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We investigate the concentration of multiparty entanglement by focusing on a simple family of three-partite
pure states, superpositions of Greenberger-Horne-Zeilinger states and singlets. Despite the simplicity of the
states, we show that they cannot be reversibly concentrated by the standard entanglement concentration pro-
cedure, to which they seem ideally suited. Our results cast doubt on the idea that for each N there might be a
finite set of N-party states into which any pure state can be reversibly transformed. We further relate our results
to the concept of locking of entanglement of formation.
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I. INTRODUCTION

Entanglement of bipartite states is very well studied and
for pure states, the situation is particularly simple �1�: all
bipartite pure states are equivalent to singlets, as far as their
entanglement is concerned, in the sense that n copies of the
state are reversibly converted into singlets using local opera-
tions and classical communication �LOCC� in the
�asymptotic� limit n→�.

Multipartite entanglement is much less well understood. It
is known that a general multipartite nonmaximally entangled
state cannot be reversibly concentrated into a collection of
singlets between pairs of parties �2,3�. It was conjectured,
however, that in the asymptotic limit every pure multipartite
entangled state can be reversibly converted into combination
of states from a certain minimal reversible entanglement
generating set �MREGS�, which plays the role of a singlet
state in a bipartite case �3�.

In this paper we address the question of whether the
MREGS conjecture really works. We consider perhaps the
simplest nontrivial case—a special kind of nonmaximally en-
tangled three-partite state that was considered by Rohrlich
�4�,

�Rp� = �1 − p�0�A

�0�B�0�C + �1�B�1�C

�2

+ �p�1�A

�0�B�0�C − �1�B�1�C

�2
. �1�

The state was analyzed in more detail in �2�; in particular, its
asymptotic convertibility was discussed leading to the open
question addressed in this paper. It is natural to conjecture
that n copies of �Rp� can be reversibly concentrated into col-
lection of nH�p� Greenberger-Horne-Zeilinger �GHZ�-states
�5� and n�1−H�p�� singlets held between B and C in the
asymptotic limit n→�, where H�p�=−p log2 p− �1
− p�log2�1− p� is the �Shannon� entropy of the probability
distribution �p ,1− p	. In �2� evidence for this conjecture was
given based on the conservation of various quantities in re-
versible procedures. It will also be seen below that this pro-

portion of GHZ’s and singlets would result from the standard
method of entanglement concentration.

Reference �7� contains interesting results for a number of
related questions, for example the optimal rate of extraction
of GHZ states from �Rp� when the number of singlets ex-
tracted is not important.

II. THE STANDARD CONCENTRATION METHOD
APPLIED TO MULTIPARTY STATES

The �standard� quantum entanglement concentration
scheme �1� is inspired by the idea of classical Shannon com-
pression: for example, the concentration of a large number n
of nonmaximally entangled bipartite states

��p��n = ��1 − p�0�A�0�B + �p�1�A�1�B��n �2�

to a smaller number of maximally entangled states

��1/2��k = 
 1
�2

��0�A�0�B + �1�A�1�B���k

�3�

is based on the observation, that the total initial state of 2n
qubits, when expanded in local bases, contains typical terms
of the type

�0��n−k�1�k�A�0��n−k�1�k�B, �4�

where k has a value in the interval �np±O��n��. Here
0��n−k�1�k denotes some particular configuration of k one’s
and n–k zero’s. If the measurement of a total number of 1’s
on one of the sides is performed then the result will most
probably yield k 1’s, where k� �np±O��n��. In this case the
initial nonmaximally entangled state of 2n qubits will be
projected to a maximally entangled state, which contains �k

n�
orthogonal terms of the type �4�. Thus, the state which results
if k 1’s is found is

1

��k
n��i=1

� k
n�

�Pi„0
��n−k�1�k

…�A�Pi„0
��n−k�1�k

…�B, �5�

where the sum runs over all possible permutations Pi of k
one’s and n–k zero’s. For large n the value of �k

n� is approxi-

PHYSICAL REVIEW A 72, 062322 �2005�

1050-2947/2005/72�6�/062322�7�/$23.00 ©2005 The American Physical Society062322-1

http://dx.doi.org/10.1103/PhysRevA.72.062322


mated very well by 2nH�p� �8�. In what follows we will often
omit the argument p of the entropy H�p� and will denote it
just by H.

In other words, by neglecting atypical terms, which ap-
pear with very small probability, we have got a maximally
entangled state with Schmidt number 2nH.

This is, however, only part of the story, because the re-
sulting state is now an entangled state of all 2n particles
which is not partitioned into a direct product of two-particle
maximally entangled states. This is because the state �5�
“lives” in a 2n�2n-dimensional Hilbert space, which is
spanned by 2n orthogonal states of n qubits on each side.
However, Eq. �5� contains only 2nH orthogonal terms in
Schmidt decomposition and, in principle, can be “com-
pressed” to a 2nH�2nH-dimensional Hilbert space. Thus,
n�1−H� qubits on each side are redundant.

To make this explicit Alice and Bob each apply a collec-
tive local unitary transformation

U�P1�0��n−k�1�k�� = �00 ¯ 000��0��n�1−H�,

U�P2�0��n−k�1�k�� = �00 ¯ 001��0��n�1−H�,

U�P3�0��n−k�1�k�� = �00 ¯ 010��0��n�1−H�, �6�

¯

U�P2nH�0��n−k�1�k�� = �11 ¯ 111��0��n�1−H�

on their particles, which rearranges their state to a
2nH�2nH-dimensional subspace of the original Hilbert space
and sets all redundant qubits to some standard state, e.g., the
all �0� state. This local transformation is isomorphic to clas-
sical Shannon compression where 2nH typical sequences
which have a length n are relabeled using 2nH codewords
which have length nH. It is easy to check that the new state
of 2nH qubits is nothing but the direct product of nH sepa-
rate Einstein-Podolsky-Rosen �EPR� states, i.e., Eq. �3�.
Thus, as a result of Eq. �6� the total state �5� of 2n particles
is converted to


 1
�2

��0�A�0�B + �1�A�1�B���nH

� ��0�A�0�B��n�1−H�. �7�

Consider now the following three-particle bipartite state

��p��n = ��1 − p�0�A���B1B2
+ �p�1�A���B1B2

��n. �8�

Here ���B1B2
, ���B1B2

are normalized orthogonal but otherwise
general states of two particles B1 and B2 located on Bob’s
side. The entanglement concentration procedure will work in
this case just as before, since Bob is able to apply all opera-
tions described above working locally with the states
���B1B2

, ���B1B2
of two particles exactly as he would work with

the states �0�B , �1�B of one particle �see Fig. 1�ii��. As a result,
Alice and Bob will be able reversibly to concentrate n copies
of �8� into nH copies of the maximally entangled state

��1/2� =
1
�2

��0�A���B1B2
+ �1�A���B1B2

� , �9�

while the other n�1−H� initially nonmaximally entangled
“triples” are now in the state �0�A���B1B2

. Thus the total state
is


 1
�2

��0�A���B1B2
+ �1�A���B1B2

���nH

� ��0�A���B1B2
��n�1−H�.

�10�

Now suppose that initially Bob gives one of his particles
to Claire,

��p��n = ��1 − p�0�A���BC + �p�1�A���BC��n. �11�

Starting the procedure in the same way as we did in the
case of �8� we will soon get the following analog of �5�:

1
�2nH�

i

�Pi�0��n−k�1�k��A�Pi����n−k���k��BC, �12�

where the sum runs over all possible permutations Pi. From
the point of view of A the procedure continues from here in
the same way, namely Alice can apply a local transformation
�6� on her local qubits. However, B and C must jointly apply
a bipartite analog UBC of �6� on their qubits. This transfor-

FIG. 1. �i� A standard bipartite entanglement concentration
scheme. Alice performs collective measurement on her side fol-
lowed by local unitary transformations UA and UB. The process is
reversible in the asymptotic limit. �ii� The scheme works similarly
in the case when there are two particles �for each state� on Bob’s
side. Bob performs the local unitary transformation UB1B2

on 2n
qubits on his side. The process is reversible in the asymptotic limit.
�iii� 2n qubits initially held by Bob are distributed now between
Bob and Claire. The question is whether Bob and Claire can per-
form UBC using LOCC only.
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mation may be written simply by replacing �0�,�1� with
��� , ��� in �6�,

�P1����n−k���k�� → ��� ¯ �������n�1−H�� ,

�P2����n−k���k�� → ��� ¯ �������n�1−H�� ,

�P3����n−k���k�� → ��� ¯ �������n�1−H�� , �13�

¯

�P2nH����n−k���k�� → ��� ¯ �������n�1−H�� .

As a side effect of this transformation, 2n�1−H� redundant
pairs of B and C will be in the state ���. Thus, if UBC, Eq.
�13�, can be performed then we should get


 1
�2

��0�A���BC + �1�A���BC���nH

� ��0�A���BC��n�1−H�.

�14�

The main question is whether UBC can be achieved by
LOCC. Even if not, it might be achievable using an amount
of entanglement per copy which goes to zero as n→�. In
this latter case we may use some singlets, but a number
which is negligible in the asymptotic limit, and thus the
transformation is still reversible. Thus, we ask what is the
minimal amount of entanglement between B and C needed to
implement UBC using this entanglement and LOCC.

Example I. As a first example let us consider the case
when

���BC = �0�B�0�C,

���BC = �1�B�1�C. �15�

In this case �11� will correspond to nonmaximally entangled
GHZ states

��p��n = ��1 − p�0�A�0�B�0�C + �p�1�A�1�B�1�C��n. �16�

If UBC can be performed then we should get nH copies of
a GHZ state

1
�2

��0�A���BC + �1�A���BC� =
1
�2

��0�A�0�B�0�C + �1�A�1�B�1�C�

�17�

and n�1−H� copies of �0�A���BC= �0�A�0�B�0�C,


 1
�2

��0�A�0�B�0�C + �1�A�1�B�1�C���nH

� ��0�A�0�B�0�C��n�1−H�. �18�

Clearly there is a possible bipartite unitary UBC of the form
UB � UC �UB and UC being of the form �6�� which may be
implemented locally by Bob and Claire. Thus, n nonmaxi-
mally entangled GHZ states can be reversibly concentrated
to nH maximally entangled GHZ states plus n�1−H� direct
products.

Example II. We now arrive at the main point. We consider

the following choices of bipartite states �introduced in �4��:

���BC =
1
�2

��0�B�0�C + �1�B�1�C� ,

���BC =
1
�2

��0�B�0�C − �1�B�1�C� . �19�

This leads to what we call the Rohrlich state �1�, which now
can be rewritten in terms of ��� and ��� as

�Rp� = �1 − p�0�A���BC + �p�1�A���BC. �20�

We note that the state �R1/2� is locally equivalent to a GHZ
state, and the state �R0� comprises a singlet held between Bob
and Claire.

If UBC could be implemented locally in this case then n
copies of �Rp� would be reversibly converted �in the
asymptotic limit� into nH GHZ states and n�1−H� singlets
between Bob and Claire,


 1
�2

 �0�A + �1�A

�2
�0�B�0�C +

�0�A − �1�A

�2
�1�B�1�C���nH

� 
�0�A
1
�2

��0�B�0�C + �1�B�1�C���n�1−H�

, �21�

which is consistent with the conjecture in �2�.
In this paper we show that using the standard concentra-

tion procedure such a transformation is impossible. Our con-
clusion follows from examination of the amount of nonlocal-
ity in UBC. We find that it is not negligible, but proportional
to n as n→�.

Here we use the following method in order to find the
amount of nonlocality in UBC �see also �6��. We act with UBC
on a test state ��in

test�BC,

UBC��in
test� = ��out

test� , �22�

where the test state is a superposition of basic input states in
�13�. We denote the amount of nonlocality between B and C
possessed by ��in

test�BC and ��out
test�BC by Ein

test and Eout
test, respec-

tively, where E=S�TrB�������=S�TrC������� is the von
Neumann entropy of the reduced density matrix. If
��in

test�BC , ��out
test�BC possess different amount of entanglement,

then UBC is nonlocal. The amount of nonlocality in UBC is
not less than the entanglement difference between the two
states EU	 �Ein

test−Eout
test� �acting on different test states UBC

may produce different amounts of entanglement�.

III. AN EXAMPLE: n=4

It turns out that in the nonasymptotic case of n=2 this
transformation can be implemented by LOCC. Indeed,

������ → ������ ,

������ → ������ ,

is nothing but a partial controlled-NOT �CNOT� transformation
on logical bits encoded nonlocally in the states ��� , ��� fol-
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lowed by a NOT on the second logical qubit. It can be easily
checked explicitly that this nonlocal CNOT transformation
can be built from local CNOT gates.

However, for n
2 this transformation cannot be imple-
mented by LOCC �6�. Let us illustrate this for n=4. Consider
the case of a single ���. Here two qubits are redundant on
each side and UBC maps the four possible terms as follows:

UBC������ = ������ ,

UBC������ = ������ ,

�23�
UBC������ = ������ ,

UBC������ = ������ ,

i.e., two last pairs are in the ��� state while two first pairs
carry the information about the four possible inputs.

It is useful to consider the action of UBC, defined in �23�,
on a superposition. In particular, UBC will transform the fol-
lowing test state:

��in
test�BC =

1

2
�������BC + ������BC + ������BC + ������BC�

�24�

to the state

��out
test�BC =

1

2
�����BC + ����BC + ����BC + ����BC�����BC

= ����BC + ���BC�����BC + ���BC�����BC. �25�

If UBC could be implemented by a local transformation
�i.e., if UBC=UB � UC� then the entanglement Ein

test must
equal Eout

test. We now show that this is not the case.
Ein

test may be calculated by noting that the computational
basis for Bob and Claire is a Schmidt basis. For any binary
string b� �0,1	4, the term �b�B�b�C occurs in the superposi-
tion �24� with an amplitude which depends only on the num-
ber, i, of 1’s in the binary string b. Let us call the amplitude
of a term with i 1’s, �i. Then ��0 ,�1 ,�2 ,�3 ,�4�= � 1

2 , 1
4 ,0 ,− 1

4 ,
− 1

2
�, thus the entanglement Ein

test=−�i=0
4 � i

4��i
2 log2��i

2�
=3 ebits. The final state ��out

test�BC clearly has Eout
test=2 ebits.

We note, for future use, that the four terms ����BC, ����BC,
����BC, and ����BC that emerge from the compression add up
in such a way that their superposition is not entangled being
a product of two copies of ����BC+ ���BC�, each of them being
unentangled. The only entanglement comes from the “fac-
tored out” states ����BC. Thus we conclude that no unitary
UBC which acts as �23� can be of the form UB � UC.

Since ��out
test�BC , ��in

test�BC possess different amounts of en-
tanglement, we cannot claim that in general reversible en-
tanglement concentration is possible. It might be the case,
however, that in the asymptotic limit the ratio �Ein
−Eout� /Ein goes to zero. Thus, our next step is to find out how
�Ein−Eout� grows with n.

IV. CALCULATION OF THE ENTANGLEMENT
DIFFERENCE FOR GENERAL n

We have used a combination of analytical and numerical
techniques to find the �Ein−Eout� vs n dependance.

First we derive the formula for the entanglement pos-
sessed by ��in

test�BC as a function of n for the given ratio p
=k /n, where k is the number of �’s. As the generalization of
�24�, we consider the following test state:

��in
test�BC =

1

��np
n � �

j

� np
n �

�Pj����n−k���k��BC, �26�

where the sum runs over all possible permutations Pj of k �’s
and n−k �’s in n places.

As in the case of n=4 the computational basis for Bob
and Claire is a Schmidt basis and for any binary string b
� �0,1	n, the term �b�B�b�C occurs in the superposition �26�
with an amplitude which depends only on the number i of 1’s
in the binary string b. Let us denote, as before, the amplitude
with i 1’s, �i. Then the entanglement is

Ein
test = − �

i=0

n 
n

i
��i

2 log2��i
2� , �27�

where

�i =
1

�2n�np
n � �

x=max�0,i−�1−p�n�

min�i,np�

�− 1�x
 n − i

np − x
�
 i

x
� . �28�

The entanglement Eout
test is straightforward to compute in

the case that �k
n� is an integer power of 2. �k

n�=2Nexact, say. In
this case, as in Eq. �25�, ��out

test�BC is �up to normalization� a
product of two terms; the first term is a product of Nexact
copies of ����+ ���� and the second is a product of n−Nexact

copies of ���. Thus, since ���+ ��� is unentangled, the en-
tanglement is

Eout
test = n − Nexact = n − log2
n

k
�

� n − log2
 n

np
� � n�1 − H�p�� . �29�

The case when �k
n� is not an integer power of 2 is more

involved to analyze. However a similar situation arises in the
standard bipartite situation �1�. One has n copies of
�1− p�0�A�0�B+�p�1�A�1�B and Alice projects onto a state
with a given number, k, of 1’s. In this case the issue is that
Alice’s projection typically results in a state with a Schmidt
number which is not an integer power of 2. Thus one cannot
immediately interpret the state as a certain number of sin-
glets held between Alice and Bob. However, as shown in �1�,
by taking batches of n copies of the state �M batches, say�,
one can always arrange things so that the total state of the M
batches is as close as we like to a state with a Schmidt
number an integer power of 2. A similar argument can be
made in our situation. Details are given in the Appendix. The
result is that, just as in the case where �k

n� is an integer power
of 2, Eout

test�n�1−H�p�� with high probability.
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Using these expressions we have calculated Ein
test and Eout

test

for different values of p and n. Figure 2 gives numerical
results for Ein

test ,Eout
test as a function of n for p=0.8. A linear

dependance �Ein
test−Eout

test��0.466n is obtained. Our calcula-
tions showed a similar behavior for other values of p. The
calculated slopes �Ein

test−Eout
test� /n for several values of p are

plotted in Fig. 3. We conclude, therefore, that since the ratio
�Ein

test−Eout
test� /Ein

test is constant for given p, the entanglement
concentration of �Rp�-states cannot be performed reversibly
using this standard protocol even in the asymptotic limit.

V. LOCKING OF ENTANGLEMENT OF FORMATION AND
THE QUESTION OF (IM)POSSIBILITY OF

REVERSIBLE CONCENTRATION

Reference �2� provides us with necessary criteria for ex-
istence of a reversible transformation of multipartite en-
tanglement. The entropy of entanglement for all bipartite par-
titions and the relative entropy of entanglement for any two
parties must remain constant. In particular, for a three-partite
state, six quantities must be conserved; von Neumann entro-
pies of three reduced density matrices S��A�, S��B�, and
S��C�, and relative entropies of three bipartite reduced den-
sity matrices Ere��AB�, Ere��BC�, and Ere��AC�.

The bipartite entanglement EA�BC�=S��A�=nH�p� and
EB�AC�=EC�AB�=S��B�=n possessed by the state �21� is equal
to the entanglement possessed by n copies of the initial state
�20�. Indeed, the fact that this hypothetical reversible con-
centration procedure is consistent with these constraints, as
noted in �2�, was a main motivation for this paper.

We note, however, that another measure of entanglement,
the entanglement of formation EF �9�, would not be con-
served in this hypothetical reversible transformation. Indeed,
in our case EF can be easily calculated using definitions and
results of �9�, and for the initial state EF��BC

in �=nH� 1
2

+�p�1− p��, while for the final state EF��BC
out�=n�1−H�p��.

Here we used the result from �10� that the EF of mixtures of
Bell-states is additive. In general, the question of additivity
of the entanglement of formation is still open.

Although, EF is not conserved in our hypothetical trans-
formation, this does not automatically rule out the transfor-
mation. Indeed the entanglement of formation EF��BC� can
be increased by assistance from Alice. However, an impor-
tant question is how much must Alice pay �in destroying her
state� in order to increase EF��BC�. One is tempted to assume
that �
S��A��	 �
EF��BC��, i.e., that if Alice gains one bit of
information from her system �by measurement�, then she
cannot help Bob and Claire increase their EF by more than 1
e-bit. If this were the case it then follows that �Rp� cannot be
reversibly concentrated to GHZ’s and EPR’s by any method,
because Alice would need to destroy her entanglement with
BC by n�H� 1

2 +�p�1− p��+H�p�−1	.
On the other hand, very recently, the effect of locking of

entanglement of formation �11� was discovered. For some
states �BC the entanglement of formation EF��BC� can be in-
creased by much more than the information received from
Alice. In principle, a single bit from Alice can result in an
increase of EF��BC� by an arbitrarily large amount. This of-
fers the possibility that in our case Alice need not destroy her
entanglement with BC but still allow for the required in-
crease in EF��BC�, and hence it might be possible to have
reversible transformation of �Rp�-states into GHZ’s and
EPR’s.

We note, however, that if the latter scenario were true, this
would be an example of locking of EF very different from
the original example analyzed in �11�. The example in �11� is
of a specially constructed state, while in our case the state is
simply a product of GHZ’s and EPR’s. Furthermore, we are
considering an asymptotic situation �blocks of states� while
the example of �11� is for a single state.

VI. DISCUSSION

In the present paper we analyzed only one particular
method, “the standard method,” for concentrating entangle-
ment in the case of Rohrlich states. Using this procedure,
reversible concentration of �Rp� into GHZ’s and singlets is
not possible. What can we conclude from this?

First of all, although the state �Rp� was chosen precisely
because it seemed suited to concentration via the standard
protocol and it is hard to believe that other methods could do
better, that is still an open possibility. In this context we
make a number of observations;

FIG. 2. �Color online� Entanglement as a function of the number
of copies, n, for p=0.8. Ein

test is computed numerically from �27� and
�28�; the values of n were chosen so that np was an integer. For Eout

test

we have plotted n−log2�np
n �. �The validity of this approximation is

discussed in detail in the text.�

FIG. 3. �Color online� The numerical results for �Ein
test−Eout

test� /n
as a function of p.
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�a� We note that in the bipartite case the task is essentially
symmetric under interchange of the roles that two parties
play in the protocol. This is not the case for three-partite �Rp�
states �20�. If the parties interchange their roles then two
schemes might appear as essentially different. The standard
method that we consider here is of an “A→ �BC�” type, i.e.,
Alice performs a collective local measurement on her side,
then reports the result to Bob and Claire, who are required to
complete the protocol by collective local unitaries on their
sides. Other methods, e.g., “B→ �AC�” type, are beyond the
scope of this paper.

Is the “A→ �BC�” method presented here optimal
amongst all possible A→ �BC� schemes? Optimality of the
standard method in the bipartite case follows from its revers-
ibility. Since the same method becomes irreversible when
applied to three-partite �Rp� state, we cannot use the same
argument to show its optimality. Can we claim that the stan-
dard method we use here is the most general method one can
use? �If it is, then its optimality will follow.� In the most
general terms, the task is to transform �Rp��n into Eq. �21�. In
the asymptotic limit �Rp��n almost entirely lies in its typical
subspace, i.e.,

�Rp��n � ��� = �
k=np−O��n�

np+O��n�
1

�2nH

��
i

�Pi�0��n−k�1�k��A�Pi����n−k���k��BC.

�30�

Alice’s local collective measurement projects ��� into a sub-
space of the typical subspace, i.e., into the state �12� with a
particular value of k. The only way to transform �12� to �21�
is to “rename” the states. This is exactly what UBC does.
Thus, UBC is the most general operation needed to convert
�12� into �21�. However we have not ruled out the possibility
that a different measurement done by Alice could project ���
into a state which might be converted into �21� using a

“cheaper” ŨBC.
�b� It is worth noting, that the standard method presented

here has features which seem undesirable in certain regimes.
For example, let us consider the situation when initially Al-
ice, Bob, and Claire share n pairs �20� which are already
maximally entangled, i.e., p=0.5. Clearly in this case they
should not do anything. However if they apply the concen-
tration protocol, then they will consume approximately
0.56n ebits as can be seen from Fig. 3. It is not clear, how-
ever, whether this inefficiency is an essential feature of any
�Rp�-state concentration protocol, or only of our method.

�c� Using the standard method we required that the final
state should be exactly given by singlets and GHZ’s. This
task demands that Bob and Claire must use a significant
amount of entanglement to implement the required UBC
transformation. It is possible, however, that if we accept a
final state that is only approximately equal to a combination
of singlets and GHZ’s �where the precise details of the qual-
ity of the approximation needs to be defined appropriately�,
the nonlocality needed by Bob and Claire becomes negligi-
bly small.

Second, it might of course be possible that the states �Rp�
can be reversibly concentrated to members of three-party
MREGS other than GHZ’s and singlets. This is possible de-
spite the fact that the concentration into EPR’s and GHZ’s is
so natural, both because this is what the standard method
suggests as well as the entropy considerations in �2�.

Third, of course, it is also possible that the reversible
concentration of �Rp� and multipartite states in general is not
possible.

VII. CONCLUSION

We have analyzed the most natural way to concentrate
multiparticle entanglement in arguably the simplest non-
trivial case. We showed that the standard method does not
work. This does not, however, settle the question. There
might be other methods that work, there might be other
MREGS than the one we have considered, or, of course,
concentration might fail altogether. Despite the partial nature
of our results, we feel that our analysis leads to a much better
understanding of the structure of this problem and has impli-
cations for other areas of quantum information.
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APPENDIX: THE ENTANGLEMENT OF THE TEST STATE

In the text in Sec. IV we noted that when Alice measures
her system, she will find k 1’s out of a total of n, but that �k

n�
may not be an integer power of 2. The computation of Eout

test is
simple when �k

n� is a power of 2; and with high probability k
will be close to np and therefore Eout

test�n�1−H�p��. If �k
n� is

not an integer power of 2 then we need to adapt the proce-
dure in order to get direct product of perfect GHZ’s. Here we
show that when we do so, the leading order behavior is still
that Eout

test�n�1−H�p�� with high probability.
We will follow the standard bipartite concentration proce-

dure �1� and take M batches with n states in each batch.
Measurement of the ith batch yields ki one’s. Let DM denote
the accumulated product �i=1

M �ki

n �. We continue measuring
batches of n states until DM is in the interval �2l ,2l�1+���,
for some integer l and some small fixed �. The expected
number of batches is 1 /�, and the expected total number of
states in the ensemble is, therefore, N=n /�.

UBC acts on the complete set of batches. Each term is a
string of log2 DM qubit pairs; each qubit pair is in the state
��� or the state ���. UBC transforms �“compresses”� each
string to one in which the trailing qubits are all in the state
��� �cf. Eq. �23��.

As in the body of the text, we will bound the entangle-
ment in UBC by considering its action on a test state. We take
as a test state the tensor product of the bipartite test states
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used in the text, one for each batch of n pairs:

��in
test� = ��in

test�k1�� � ��in
test�k2�� � ¯ � ��in

test�kM�� .

�A1�

The entanglement of ��in
test� is the sum of the entanglement of

all states ��in
test�ki��BC, which in the asymptotic limit is just n

times the entanglement of a single ��in
test�k��BC with k=np,

which we calculated numerically in the body of the text.
��out

test� is a product of two terms

��out
test� = ��M� � ���� ¯ �� , �A2�

where

��M� =
1
��

������� ¯ ��� + �� ¯ ��� + ¯ + �� ¯ ����

+ ������ ¯ �� + ¯ + ��� ¯ �� ¯ ��� , �A3�

where � is a normalization factor and equals the total number
of terms and lies between 2l and 2l�1+��, i.e., �=2l�1+���,
where 0�����. The number of �’s in the second term of
�A2� will be close to Mn�1−H�=N�1−H� with high prob-
ability.

Thus ��M� can be written

��M� =� 1

1 + ��
��1� +� ��

1 + ��
��2� , �A4�

where

��1� =
1

�2l
������ ¯ ��� + ¯ + �� ¯ ���� �A5�

contains the first 2l terms and

��2� =
1

���2l
������ ¯ �� + ¯ + ��� ¯ �� ¯ �� �A6�

the remaining ��2l terms ���1� and ��2� are orthogonal and
normalized�.

We now use the fact �12� that for any two bipartite pure
orthogonal states ��1� and ��2�, the entanglement of the su-
perposition ���1�+���2� satisfies

E����1� + ���2�� � 2����2E��1� + ���2E��2� + H����2�� .

�A7�

The entanglement of ��1� is 1 ebit, while the entangle-
ment of ��2� is at most N.

Also �� /1+����, 1 /1+���1, and H����1, thus Eq.
�A7� shows that the entanglement of ��M� satisfies

E���M�� � 2�1 + �N + 1� = 2��N + 2� . �A8�

Thus the entanglement per batch that ��M� contributes is
2��N+2���2n� �recall that the expected number of batches
is 1 /��. However, as we have observed earlier, the expected
number of �’s in the second term in Eq. �A2� is N�1−H�, so
the entanglement per batch associated with this second term
is expected to be N�1−H���n�1−H�. Thus the entangle-
ment of ��M� is negligible, just as it was when �k

n� was an
integer power of 2, and so the expected entanglement per
batch will be n�1−H�.
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