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Quantum computation with diatomic bits in optical lattices
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We propose a scheme for scalable and universal quantum computation using diatomic bits with conditional
dipole-dipole interaction, trapped within an optical lattice. The qubit states are encoded by the scattering state
and the bound heteronuclear molecular state of two ultracold atoms per site. The conditional dipole-dipole
interaction appears between neighboring bits when they both occupy the molecular state. The realization of a
universal set of quantum logic gates, which is composed of single-bit operations and a two-bit controlled-NOT

gate, is presented. The readout method is also discussed.
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I. INTRODUCTION

Quantum computers based upon the principles of quan-
tum superposition and entanglement are expected to provide
more powerful computation ability than classical ones in the
algorithms such as Shor’s factoring [1] and Grover’s search-
ing [2]. Successful implementation of quantum information
processing (QIP) would also have significant impact on
many-body quantum entanglement [3], precision measure-
ments [3,4], and quantum communications [5]. To realize
QIP, many schemes of quantum circuits have been proposed
including those based on trapped ions [6], nuclear magnetic
resonance [7], cavity quantum electrodynamics [8], linear
optics [9], silicon based nuclear spins [10], quantum dots
[11], and Josephson junctions [12]. Due to the long coher-
ence times of the atomic hyperfine states and well-developed
techniques for trapping and manipulating ultracold atoms in
optical lattices [13], quantum computation schemes utilizing
neutral atoms become particularly attractive [14,15].

To realize a set of universal quantum logic gates with
neutral atoms [16], the coupling between atomic bits must be
strong enough for inducing entanglement. One of the sug-
gested coupling mechanisms is the magnetic dipole-dipole
interaction between single atoms trapped in different sites of
spin-dependent optical lattices [17]. However, due to the
very small magnetic dipole moment, one has to drive two
atoms very close together by shifting the spin-dependent op-
tical lattice potentials [17]. If the distance between two
atomic bits is fixed and not very short, one has to induce
sufficiently large electric dipole moments with auxiliary la-
sers [ 18] or other methods. Another possibility is to use neu-
tral diatomic molecules with sufficiently large electric dipole
moments [19]. However, the electric dipole-dipole interac-
tion between molecules cannot be controllably switched off
and on. This lack of control requires additional refocusing
procedures to eliminate the effects of the non-nearest-
neighboring couplings [19].

Recently, applying the techniques of Raman transition,
the single-state molecules from atomic Bose-Einstein con-
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densate [20], state selective production of molecules in opti-
cal lattices [21] and optical production of ultracold hetero-
nuclear molecules with large electric dipole moments [22]
have been realized successfully. These experiments provide
the potential possibility to perform quantum computation us-
ing diatomic bits with optically induced atom-molecular co-
herence. The atom-molecular coherence can also be induced
by a magnetic field Feshbach resonance [23].

In this article, we suggest a new scheme for quantum
computation based upon diatomic qubits with conditional
electric dipole-dipole interactions. The qubits are realized by
trapping neutral Bose-condensed atoms of two different spe-
cies in an optical lattice and driving the system into a Mott
insulator regime with only two atoms (and only one atom of
each species) per site. Application of the well-developed
technique of Raman transitions between the free atomic state
and a bound molecular state at each lattice site [20] can
ensure a well-defined two-state behavior of the diatomic sys-
tem at each site, and hence the qubit states can be encoded
by these two states. For certain atomic species, the ground
heteronuclear molecular state would naturally possess a large
electric dipole moment. Due to the dipole-dipole interaction
between dipolar molecular states in neighboring wells, the
two-bit phase gate can be naturally realized by free evolu-
tion. This dipole-dipole interaction is conditional upon
neighboring qubits occupuying molecular states, and can be
controllably turned on and off. Combining the two-bit phase-
gate with the single-bit Raman transitions, one can success-
fully implement a set of universal gates. The trapping and
state selective production of molecules in optical lattices [21]
enables an excellent scalability of the processor to a lot of
qubits.

II. QUANTUM COMPUTATION SCHEME

Let us consider two different species of Bose-condensed
atoms loaded into a one-dimensional optical lattice with the
potential V(z)=V,, cos*(kz), see Fig. 1(a). If loaded adiabati-
cally, the atoms will occupy only the lowest Bloch band. For
sufficiently strong intensity of the laser that forms the optical
lattice potential, the tight-binding limit is reached. Under
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FIG. 1. (Color online) Scheme of quantum computation using
diatomic qubits with conditional dipole-dipole interaction. (a) Di-
atomic qubits in one-dimensional optical lattices. The dipole-dipole
interaction appears when neighboring bits occupy molecular states.
(b) Single-bit operation with optimally controlled processes sand-
wiched Raman transition (see text). (c) Read-out with photon scat-
tering (see text).

these conditions, the system obeys the following Hamil-
tonian:

H=-, (taa:-raj + tbbjbj + th:-rcj + h.c.)
(ij)
+ E Q[(az.b;.ci + Cjaib[) + E Dijncincj
i (i.j)
a,b,c

+ > E (Ut i(ng = 1)/12] + E (Uapnainpi + Ugeltgift i

+ chnbinci . (1)

Here, a| and b} (a; and b;) are bosonic creation (annihilation)
operators for atoms on site i, clT (c;) are corresponding
operators for molecules on site i, and n,=x k; with
(k=a,b,c) are particle numbers. The symbol (i, j) represents
summing over the nearest-neighbors and h.c. denotes the
Hermitian conjugate terms. The first term describes the tun-
neling between neighboring sites with the tunneling strength
t.. The second term corresponds to the coupling between
atoms and molecules with Rabi frequencies ();. The third
term is the electric dipole-dipole interaction between mol-
ecules with the coefficients D;; determined by the dipole mo-
ments and the lattice spacing. The last two terms describe the
inter- and intra-component scattering with the coefficients
U, determined by the s-wave scattering lengths.

A. Initialization

To initialize the processor, one can ramp up the potential
depth after the two species of ultracold atoms are loaded into
the optical lattice. For a sufficiently deep potential, the Mott
insulator phase with |n,;=1,n,;=1 ,nc,:O)g for every site can
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be easily obtained [24]. Here, F denotes the Fock states, and
G denotes the ground states. Raman pulses can coherently
couple the trapped atoms in the scattering state |110>§5 and
the diatomic heteronuclear molecular ste |001)% at each site,
which can therefore encode the qubit states [0) and |1), re-
spectively. The Mott insulator state in the absence of cou-
pling fields corresponds to the qubits state [000...).

B. Universal set of quantum logic gates

By properly choosing the atomic species, the hetero-
nuclear molecules, such as RbCs and KRb [22], appear with
very large electric dipole moments. By combining the tech-
niques of coherent Raman transition and optimally controlled
process (OCP) [25], the limit of Franck-Condon principle
can be overcome. The single-bit operations (i.e., preparation
of an arbitrary superposition of the atomic state |110>§ and
the ground molecular state |OOl>‘§) can be realized with a
Raman pulse sandwiched by two OCPs, see Fig. 1(b). The
first OCP transfers the ground molecular state to an excited
one, the Raman pulse realizes the required superposition of
the excited molecular state and the unbounded state of at-
oms, and then the second OCP transfers the excited molecu-
lar state back to the ground one.

The core task of quantum computation is to realize a set
of universal quantum logic gates, such as single-bit opera-
tions combined with two-bit controlled-NOT gates [16]. As
shown in Fig. 1(b), the single-bit operations can be per-
formed with optical stimulated Raman processes. A R, ()
pulse will transfer |0) (or [1)) to [1) (or |0)), and a R}iTr/Z)
pulse will transfer [0) (or [1)) to (|0)+[1))/v2 [or
(=|0)+|1))/+2]. When all laser frequencies are detuned far
from the transition frequencies to the excited molecular state,
the excited molecular states will not be populated.

Because of the short distance (an order of a wavelength in
an optical lattice) between neighboring bits and the same
transition frequency for all bits, it is very difficult to selec-
tively address a particular qubit by focusing the laser beams
only on a particular site. Fortunately, similar to the well-
developed techniques of gradient magnetic field in nuclear
magnetic resonance, the transition frequencies for different
bits can be distinguished by applying an external electric
field [19],

dE\ . R
Eext= E0+Zd_Z ex=(EO+gZ)ex’ (2)

in the direction e, perpendicular to the lattice direction
e., with a gradient g along the lattice direction e.. To domi-
nate the system, the external electric field must satisfy the
condition,

R N —dn.
Min(E. ) > E,|= | 2 — 5] 0
o ' j#Ei 477"50|”(] - l)|3

Here, Eiim
molecules in the neighboring site, d; is the electric dipole

moment for a single molecule on the jth site, r is the distance
between two nearest-neighboring sites, and the molecular oc-

is the internal electric field on site i created by the
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TABLE I. Difference between transition frequencies of nearest-
neighbor bits with g=1.0 V/cm? and r=420 nm. The related values
for electric dipole moments are obtained from [26].

Na K Rb Cs

AuXY) (Hz) (Hz) (Hz) (Hz)
Li 70.41 464.97 548.66 728.00

Na 365.33 442.38 611.10

K 85.02 255.07

Rb 167.39

cupation numbers n.; are either O or 1. The difference be-
tween transition frequencies of nearest-neighbor bits

_AE,d _gdr

A s
5% %

(4)

increases with the gradient. Thus, for a sufficiently large gra-
dient, the selective addressing can be implemented by
properly choosing frequencies of the laser fields. In Table I,
we show Av for different diatomic bits XY (X=Li, Na, K,
and Rb; Y=Na, K, Rb, and Cs) with g=1.0 V/cm® and
r=420 nm corresponding to the optical lattices formed by a
laser with wavelength A=840 nm [21]. All Av are in order of
100 Hz which are large enough to guarantee selective ad-
dressing a particular qubit without changing its neighbors.

To implement two-bit gates, one has to switch on the con-
ditional dipole-dipole interaction between molecular states of
neighboring bits

Tt J (5)

U daey|r(j— i)

In this formula, we have assumed that both dipole moments
are oriented along the external electric field. Because of the

dominant strength of E,,,, the electric dipole moments for the
molecular ground state in different lattice sites have the same
direction. In contrast to the quantum computation schemes
utilizing polar molecules [19], the non-nearest-neighbor in-
teractions can be switched off locally by transferring the
non-nearest-neighbor bits into free atomic states. That is, the
conditional dipole-dipole interaction D;;n.n,; is switched off
when the molecular occupation numbers n,; or n.; equal to
zero. The controllability of these dipole-dipole interactions
removes the need for the refocusing procedure [27] which
eliminates the effects of non-nearest-neighbor interactions
[7,19].

Now let us analyze the realization of two-bit phase gates
according to the dynamics governed by the Hamiltonian (1)
with parameters in deeply insulating region of two different
atoms or a molecule per site. Due to the dipole-dipole inter-
action only existing between molecular states, in free evolu-
tion the quantum logic state |11) will naturally acquire a
phase shift. That is, an arbitrary two-bit state will be trans-
formed as follows:
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TABLE II. Possible numbers of controlled-NOT gates per
second.

N(XY) Na K Rb Cs
Li 1.14X10° 499x10* 6.94x10* 1.22x10°
Na 3.08Xx10*  4.51x10*  8.62%x10*
K 1.66X10°  1.50x 10*
Rb 6.46 % 103

Cool00) + Cy|01) + Cy[10) + Cyy[11)
— Cpol00) + Coi[01) + C1[10) + Cyy explig)|11), (6)
with the phase shift
Dt d,dyt
o=z - 172

= , 7
ho Amwehr’ @

determined by the coupling strength D, and the evolution
time 7. Here the coefficients C;; (i,j=0,1) denote the prob-
ability amplitudes, and d, , are electric dipole moments.

With the phase gate, it is easy to prepare four Bell states
and construct_a controlled-NOT gate [28]. The Bell state
(|00)+|11))/2 can be prepared from the initialized state |00)
(Mott insulating phase with two atoms per site) with the
following steps: (i) A two-bit 77/2 pulse, the initialized state
is transferred into %(|OO>+|01)+|10)+|11)); (ii) a 7 phase
gate, the state freely evolves to 3(|00)+|01)+|10)
+exp(im)|11)); and (iii) a single-bit 7/2 pulse for the first
qubit. The other three Bell states can be obtained from this
state by free evolution (7 phase gate) or single-bit operation
(single-bit 7 pulse). It is well known that the controlled-NOT
gate can be constructed by two target-bit Hadamard gates
sandwiching a 7 phase gate [28]. Usually, to simplify the
pulse sequences, the first Hadamard gate is replaced with a
single-bit R (-7/2) pulse and the second one is replaced
with a single-bit R (7/2) pulse. This means that the time for
a controlled-NOT gate equals the time for a 7 phase gate plus
the time for a single-bit 27 pulse. Due to the very short time
for a single-bit 27 pulse at large Rabi frequency, the total
time for a controlled-NOT gate is dominated by the time for a
7 phase gate. By choosing the same parameters as for Table
I, and ignoring the short times for single-bit operations, we
can estimate the possible numbers of controlled-NOT gates
per second,

Dy __dd

N= =—F——. 8
har  4mlehr’ @®

The values of N for different diatomic bits XY are shown in
Table II. Most of the N values are of the order of 10*, which
guarantees that the system can successfully implement a lot
of quantum logic gates before it loses quantum coherence.

C. Readout

There are two different choices for reading out the final
states. The first one is photon scattering which has been used
to detect states of ion trap quantum computer [29]. The basic
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idea is illuminating the diatomic qubits with a circularly po-
larized laser beam tuned to the cycling transition from the
ground state |G) of the selected particle (atom A, atom B, or
molecule C) to the corresponding excited state |E), see Fig.
1(c). If there are particles in |G), the photomultiplier will
detect the scattered photons. Otherwise, there are no scat-
tered photons. The second one is state-selective resonant ion-
ization [19,30]. In this method, one can apply a resonant
laser pulse to selectively ionize the molecular ground state
(qubit state |1)) after rapidly switching off the external gra-
dient electric field. Then the electrons and ions can be de-
tected by imaging techniques.

D. Open problems

In real experiments, many practical factors must be taken
into account. One is the strength of the optical lattice poten-
tial needed to keep the system in the Mott insulating phase
with two different atoms or a heteronuclear molecule per
site. In the further study, it would be interesting to analyze
the details of quantum phase transitions to quantify the pa-
rameter region for the insulating phase, in particular, the ef-
fects of conditional dipole-dipole interaction and Raman
coupling between atomic and molecular states. Another im-
portant factor is decoherence. As pointed out in previous
studies [ 14], the decoherence from spontaneous emission can
be avoided by choosing lasers far detuned from atomic tran-
sitions to form the optical lattices. In our model, we have
also neglected the motional states localized in each lattice
site. To avoid the coupling between motional excitation and
gate operation, similar to the proposal by Jaksch et al. [15],
one has to confine the qubits in deep Lamb-Dicke regimes to
eliminate the significant momentum transfer to the qubits
from the operational lasers. However, some vibrational and
rotational molecular states and even some hyperfine states
may be excited by the Raman processes. The effects of these
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excited states will bring a source of decoherence which is not
easy to eliminate.

III. SUMMARY AND DISCUSSION

In conclusion, we have demonstrated the possibility of
using diatomic bits with conditional dipole-dipole interaction
to implement scalable and universal quantum computation.
By trapping the ultracold diatomic bits within optical lattices,
the system can be scaled to a large number of qubits. Com-
bination of the coherent Raman transition between atomic
and heteronuclear molecular states with the free evolution
involving conditional dipole-dipole interaction makes the
QIP based upon these diatomic qubits universal. Unlike the
previous proposals for quantum computation in optical lat-
tices, our proposal does not require relative shifting of the
spin-dependent optical lattice potentials [14,15], coupling to
Rydberg states with large electric dipole moments [14,18] or
refocusing procedures to eliminate the effects of non-nearest-
neighbor interaction [19]. We have also shown that the se-
lective addressing of qubits can be realized by applying an
external gradient electric field, and that the strength of
dipole-dipole interactions guarantees the performance of a
large number of quantum logic gates (in order of 10%) per
second.

Our analysis can also be applied to the case of two differ-
ent kinds of Fermi atoms in optical lattices. For the system of
Fermi atoms, due to the Pauli blocking, the s-wave scattering
between Fermi atoms of the same kind is absent. That is, the
Hamiltonian (1) has no terms containing U,, or Up,.
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