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The complete O��2� correction to the long-range interaction between neutral closed-shell atoms is obtained,
the relation to the asymptotic expansion of the known short-range interaction at the atomic scale is presented
and a general interaction potential that is valid in the whole range of the interatomic distances is constructed.
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The retarded long-range interaction between neutral sys-
tems was first considered by Casimir and Polder in their
pioneering work in �1�. At large distances atoms interact pre-
dominantly by the two-photon exchange with the nonrelativ-
istic dipole interaction −er� ·E� . There were various extensions
of their result. First of all, Feinberg and Sucher in �2� �see
also a longer review in �3�� expressed the two-photon ex-
change interaction �dispersion forces� in terms of the well-
defined physical quantities, the invariant amplitudes which
describe the elastic scattering of a photon by an atom. These
amplitudes are often called dynamic polarizabilities. In this
way the authors obtained a formally exact result, as all rela-
tivistic corrections are included in the dynamic polarizabil-
ities. In the nonrelativistic limit their result reduces to that of
Casimir and Polder. In the limit of large distances their result
is expressible in terms of a static electric and magnetic po-
larizabilities only, similar to the nonrelativistic Casimir-
Polder interaction. The calculation of relativistic corrections
to the dynamic polarizability is not a simple problem. There-
fore, in later works a different approach to dispersion forces
was developed that was based on a reformulation of nonrel-
ativistic quantum electrodynamics. Apart from the rederiva-
tion of the Casimir-Polder result, there were derived closed
formulae for higher multipole interactions such as electric
quadrupole �4–6� and electric octupole �7� for isotropic sys-
tems, magnetic dipole and diamagnetic couplings for chiral
molecules �5�. In this work, using a different reformulation
of nonrelativistic quantum electrodynamics �8�, we present a
systematic derivation of all O��2� contributions to the
Casimir-Polder potential of closed-shell atoms, including
corrections that have not been considered so far. The ob-
tained result is expressible in terms of various corrections to
the nonrelativistic dynamic polarizability, in agreement with
the general result of Feinberg and Sucher in �2�. Moreover,
we present the relation of relativistic corrections to the
Casimir-Polder interaction to the short-range nonrelativistic
expansion and construct an interaction potential which is
valid in the whole range of interatomic distances.

Let us first define the � expansion of the interaction po-
tential in the clamped nuclei approximation. We use natural
units, where c=�=�0=1 and denote by m the electron mass.
The total energy of a system consisting of two neutral atoms
is a function of the fine structure constant � and the distance
R between these atoms

E = E��,mR� . �1�

The nonrelativistic expansion in � depends on the magnitude
of R. According to quantum electrodynamics, if R is of the
order of an atomic size R�1/ �m��, then this expansion at
constant m�R takes the form

E��,mR� = E�2��m�R� + E�4��m�R� + E�5��m�R� + O��6� ,

�2�

where E�2� is the nonrelativistic energy of order m�2 of a
systems of two atoms including Coulomb interactions be-
tween all electrons, E�4� is the leading relativistic correction
of order m�4, which is given by the Breit-Pauli Hamiltonian
�H �9�. We include below only the terms which do not van-
ish for closed-shell atoms:
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where the sum goes over all electrons of both atoms. E�5� is
the QED correction of order m�5. It consists of various
terms, among others the Araki-Sucher term �10–12�, which is
dominating at large atomic distances,
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−
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3
m�5 1

4�
P� 1

�m�rab�3�� + … . �5�

On the other hand, if R is of the order of atomic transition
wavelength, namely, R�1/ �m�2�, then the � expansion at
constant m�2R takes a completely different form

E��,mR� = Efree��� + ECP�m�2R� + ��2�ECP�m�2R� + … ,

�6�

where Efree is the energy of separate atoms, ECP is a Casimir-
Polder potential �1� and ��2�ECP is the leading �2 relativistic
correction, which is the subject of this work. The form of this
expansion results from the long wavelength formulation of
quantum electrodynamics �see Ref. �8��. This relativistic cor-
rection to the interaction energy at large atomic distances is
obtained from the effective interaction HI of an atom with
the slowly varying electromagnetic field �8�*Electronic address: krp@fuw.edu.pl; www.fuw.edu.pl/̃ krp
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where L� =r�� p� , E� =E� �0�, B� =B� �0� are fields at the position of
nucleus, and spin-dependent terms have been neglected as
we consider only closed-shell atoms. The sum in Eq. �7� goes
over all electrons of one atom. For simplicity, we will as-
sume this sum is present implicitly in all the formulas below.
The leading Casimir-Polder interaction comes from the two-

photon exchange with the interaction −er�a ·E� . Using the tem-
poral gauge for the photon propagator A0=0, it is �13�
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and 	-integration is assumed along the Feynman contour.
This integration contour is deformed to imaginary axis by the
replacement 	= i
. The k-integral leads to
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For spherically symmetric states �X
ij =�ij�X and
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This result has been obtained by Casimir and Polder in �1�.
We consider here the �2 correction and represent it as a sum
of five terms:

��2�ECP = �0
�2�ECP + �1

�2�ECP + �2
�2�ECP + �3

�2�ECP + �4
�2�ECP.

�13�

�0
�2�ECP is due to the Breit-Pauli correction to H ,E and state

� in Eq. �12�. For simplicity we consider corrections only to

the atom A; therefore, only one matrix element in Eq. �12� is
to be modified in �0

�2�ECP, according to
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This correction has recently been considered in Ref. �14�. All
remaining corrections to the Casimir-Polder interaction en-
ergy are obtained by modification of a dipole interaction

−er� ·E� by various couplings as given by Eq. �7�. �1
�2�ECP

comes from the quadrupole term −e /2�ra
i ra

j −�ijra
2 /3�E,j

i in
Eq. �7�:

�1
�2�ECP = −

�2

120
�

0

� d


2 �
rmn 2�H − E�

�H − E�2 + 
2rmn�
A

�rl 2�H − E�
�H − E�2 + 
2rl�

B
�� jgik�igjk + �pgik�pgik� ,

�16�

where
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After contracting i , j ,k indices, it becomes
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This result was first obtained by Jenkins, Salam, and
Thirunamachandran in �5�. �2

�2�ECP is the correction that
comes from the term −e /30ra

2ra
i E,j j

i in Eq. �7�. It is very simi-
lar to the dipole-dipole interaction and can easily be obtained
on the basis of Eq. �12�:

KRZYSZTOF PACHUCKI PHYSICAL REVIEW A 72, 062706 �2005�

062706-2



�2
�2�ECP = −

4�2

135�
�

0

�

d
r�
H − E

�H − E�2 + 
2r2r��
A

�r�
H − E

�H − E�2 + 
2r��
B


6e−2
R

R2

��1 +
2


R
+

5

�
R�2 +
6

�
R�3 +
3

�
R�4� . �19�
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i and can be regarded
as another correction to the electric dipole coupling:
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The last correction �4
�2�ECP is due to e2 / �8m2��r�a�B� �2, and

reads

�4
�2�ECP = −

�2

9�
�

0

�

d
�r2�Ar�
H − E

�H − E�2 + 
2r��
B


4

R2

�e−2
R�1 +
2


R
+

1

�
R�2� . �21�

The complete O��2� correction is a sum of Eqs. �14� and
�18�–�21� as given by Eq. �13�. Here, �1

�2�ECP comes from
interaction between the electric dipole and the electric quad-
rupole polarizabilities, �1

�4�ECP is the interaction energy of the
electric dipole polarizability with the magnetic susceptibility,
and ECP+�0

�2�ECP+�2
�2�ECP+�3

�2�ECP is the interaction energy
between electric dipole polarizabilities �E with the relativis-
tic correction ��2��E:
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We have not found in the literature the complete formula for
the leading relativistic correction to the electric dipole polar-
izability of the closed-shell atoms as that in the Eq. �23�.

Let us now consider the large- and small-R limits of the
interaction energy. At large R, the �0

�0�ECP and �4
�2�ECP con-

tribute to the 1/R7 coefficient, but it is only a small correc-
tion on the top of ECP. Much more interesting is a small-R

expansion of ECP and ��2�ECP and its relation to the large-R
expansion of energy as a function of � and m�R. This rela-
tion has been first considered by Meath and Hirschfelder in
�15�. The large-R expansion of E�i��m�R� from Eq. �2� reads
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where Ci
�j� are dimensionless constants. The relation to the

small-R expansion of ECP�m�2R� and ��2�ECP�m�2R� from
Eq. �6� is the following:
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Since both expansions of E�� ,mR� involve the same coeffi-
cients Cj

�i�, one can write the general formula

E��,mR� = Efree��� − �
i,j

m�i Cj
�i�

�m�R� j . �29�

We have checked this by equivalence of Ci
�j� coefficients as

obtained from these two different expansions, and they are
equal to �in atomic units�
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where NA and NB are the number of electrons in the atoms A
and B, respectively. If ��2�ECP includes contributions from
the atom B, then coefficients C6

�2� ,C6
�4�, and C5

�5� should in-
clude corresponding terms obtained by the replacement
A↔B.

The Cj
�i� coefficients allow one to obtain a convenient

form of the interaction potential in the whole region of the
atomic distance R, as long as these atoms do not overlap. The
minimal version of this potential is

E = E�2��m�R� + ECP�m�2R� + m�2 C6
�2�

�m�R�6 , �36�

and the most accurate version using present result is

E = E�2��m�R� + E�4��m�R� + E�5��m�R� + ECP�m�2R�

+ ��2�ECP�m�2R� + m�2	 C6
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In summary, the purpose of this work was the derivation
of a complete �2 correction to the Casimir-Polder potential
in order to obtain a more accurate description of interatomic
interactions in the region where the electron wave functions
from different atoms do not overlap. The obtained result can
be used for the precise calculation of the scattering length
and highly excited vibrational levels of light molecules. Par-
ticularly interesting is the helium dimer which existence has
been confirmed as recently as 1994 �16�. Its dissociation en-
ergy has an extremely small value of 1 mK, while the mean
internuclear distance is as large as 50 Å. Its existence can be
associated to the long-range attraction between the helium
monomers. Since the minor perturbations of the interaction
potential result in significant changes in the description of
the nuclear motion, the potential in the large range of inter-
atomic distances with an accuracy of the order of 1 mK is
needed, which is the magnitude of relativistic and QED ef-
fects �17�.
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