helium, obtained
with the nonlinear method. It has been shown that these
functions are significantly larger than those obtained from
the linear formulation for hydrogen and helium atoms �i.e.,
nonlinear effects produce an enhancement of the scattering
intensity as compared with the linear model�.

Using the probability function G�rs ,q�� obtained from
Eq. �15� we have calculated the distribution function f�� ,x�
using Eqs. �22� and �23�, or, equivalently, �24� and �25�.

To analyze the characteristics of the solutions for the EMS
function, we introduce the half-width at half maximum angle,
�1/2, for which the distribution function f�� ,x� falls to one-
half of its maximum value, which corresponds to �=0,
namely: f��1/2 ,x�=0.5f�0,x�. This equation is solved nu-
merically to determine the value of �1/2 for each of the cases
considered in this study. The magnitudes of the angular
widths �1/2 for hydrogen and helium atoms calculated with
the nonlinear approach are significantly larger than those ob-
tained from the linear case. As an example, the numerical
results for the EMS function f�� ,x� are shown in Fig. 2,
where we show the normalized distribution f�� ,x� / f�0,x�
versus the reduced scattering angle � /�1/2. The line in this
figure corresponds to a Gaussian function having the same
angular width, namely g���=exp�−��2 /�1/2

2 � with �=ln�2�.
As seen in the figure, the Gaussian approximation yields an

excellent representation of the angular dependence. We have
obtained similar Gaussian types of behaviors in almost all of
the cases studied, except only in calculations for very thin
targets �below �50 Å� where small deviations from the
Gaussian shapes were observed in the tails of the distribu-
tions, which, however, do not affect the value of the angular
width �1/2.

The angular width �1/2 has been determined for hydrogen,
deuterium, muonium, helium, and He3 for various velocities
v�vF and target thicknesses x �considering always thick-
nesses much smaller than the corresponding ranges of the
particles in the medium for the assumed velocity�. The pre-
dicted scaling of the angular width �1/2�1/M1v with the
velocity and the mass of the projectile for a given charge
condition �i.e., hydrogen, deuterium, and muonium on one
side; helium and He3 on the other� has been positively
checked in all cases. Therefore, the quantity �1/2M1v is rep-
resented in the following. The corresponding results for hy-
drogen �equal to those of deuterium and muonium� and he-
lium �equal to that of He3� are given in Fig. 3.

In addition, we find that the angular spread follows a
simple dependence with the square root of the target thick-
ness, c�x, as illustrated by the lines in the figure �note also

FIG. 1. Probability functions, G�rs ,q��, for the scattering of
hydrogen �part a� and helium �part b� in a free-electron gas with
transverse momentum transfer q�, according to the nonlinear for-
mulation, for rs values 1.5, 2, 3, 4, 5, and 6 a.u., as indicated on
each curve.
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that this dependence is statistically consistent with the
Gaussian dependence shown in Fig. 2�. We should point out,
however, that some deviations from this dependence have
been obtained for very small thicknesses �where small devia-
tions from the Gaussian limit were consistently observed�.

The only remaining dependence on the relevant physical
parameters which has not been analyzed yet, is the depen-
dence on the electron gas density. To determine this depen-
dence we have performed a large set of calculations for each

of the projectiles through the range of densities of interest for
valence electrons in solids, corresponding to rs values in the
range 1�rs�6 a.u.

The final results of the whole set of calculations may be
summarized by the following analytical approximations for
the half angle:

�1/2 = K�rs�
mp

M1

v0

v
� x

a0
, �26�

where M1 is the ion mass and v its velocity, mp is the proton
mass, x is the target thickness, and v0 and a0 are the Bohr
velocity and radius, respectively. The dependence on the
electron gas density is contained in the coefficient K�rs�
which has been numerically determined for the projectiles
included in this study. The results for K�rs� obtained from the
nonlinear calculations are shown in Fig. 4. The lines in the
figure show the analytical fitting expressions given below.

An interesting feature that we may note in Fig. 4 is the
crossing of the K�rs� lines for H and He at rs�3. This may
be considered a replica of the similar crossing previously
observed in the stopping coefficients obtained from the same
nonlinear approach �23�. However, because of the isotopic
effect given by the factor mp /M1 in Eq. �26� �which is not
present in the energy loss� the electronic multiple scattering
is significantly lower for He than for H in the whole range of
rs values.

As a final question, we have determined analytical fitting
functions for K�rs� which could be of interest for practical
purposes. The following fitting expressions yield very accu-
rate �better than 5%� approximations to the nonlinear results
through the range of rs values explored in these calculations

FIG. 2. Nonlinear results for the multiple-scattering function,
f�� ,x�, of Eq. �22�, for a FEG characterized by rs=1.5. The values
of � have been normalized to the half-width �1/2. The line shows a
fit to the numerical results using a Gaussian function.

FIG. 3. Scaling of the half-width of the multiple-scattering func-
tion and its dependence with target thickness x for hydrogen and
helium �and related isotopes�. The results are shown in the form
�1/2M1v related to mpv0, where mp is the proton mass and v0 is the
Bohr velocity. The calculations �solid symbols� were made using
the nonlinear formulation, for v=0.5 a.u. and rs=1.5. The fitting
curves are of the form ci

�x with appropriate coefficients ci, as
indicated.

FIG. 4. Theoretical values of the coefficients K�rs�, Eq. �26�, for
hydrogen and helium, calculated with the linear �lower curves� and
nonlinear formulations �upper curves�, for a wide range of rs values
�1�rs�6 a.u.�. The values of K�rs� were numerically determined
from calculations of the half angle �1/2, for the different projectiles
and associated isotopes, according to the procedure indicated in the
text. The lines show the corresponding fitting curves.
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K�rs�H =
5.1 � 10−4

rs
0.31 exp�− 0.28rs� , �27�

K�rs�He =
1.2 � 10−3

rs
0.6 exp�− 0.47rs� . �28�

These expressions correspond to hydrogen atoms and
helium, respectively �the same results apply to the isotopes
of these elements� and are shown by the continuous lines in
Fig. 4.

A. Some illustrative examples

To illustrate the magnitude of the EMS effects in real
cases we consider a few examples of interest.

�1� Protons with an energy of 9 keV �v=0.6 a.u.� moving
in a FEG with rs=1.5 �a value which is appropriate for gold
targets� assuming a thickness x=800 a.u.. In this case the
	�1/2	FEG due to electronic interactions becomes 0.8°. This

may be compared with the �1/2 value for protons in gold, for
the same conditions, obtained from the standard MS theory
for atomic interaction �using Sigmund-Winterbon’s approach
�8��: 	�1/2	atomic�37°. It is also useful to compare these val-
ues with Lindhard’s channeling angle �13,9� for the same
case: 	�1/2	channeling�5.2°.

�2� 4 keV muons in a FEG with rs=1.5 and with thickness
x=200 a.u.. In this case we get 	�1/2	FEG=1.8°, while, for the
same conditions we get the corresponding values:
	�1/2	atomic�31° and 	�1/2	channeling�6.3°.

From these examples we conclude that in the case of pro-
ton beams the contribution of electronic interactions to the
multiple scattering may be considered negligible for the case
of random trajectories, and of relative interest for channeling
conditions. On the other hand, in the case of slow muons
�m� /mp=0.113� or pions �m� /mp=0.149� the effect becomes
also small for random trajectories, but it may produce sizable
effects in some channeling studies.

B. Comparison with Bonderup’s estimation

As a final question, we compare the present nonlinear
results with the upper limit estimate predicted by Bonderup
�14�. The transport cross section in Eq. �2� may be calculated
in the nonlinear approach, for a free-electron gas, using the
quantal expression

�tr =
4�

vF
2 � 	

m
�2

�
l=0

�

�l + 1�sin2��l − �l+1� . �29�

Since the density functional values for the phase shifts are
used, the results for �tr obtained here are in perfect agree-
ment with those reported in previous works �17,18,23�.

To obtain the upper limit to the �1/2 values, we use Eq.
�2�, considering also the relation between the half-width at
half maximum �1/2 and the value of ���2�, viz., �1/2

=0.833����2� �0.833 being=�ln 2�. The result may be writ-
ten in the form of Eq. �26� with

K�rs�B = 0.833�8
m

mp

vF

v0

��trnea0. �30�

In Fig. 5 we compare the values of K�rs� obtained from
our calculations for hydrogen and helium �solid symbols�
with the upper bond estimate of Eq. �30� �open symbols�. As
expected, the values from Eq. �30� are significantly larger
than those of the present calculations. But it is interesting to
note that the ratio between Eq. �30� and the present calcula-
tions yield nearly constant values. This means that the de-
pendence with rs predicted by Eq. �30� is a fairly good one.
To illustrate this we have multiplied our results for H and He
by a common factor 2.7 and we compare these values
�dashed and dotted lines� with the prediction of Eq. �30�. As
it may be observed in Fig. 5 the comparison is remarkably
good, and therefore the factor 2.7 yields the ratio between
the upper limit estimate and the precise values obtained here.

V. SUMMARY AND CONCLUSIONS

We have investigated the influence of electronic scattering
processes on the angular dispersion of light atomic projec-
tiles moving through a free-electron gas. We developed a
formulation based on the general multiple-scattering theory
using the nonlinear approach to represent the interactions.

We performed a set of calculations for slow projectiles
and analyzed the main features of the electronic multiple-
scattering process. In particular, we find that �1� The EMS
distribution, given by the function f�� ,x�, satisfies simple
scaling laws with respect to the projectile mass and velocity,
corresponding to angular spreads of the form �1/2
�1/ �M1v�; �2� The EMS distribution is well approximated
by a Gaussian function, and its half-width �1/2 increases with
the square root of the target thickness, �1/2��x. The results
of this approach have been compared with a previous upper
limit estimation made by Bonderup, showing now the exact
magnitude of the electronic MS effects.

FIG. 5. Comparison between the values of K�rs� for hydrogen
and helium, calculated with the nonlinear approach �solid symbols�,
and the upper-limit values estimated by Bonderup in terms of the
transport cross section, Eqs. �2� and �30� �open symbols�. The con-
tinuous lines are the fitting expressions of Eqs. �27� and �28� while
the dashed and dotted lines are the results of the present calcula-
tions, for H and He, multiplied by a common factor 2.7.

C. D. ARCHUBI AND N. R. ARISTA PHYSICAL REVIEW A 72, 062712 �2005�

062712-6



The results of this study are condensed in simple interpo-
lation formulas, such as �27� and �28�, representing the non-
linear results for hydrogen and helium, respectively, which
yield accurate approximations to the half-width at half maxi-
mum, �1/2, in the range of rs values of interest for solid
targets. These analytical approximations may be useful in
further studies using slow ion beams.

As could be expected based on physical arguments, and
from the previous estimations, the magnitude of the elec-
tronic contribution to the multiple scattering of ions in real
materials, in the usual situation of ions moving along random
trajectories through a solid, is very small �as compared with
the atomic multiple scattering�, but they may become impor-
tant in channeling experiments involving light ions or sub-

atomic particles, like muons or pions, as well as in studies
related to the formation and annihilation of bound systems
such as muonium or pionium. Further studies of these effects
by numerical simulations would be of interest.
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