
Magnetic-dipole transition probabilities in B-like and Be-like ions

I. I. Tupitsyn,1 A. V. Volotka,1,2 D. A. Glazov,1 V. M. Shabaev,1,3 G. Plunien,2 J. R. Crespo López-Urrutia,4 A. Lapierre,4

and J. Ullrich4

1Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, 198504 St. Petersburg, Russia
2Institut für Theoretische Physik, TU Dresden, Mommsenstraße 13, D-01062 Dresden, Germany

3Max-Planck Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany
4Max-Planck Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

�Received 11 September 2005; published 14 December 2005�

The magnetic-dipole transition probabilities between the fine-structure levels �1s22s22p� 2P1/2– 2P3/2 for
B-like ions and �1s22s2p� 3P1– 3P2 for Be-like ions are calculated. The configuration-interaction method in the
Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with
negative-continuum spectrum being taken into account. The 1/Z interelectronic-interaction contribution is
derived within a rigorous QED approach employing the two-time Green function method. The one-electron
QED correction is evaluated within framework of the anomalous magnetic-moment approximation. A com-
parison with the theoretical results of other authors and with available experimental data is presented.
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I. INTRODUCTION

During the last years, the precision of measurements of
magnetic-dipole �M1� transitions between the fine-structure
levels in highly charged ions has been continuously in-
creased �1–8�. Since in some cases the M1 transitions are
sufficiently sensitive to relativistic-correlation and quantum-
electrodynamic �QED� effects, this provides good prospects
for probing their influences on atomic transition probabili-
ties.

To date, a vast number of theoretical calculations of
M1-transition probabilities between the fine-structure levels
in highly charged ions have been performed �see, e.g., Refs.
�9–11��. However, none of these works have provided a sys-
tematic analysis of various effects on the transition probabil-
ity. Such an analysis for the �1s22s22p� 2P1/2– 2P3/2 transition
in B-like ions and for the �1s22s2p� 3P1– 3P2 transition in
Be-like ions is given in the present paper.

To calculate the decay rate one requires knowledge of the
transition energy and the matrix element of the transition
operator. Within this work we employ experimental values of
the transition energy, which are measured accurately enough
for the ions under consideration.

To analyze the influence of various effects, we decompose
the transition probability Wi→f into several terms,

Wi→f = Wnr
i→f + �WD

i→f + �WCI
i→f + �Wneg

i→f + �WQED
i→f + �Wfreq

i→f .

Here Wnr
i→f represents the nonrelativistic M1-transition prob-

ability derived employing the LS-coupling scheme. Within
the LS-coupling scheme, the amplitude of the magnetic-
dipole transition is nonzero only between the fine-structure
levels and depends on the quantum numbers L, S, and J of
the initial and the final state �12�. This implies that the con-
tribution of the interelectronic interaction vanishes in the
nonrelativistic limit. The explicit expression for Wnr

i→f is pre-
sented in Sec. II.

The relativistic correction �WD
i→f is obtained by employ-

ing the one-electron Dirac wave functions for the initial and

final states. For the relativistic case the interelectronic-
interaction contribution is nonzero, but it is generally sup-
pressed by a factor ��Z�2 /Z. For instance, in case of B-like
Ar it amounts to about 0.1%. The interelectronic-interaction
correction is, however, rather important for the �1s22s2p�
3P1– 3P2 transition in Be-like ions, where the terms 3P1 and
1P1 are strongly mixed. In this investigation two approaches
are employed for evaluating the interelectronic-interaction
correction. The first one is based on the configuration-
interaction �CI� method in the Dirac-Fock-Sturm basis,
whereas the second one employs perturbation theory with
respect to 1/Z. Utilizing the CI method the relativistic
Hamiltonian is specified within the no-pair approximation
�13–15�. The corresponding contribution to the M1-transition
probability is denoted by �WCI

i→f. The evaluation of this term
is described in Sec. III.

The no-pair Hamiltonian does not account for the
negative-energy excitations in the many-electron wave func-
tion. However, this effect, being dependent on the choice of
the one-electron basis, can become significant �16,17�. In
Sec. IV, the contribution due to the negative spectrum �Wneg

i→f

is derived.
In Sec. V, the interelectronic-interaction correction of first

order in 1/Z is evaluated within a rigorous QED approach
employing the two-time Green function method �18�. To-
gether with verifying the terms �WCI

i→f and �Wneg
i→f to first

order in 1/Z, this provides the contribution �Wfreq
i→f, which

incorporates the 1/Z interelectronic-interaction corrections
of higher orders in �Z.

Finally, �WQED
i→f is the QED correction. The evaluation of

this correction to the lowest orders in � and �Z is described
in Sec. VI.

The main goal of the present work is to evaluate the life-
times of the states �2s22p� 2P3/2 in B-like ions and �2s2p�
3P2 in Be-like ions to utmost accuracy and to investigate the
influence of various effects on the M1-transition probability.
The corresponding analysis is presented in Sec. VII.

Atomic units ��=e=m=1� are used throughout the paper.
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II. MAGNETIC-DIPOLE TRANSITION PROBABILITY

The spontaneous L-pole transition probability from the
initial state i to the final state f reads �19�

WL
i→f =

2�

2Ji + 1�
Mi

�
Mf

�
M

�ALM�2, �1�

where the initial state has the angular momentum Ji, its z
projection Mi, and the energy Ei, and Jf, Mf, and Ef denote
the corresponding quantum numbers and the energy of the
final state. The transition amplitude ALM is defined as

ALM = iL+1� �

�c
�2L + 1�f �TM

L �i	 . �2�

Here TM
L denote the components of the multipole transition

operator TL, which is a spherical tensor of rank L. In the case
of a magnetic transition, TL is proportional to the tensor
product of the Dirac-matrix vector � and the spherical tensor
CM

L =�4� / �2L+1�YLM �19�,

TM
L = − ijL��r/c��� � CL�M

L , �3�

where jL is the spherical Bessel function and �=Ei−Ef is the
frequency of the emitted photon.

The magnetic transition probability can be expressed in
terms of the reduced matrix element of TM

L :

WL
i→f =

2�2L + 1�
2Ji + 1

�

c
��f 
 TL 
 i	�2. �4�

For the magnetic-dipole transition �L=1�, the tensor product
can be written in terms of the vector product

T1 =
1
�2

j1��r/c�
�� � r�

r
=

�2

r
j1��r/c�� , �5�

where �=−e�r��� /2 is the relativistic magnetic moment
operator. Taking into account the first term in the expansion
of j1��r /c� only and turning into the nonrelativistic limit,
one derives the following relation between the M1-transition
operator Tnr

1 and the magnetic moment operator �nr:

Tnr
1 =

�2

3

�

c
�nr. �6�

The nonrelativistic magnetic moment operator is given by

�nr = − �B�L + 2S� , �7�

where L and S are the orbital and spin angular momentum
operators, respectively, and �B= �e � � /2mc denotes the Bohr
magneton.

In the LS-coupling scheme, which is realized in the non-
relativistic case, the magnetic-dipole transition probability is
nonzero only between fine-structure levels with �J= ±1
�12�. The reduced matrix element of Tnr

1 within the LS cou-
pling is given by

�Jf 
 Tnr
1 
 Ji	 = −

�2

3

�

c
�B�Jf 
 �J + S� 
 Ji	

= −
�2

3

�

c
�B�Jf 
 S 
 Ji	 . �8�

Utilizing the general formula for the reduced matrix element
of the spin operator �20� yields the corresponding expression
for the transition probability:

Wnr
i→f =

4�3

3c3 �B
2 �Li,Lf

�Si,Sf
Si�Si + 1��2Si + 1��2Jf + 1�

��Si Li Ji

Jf 1 Si
�2

. �9�

In particular, for the 2s22p3/2→2s22p1/2 transition one can
easily find

Wnr
i→f =

4�3

9c3 �B
2 =

1

3	32.6973500 � 1013 s−1, �10�

where 	 is the transition wavelength in Å. Thus, in the non-
relativistic limit the magnetic-dipole transition probability is
completely determined by the quantum numbers of the initial
and final states.

III. INTERELECTRONIC INTERACTION IN THE BREIT
APPROXIMATION

To evaluate the interelectronic-interaction contributions,
we start with the relativistic Hamiltonian in the no-pair ap-
proximation,

Hnp = 
+H
+, H = �
i

hD�i� + �
i�j

V�i, j� , �11�

where hD�i� is the one-particle Dirac Hamiltonian and the
index i=1, . . . ,N enumerates the electrons. The Coulomb-
Breit interaction operator V�i , j�=VC�i , j�+VB�i , j� is speci-
fied in coordinate space as

VC�i, j� =
1

rij
, VB�i, j� = −

�i · � j

rij
−

1

2
��i · �i��� j · � j�rij .

�12�

The frequency-dependent part of the full QED interaction
operator, which is beyond the Breit approximation and gives
rise to the terms of higher orders in �Z, will be considered in
Sec. V. 
+ is the projector on the positive-energy states,
which can be represented as the product of the one-electron
projectors 	+�i� as


+ = 	+�1� ¯ 	+�N� �13�

together with

	+�i� = �
n

�un�i�	�un�i�� . �14�

Here un are the positive-energy eigenstates of an effective
one-particle Hamiltonian hu,
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huun = �nun, �15�

which can be taken to be the Dirac Hamiltonian hD, the Dirac
Hamiltonian in an external field or the Hartree-Fock-Dirac
Hamiltonian in an external field �13–15�.

In order to determine the space of one-electron functions
n�n=1

M , we employed the combined Dirac-Fock �DF� and the
Dirac-Fock-Sturm �DFS� basis set. Here the index n enumer-
ates different occupied and vacant one-electron states. For
the occupied atomic shells, the orbitals n with n
=1, . . . ,M0 were obtained by the standard restricted Dirac-
Fock �RDF� method, based on a numerical solution of the
radial RDF equations �21,22�. Only the Coulomb part
VC�i , j� of the Coulomb-Breit interaction operator �12� was
included in the RDF Hamiltonian hDF.

The vacant orbitals n with n=M0+1 , . . . ,M were ob-
tained by solving the Dirac-Fock-Sturm equation

�hDF − �n0
�n = �nW�r�n, �16�

which can be considered as a generalization of the method
proposed in Ref. �23� to the relativistic Hamiltonian and to
an arbitrary constant-sign weight function W�r�. For every
relativistic quantum number � we choose an occupied DF
function n0

, which we call the reference DF orbital and �n0
in Eq. �16� is the energy of this orbital. The parameter �n in
Eq. �16� can be considered as an eigenvalue of the Sturmian
operator. Obviously, for �n=0 the Sturmian function coin-
cides with the reference DF orbital n0

. If W�r�→0 at r
→�, all Sturmian functions n have the same exponential
asymptotics at r→�. Therefore, the whole set of eigenfunc-
tions of the Dirac-Fock-Sturm operator forms a discrete set
in the space of one-electron wave functions. The complete-
ness of this basis in the nonrelativistic limit is a well-known
fact. In the relativistic case this problem is more complicated
and we examined the completeness of the pure DFS basis,
which we used in our many-electron atomic calculations, nu-
merically, reproducing exact hydrogenlike wave functions
for the same nuclear charge number Z. It should be noted
that the DFS orbitals are orthogonal with respect to the
weight function W�r� and, therefore, form a linear-
independent basis set. The completeness and linear indepen-
dence of the combined DF and DFS basis was also examined
numerically.

In the nonrelativistic theory the widely used choice of the
weight function is W�r�=1/r, which leads to the well-known
“charge quantization.” In the relativistic case, however, this
choice is not very suitable, since the behavior of the Stur-
mian wave functions at the origin differs from that of the
Dirac-Fock orbitals. In our calculations we employed the
weight function

W�r� =
1 − exp�− ��r�2�

��r�2 , �17�

which, unlike 1/r, is regular at the origin.
To generate the one-electron wave functions un, we used

the unrestricted DF �UDF� method in the joined DF and DFS
basis,

un = �
m

Cmnm. �18�

The coefficients Cmn were obtained by solving the HFD ma-
trix equations

F̂Cn = �nŜCn, �19�

where F̂ is the Dirac-Fock matrix in the joined basis of DF
and DFS orbitals of a free ion. If necessary, an arbitrary

external field can be included in the F̂ matrix. The matrix Ŝ is
nonorthogonal, since the DFS orbitals are not orthogonal in
the usual sense. The negative-energy DFS functions were
included in the total basis set as well. Equation �19� was used
to generate the whole set of orthogonal one-electron wave
functions un�n=1

M .
It should be noted that if even there is no external field in

Eq. �19�, the set of one-electron functions un�n=1
M differs

from the set of basis functions n�n=1
M . For the occupied

states, the UDF method accounts for core-polarization ef-
fects, in contrast to the RDF method. For the vacant states
the difference is more significant, since the DF and DFS
operators are inherently different.

The many-electron wave function �+��JMJ� with quan-
tum numbers �, J, and MJ is expanded in terms of a large set
of configuration state functions �CSF’s� ���JMJ�:

�+��JMJ� = 
+���JMJ� = �
�

c����JMJ� . �20�

The standard configuration-interaction Dirac-Fock �CIDF�
method is used to find the coefficients c�. The CSF’s are
constructed from the one-electron wave functions un, Eq.
�18�, as a linear combination of Slater determinants. The set
of the CSF’s is generated including all single, double, and
triple excitations into one-electron states of the positive spec-
trum.

IV. NEGATIVE-CONTINUUM CONTRIBUTION

Due to some freedom in the choice of wave function set
un�, the positive-energy subspace and the corresponding
projector 	+, Eq. �14�, can be determined in different ways.
This freedom can be used to find the optimum many-electron
wave function �opt within the variational method.

The energy determined by Hamiltonian �11� can be writ-
ten as

E = ���Hnp��	 = ��+�H��+	, �+ = 
+� . �21�

The real orthogonal transformation �rotation� of the one-
electron function space un� modifies the wave function �+

�24�,

�� = exp�T��+, �22�

where the operator T is anti-Hermitian �T†=−T�,

T = �
n�m

Enmtnm, Enm = an
†am − am

† an. �23�

Here an
† and an are the creation and annihilation operators of

electron in the un state. The matrix elements tnm can be ob-
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tained from the variational principle. Then the wave function
�opt satisfies the generalized Brillouin theorem �25�

��opt��an
†am,H���opt	 = 0. �24�

This means that the optimum wave function �opt is invari-
able under single excitations including negative-energy spec-
trum excitations. However, this does not hold for the wave
function �+. Therefore, one should revise the calculation of
the matrix element ��+ �A ��+	 of any one-electron operator
A by admixing the negative-energy spectrum excitations to
�+. This is especially important for so-called “odd” opera-
tors, which mix the large and small components of the Dirac
wave functions. The M1-transition operator T1, Eq. �5�, is
just of this kind. For this reason, the negative-continuum
contribution can be significant and depends on the choice of
the one-electron basis set un� �16,17�.

We consider two equivalent methods for evaluating the
negative-continuum contribution to the matrix elements of a
hermitian one-electron operator A with the wave functions
�+. The first one is based on the Hellman-Feynman theorem
whereas the second one employs the perturbation theory.

The space of the wave functions used to find �opt is in-
variant under the transformation U=exp�iA�, if A is a one-
particle operator. Therefore, one can employ the Hellman-
Feynman theorem �26� to obtain the expectation value of A,

A = � �

��
��opt����H�����opt���	�

�=0
, H��� = H + �A ,

�25�

where it is implied that �A is included in the one-particle
Hamiltonian, hu���=hu+�A. Since the wave function cor-
rection

�� = �opt − �+ = �1 − exp�− T���opt � − �
n�m

Enmtnm�opt

�26�

accounts for single excitations only, the generalized Brillouin
theorem �24� yields

�������H�����opt���	 + ��opt����H���������	 = 0

�27�

and, therefore,

A =
�

��
���+����H�����+���	 − �������H���������	��=0.

�28�

Neglecting the second quadratic term in the equation above
yields

A �
�

��
���+����H�����+���	��=0. �29�

Thus, the negative-continuum contribution can be evaluated
by means of the formula

�Aneg =
�

��
���+����H�����+���	��=0 − ��+�A��+	 .

�30�

An alternative expression for this contribution can be ob-
tained employing the perturbation theory. Using the equation
for the derivative of un���,

� �

��
un����

�=0
= �

m�n

�um�0��A�un�0�	
�n − �m

um�0� , �31�

we obtain

�Aneg = 2�
n

�pos��
m

�neg� �um�A�un	
�n − �m

�am
† an�+�H��+	 .

�32�

Here the indices �pos� and �neg� indicate that the summation
is carried out over the positive- and negative-energy spectra,
respectively.

For the nondiagonal matrix elements, one can derive

�Aneg
i→f =

�

��
���+

f ����H�����+
i ���	��=0 − ��+

f �A��+
i 	

�33�

and

�Aneg
i→f = �

n

�pos��
m

�neg� �um�A�un	
�n − �m

� ��am
† an�+

f �H��+
i 	 + ��+

f �H�am
† an�+

i 	� . �34�

These formulas were used in our calculations of the
negative-continuum contribution to the M1-transition ampli-
tude. It was found that the results obtained by means of Eqs.
�33� and �34� are in a perfect agreement with each other.

V. HIGHER-ORDER INTERELECTRONIC-INTERACTION
CORRECTIONS

A rigorous QED treatment of the interelectronic-
interaction corrections to the transition probabilities can be
carried out utilizing the two-time Green function method
�18�. In Ref. �27� it was done for the 1/Z interelectronic-
interaction corrections in He-like ions. Here we perform the
corresponding calculations for B-like ions. To simplify the
derivation of formal expressions, we specify the formalism
regarding the core electrons as belonging to a redefined
vacuum �for details we refer to Refs. �18,28��. This leads to
merging the interelectronic-interaction corrections of order
1 /Z with the one-loop radiative corrections. The formulas for
these corrections can easily be obtained from the correspond-
ing expressions for the one-loop radiative corrections to the
transition amplitude in a one-electron atom, derived in �18�.
However, the standard electron propagator S�� ,x ,y�, which
enters the equations, must be replaced by
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S̃��,x,y� = S��,x,y� + 2�i�
c

�c�x��c�y���� − �c� , �35�

where the summation runs over all occupied one-electron
states referring to the closed shells. Accordingly, the total
expression is represented by the sum of the pure QED and
interelectronic-interaction contributions, which correspond to
the first and second terms on the right-hand side of Eq. �35�.
As a result, the 1/Z interelectronic-interaction correction to
the M1-transition amplitude in a B-like ion between the ini-
tial state a and the final state b is

�A1M
int = −� �

�c
�3�

c
��

n�b

�bc�I�0��nc	�n�TM
1 �a	

�b − �n

+ �
n�a

�b�TM
1 �n	�cn�I�0��ca	

�a − �n

+ �
n

�bc�I��a − �b��an	�n�TM
1 �c	

�b + �c − �a − �n

+ �
n

�c�TM
1 �n	�nb�I��a − �b��ca	
�a + �c − �b − �n

− �
n�b

�bc�I��b − �c��cn	�n�TM
1 �a	

�b − �n

− �
n�a

�b�TM
1 �n	�nc�I��a − �c��ca	

�a − �n

− �
n

�bc�I��a − �c��na	�n�TM
1 �c	

�b + �c − �a − �n

− �
n

�c�TM
1 �n	�bn�I��b − �c��ca	
�a + �c − �b − �n

−
1

2
�b�TM

1 �a	

���bc�I���b − �c��cb	 + �ac�I���a − �c��ca	�� ,

�36�

where I���=����D�����, I����=dI��� /d�, ��= �1,��, and
D����� is the photon propagator. In the Feynman gauge it
reads

D����,x − y� = − 4�g��� d3k

�2��3

exp�ik · �x − y��
�2 − k2 + i0

,

�37�

where g�� is the metric tensor. In the Coulomb gauge we
have

D00��,x − y� =
1

�x − y�
, Di0 = D0i = 0, �i = 1,2,3� ,

Dij��,x − y� = 4�� d3k

�2��3

exp�ik · �x − y��
�2 − k2 + i0

��i,j −
kikj

k2 � ,

�i, j = 1,2,3� . �38�

In contrast to Ref. �18�, here atomic units and the Gauss

charge unit ��=e2 / �c� are used. Expression �36� incorpo-
rates the Coulomb-Breit part, which was taken into account
by the CI method, together with terms of higher order in �Z,
the so-called frequency-dependent correction. Specifying the
operator I��� within the Coulomb gauge and setting �=0 in
Eq. �36� yields the Coulomb-Breit interaction. In this way we
can exclude the part which has already been taken into ac-
count by the CI method and obtain the frequency-dependent
correction of order 1 /Z as

�A1M
freq =� �

�c
�3�

c
��

n�b

�bc��IC��b − �c��cn	�n�TM
1 �a	

�b − �n

+ �
n�a

�b�TM
1 �n	�nc��IC��a − �c��ca	

�a − �n

+ �
n

�bc��IC��a − �c��na	�n�TM
1 �c	

�b + �c − �a − �n

+ �
n

�c�TM
1 �n	�bn��IC��b − �c��ca	

�a + �c − �b − �n

− �
n

�bc��IC��a − �b��an	�n�TM
1 �c	

�b + �c − �a − �n

− �
n

�c�TM
1 �n	�nb��IC��a − �b��ca	

�a + �c − �b − �n
+

1

2
�b�TM

1 �a	

���bc�IC� ��b − �c��cb	 + �ac�IC� ��a − �c��ca	�� ,�39�

where �IC��a−�b�= IC��a−�b�− IC�0� and the subscript “C”
refers to the Coulomb gauge.

It should be noted that the total 1 /Z interelectronic-
interaction correction given by Eq. �36� is gauge indepen-
dent. This has been confirmed in our calculations to a very
high accuracy. The calculations were performed employing
the B-spline method for the Dirac equation �29�.

VI. QED CORRECTION

QED effects modify the transition probability via the ma-
trix element of the transition operator and via the transition
energy. Since we employ the experimental value for the tran-
sition energy, we have to consider the QED effect on the
transition amplitude only.

The lowest-order QED correction to the M1-transition
amplitude can be derived by correcting the operator of the
atomic magnetic moment for the anomalous magnetic mo-
ment of a free electron. In the nonrelativistic limit it yields

�nr → �a = − �B�L + 2�1 + �e�S� = �nr + ��a, �40�

where

��a = − 2�B�eS , �41�

�e = � �

2�
− 0.328 478 965 . . . ��

�
�2

+ ¯ � . �42�

With the aid of the identity
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�Jf 
 J 
 Ji	 = �Jf 
 �L + S� 
 Ji	 = �Jf,Ji
�Ji�Ji + 1��2Ji + 1� ,

�43�

one can easily find for the fine-structure level transition
��J= ±1�

�Jf 
 ��a 
 Ji	 = 2�e�Jf 
 �nr 
 Ji	 . �44�

Therefore, the QED correction to the M1-transition probabil-
ity is given by

�WQED
i→f =

4�3

3c3

1

2Ji + 1
���Jf 
 ��nr + ��a� 
 Ji	�2

− ��Jf 
 �nr 
 Ji	�2� , �45�

which yields

�WQED
i→f � 4�e

4�3

3c3

1

2Ji + 1
��Jf 
 �nr 
 Ji	�2 � 4�eWnr

i→f .

�46�

QED corrections, which are not accounted for by this for-
mula, are suppressed by a small factor ��Z�2.

VII. RESULTS AND DISCUSSION

The individual contributions to the M1-transition prob-
abilities and the corresponding lifetimes for B-like and Be-
like ions are presented in Tables I and II, respectively. Due to
the smallness of the E2 transition, which is also allowed, the
lifetimes are essentially determined by the M1 transition. In
case of B-like ions, the experimental values of the transition
energy were taken from Ref. �30� for S11+, Cl12+, K14+, and
Ti17+ and from Ref. �31� for Ar13+. As one can see from
Table I the interelectronic-interaction correction �WCI turns
out to be relatively small due to the smallness of the factor
��Z�2 /Z. The most important contributions are given by the
relativistic correction �WD and by the QED correction
�WQED. For Be-like ions, the transition energies were taken
from Ref. �32� for S12+, Cl13+, K15+, and Ti18+ and from Ref.
�31� for Ar14+. In this case the interelectronic-interaction cor-
rection �WCI provides an essential contribution to the total
value of the transition probability. This is due to a strong
mixing of the two terms 3P1 and 1P1. Except for Ar13+ and
Ar14+, the uncertainties of the total transition probabilities are
mainly determined by the experimental uncertainties of the
transition energy. For argon ions, the uncertainty comes
mainly from uncalculated higher-order QED corrections.

In Table III, our results for the lifetime of the �1s22s22p�
2P3/2 state are compared with other calculations and with

TABLE I. The decay rates W �s−1� of the magnetic-dipole transition �1s22s22p� 2P1/2– 2P3/2 and the
lifetimes � �ms� of the �1s22s22p� 2P3/2 state in B-like ions. Numbers in the parentheses give the estimated
error.

S11+ Cl12+ Ar13+ K14+ Ti17+

Energy �cm−1� 13135�1� 17408�20� 22656.22�1� 29006�25� 56243�4�

Wnr 20.37538 47.43068 104.56308 219.4222 1599.635

�WD −0.03542 −0.09302 −0.23145 −0.5436 −5.355

�WCI 0.00637 0.01586 0.03723 0.0802 0.597

�Wneg −0.00159 −0.00396 −0.00929 −0.0206 −0.176

�WQED 0.09451 0.22001 0.48502 1.0178 7.420

�Wfreq 0.00007 0.00019 0.00049 0.0012 0.013

Wtotal 20.439�5� 47.57�16� 104.85�2� 220.0�6� 1602.1�5�
�total 48.93�1� 21.02�7� 9.538�2� 4.546�12� 0.6242�2�

TABLE II. The decay rates W �s−1� of the magnetic-dipole transition �1s22s2p� 3P1– 3P2 and the lifetimes
� �ms� of the �1s22s2p� 3P2 state in Be-like ions. Numbers in the parentheses give the estimated error.

S12+ Cl13+ Ar14+ K15+ Ti18+

Energy �cm−1� 9712�14� 12913�16� 16819.36�1� 21571�20� 42638�4�

Wnr 12.35488 29.03947 64.17056 135.36899 1045.4311

�WD −0.02017 −0.05389 −0.13242 −0.31247 −3.2611

�WCI −0.01302 −0.04909 −0.16457 −0.50484 −10.0481

�Wneg −0.00053 −0.00133 −0.00313 −0.00704 −0.0649

�WQED 0.05731 0.13470 0.29766 0.62792 4.8493

Wtotal 12.38�5� 29.07�11� 64.17�1� 135.2�4� 1036.9�4�
�total 80.79�33� 34.40�13� 15.584�2� 7.398�22� 0.9645�4�
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experiment. It should be noted that the QED correction was
taken into account in Refs. �10,37� and in the present work
only. Besides, different values of the transition energy �,
indicated in Table III, were used in the different calculations.
Since the M1-transition probability W scales as �3, a small
deviation in � can change W significantly. For this reason,
we recalculated the results of Cheng et al. �9� and Fischer
�10� for the �1s22s22p� 2P3/2 state in B-like ions for those
transition energies we have employed in our calculations.
Table IV presents these values with �� �10�� and without ��0

�9�� the anomalous magnetic moment correction and the cor-
responding values ��pres and �pres

0 � obtained in this work. As
one can see from the table, there is excellent agreement be-

TABLE III. The lifetimes of the �1s22s22p� 2P3/2 level in B-like ions calculated in this work with ��pres�
and without ��pres

0 � the QED correction are compared with previous calculations ��theor� and experiment
��expt�. The lifetime values are given in ms. The values of the transition energy �Energy� are presented in
cm−1. Numbers in the parentheses give the estimated error. MCDF, multiconfiguration Dirac-Fock method;
MCBP, multiconfiguration Breit-Pauli method; SS, SUPERSTRUCTURE program; MRCI, multireference relativ-
istic configuration interaction method; RQDO, relativistic quantum defect orbital method.

Ions �pres
0 �pres �Energy� �theor �Energy� Method and ref. �expt and Ref.

S11+ 49.16 48.93�1� �13135� 47.35 �13300� MCDF �9�
49.07 �13115� MCBP �10�
49.33 �13144� MCDF �33�
49.07 �13136� SS �34�
49.26 �13122� MRCI �35�
49.60 RQDO �11�

Cl12+ 21.12 21.02�7� �17408� 20.55 �17565� MCDF �9� 21.2�6� �6�
21.02 �17400� MCBP �10� 21.1�5� �6�
21.19 �17421� MCDF �33�
21.08 �17410� SS �34�
21.19 �17386� MRCI �35�
21.13 RQDO �11�

Ar13+ 9.582 9.538�2� �22656� 9.407 �22795� MCDF �9� 8.7�5� �38�
9.515 �22660� MCBP �10� 9.12�18� �2�
9.618 �22666� MCDF �33� 9.70�15� �4�
9.569 �22653� SS �34� 9.573�4��5� �8�
9.588 �22657� RQDO �11�
9.606 �22636� MCDF �36�
9.615 �22619� MRCI �35�
9.534 �22658� �37�

K14+ 4.567 4.546�12� �29006� 4.509 �29129� MCDF �9� 4.47�10� �5�
4.521 �29044� MCBP �10�
4.583 �29019� MCDF �33�
4.558 �29004� SS �34�
4.587 �28960� MRCI �35�
4.577 RQDO �11�

Ti17+ 0.6271 0.6242�2� �56243� 0.6254 �56275� MCDF �9� 0.627�10� �3�
0.6150 �56465� MCBP �10�
0.6290 �56258� MCDF �33�
0.6254 �56240� SS �34�
0.6289 �56166� MRCI �35�
0.6270 RQDO �11�

TABLE IV. The lifetimes of the �1s22s22p� 2P3/2 level in B-like
ions calculated in this work with ��pres� and without ��pres

0 � the QED
correction are compared with previous theoretical results, recalcu-
lated to the transition energy �Energy �cm−1�� employed in this
paper. The lifetime values are given in ms.

Ions Energy �pres
0 �0 �9� �pres � �10�

S11+ 13135 49.16 49.16 48.93 48.85

Cl12+ 17408 21.12 21.11 21.02 20.99

Ar13+ 22656 9.582 9.581 9.538 9.520

K14+ 29006 4.567 4.567 4.546 4.539

Ti17+ 56243 0.6271 0.6265 0.6242 0.6223
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tween our “non-QED” results ��pres
0 � and those from Ref. �9�

��0�. There is also good agreement between our total results
��pres� and those from Ref. �10� ���. The comparison of our
theoretical results with the experimental data shows gener-
ally a good agreement as well. However, in case of Ar13+

there is a discrepancy between our 2P3/2 lifetime value
9.538�2� ms and the most accurate experimental value
9.573�4��5� ms �7,8�.

Table V shows a fair agreement of our results for the
lifetime of the �1s22s2p� 3P2 state in Be-like ions with cor-
responding results obtained by other authors and with experi-
mental data. We note that the QED correction has not been
considered in the previous calculations cited in the table.

In conclusion, we have evaluated the magnetic-dipole
transition probabilities between the fine-structure levels
�1s22s22p� 2P1/2– 2P3/2 for B-like ions and �1s22s2p�
3P1– 3P2 for Be-like ions. The relativistic, interelectronic-
interaction, and radiative corrections to the transition prob-
ability have been considered. Except for a recent high-
precision lifetime measurement on Ar13+ �7,8� with an

accuracy level on the order of 0.1%, most experimental re-
sults have large error bars greater than 1.5% and, within
these error bars, most of them are in fair agreement with our
theoretical predictions. In case of Ar13+, the disagreement of
our prediction with the high-precision experimental value
amounts to 0.37% of the total transition probability, less than
the value of the corresponding QED correction. At present
we have no explanation for this discrepancy.
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