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We present an experimental implementation of the coined discrete-time quantum walk on a square using a
three-qubit liquid-state nuclear-magnetic-resonance �NMR� quantum-information processor �QIP�. Contrary to
its classical counterpart, we observe complete interference after certain steps and a periodicity in the evolution.
Complete state tomography has been performed for each of the eight steps, making a full period. The results
have extremely high fidelity with the expected states and show clearly the effects of quantum interference in
the walk. We also show and discuss the importance of choosing a molecule with a natural Hamiltonian well
suited to a NMR QIP by implementing the same algorithm on a second molecule. Finally, we show experi-
mentally that decoherence after each step makes the statistics of the quantum walk tend to that of the classical
random walk.
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I. INTRODUCTION

The idea of exploiting the quantum-mechanical behavior
of a device to gain power in simulating quantum systems
was first introduced by Feynman �1�. The field of quantum
computing has since grown enormously with the discovery
of two algorithmic pillars: Shor’s factoring algorithm �2� and
Grover’s search algorithm �3�. Both of these demonstrate a
clear speedup over their classical counterparts. Following in
this path, many other quantum algorithms have been devel-
oped that provide a speedup �4–6�. A more recent addition to
the family of quantum algorithms which demonstrate an ex-
ponential speedup are those based on the quantum random
walk—the quantum version of the successful classical ran-
dom walk �7�.

There is, however, a need to explore more than the simple
computational properties of the algorithms. They must also
be experimentally tested in real devices and their relative
ease of implementation compared and considered. In particu-
lar, in quantum-information-processor �QIP� devices where
we are controlling the natural Hamiltonian, it is important to
choose a system where the Hamiltonian is amenable to au-
tomatic and systematic control. This can be explored by
implementing the same algorithm in different molecules and
contrasting the performance. Although many different imple-
mentation schemes have been proposed for the quantum-
random-walk algorithm, using, for example, trapped ions �8�,
an optical lattice �9�, cavity QED �10�, or an optical cavity
�11�, these have not been tested. The only experimental test
of a quantum walk is the continuous-time version of a quan-
tum walk on a square using a two-qubit nuclear magnetic
resonance �NMR� QIP �12�. This work showed the contrast
between a classical and quantum random walk and showed
the influence of entanglement on the probability distribution
of the quantum walk. Here, we present an experimental proof
of principal experiment of a discrete-time quantum walk on a

square. The effects of decoherence on the quantum random
walk has been investigated by several authors and, indeed, it
may offer some benefits �13,14�. Therefore, we also explored
the quantum to classical transition of our walk under the
addition of decoherence to the quantum register. Further-
more, we compared and contrasted two different control
schemes and molecules by implementing the algorithm on
two molecules.

II. QUANTUM RANDOM WALKS

In the development of deterministic classical randomized
algorithms, the methods of Markov chains and random walks
have played a fundamental role �15�. These algorithms can
be divided into two categories: continuous-time random
walks when the walker has a probability per unit time to
make a move and discrete-time random walks where the
walker moves at defined time steps. Since these processes are
stochastic, it is not surprising that they have quantum coun-
terparts. The quantum versions, however, show remarkable
differences with their classical analogs. The continuous-time
quantum walk �CTQW� �16� has been shown to provide an
exponential speedup in propagation through a graph �7,17�.
The discrete-time quantum walk �DTQW� �18� plays an im-
portant role in the speedup of a quantum algorithm design
for spatial searching �19–21�.

One step of a classical discrete-time random walk on a
circle with n nodes, denoted by �0, . . . ,n−1�, is performed
by repetition of the following two steps: �1� the walker first
flips a coin and then �2� moves either clockwise or counter-
clockwise depending on the outcome of the coin toss.

If we perform a quantum-mechanical treatment of the
situation, we can label the nodes with a mutually orthonor-
mal set of state vectors ��i��i=0

n−1. The coined DTQW on the
circle can be seen as “quantumly” flipping a coin degree of
freedom using a unitary operation and then coherently mov-
ing the walker position degree of freedom clockwise, or
counterclockwise, conditioned on the state of the coin �22�.*Electronic address: c4ryan@iqc.ca
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For a Hadamard walk, the coin flipping operation is simply
the Hadamard gate described by the matrix

Ĥ =
1
	2


1 1

1 − 1
� . �1�

Now the conditional shift operator is defined as

Ŝ�H��i� = �H��i � 1� , �2�

Ŝ�T��i� = �T��i � 1� , �3�

where � and � are understood to be addition and subtraction
modulo n and �H� and �T� describe the two basis states of the
coin. Therefore, if the walker is in position �i�, he will move
clockwise to the position �i � 1� if the coin is in the state �H�
or counterclockwise to �i � 1� if the coin in the state �T�. We
can write this operator as

Ŝ = �
i=0

n−1

��H�H� � �i � 1�i� + �T�T� � �i � 1�i�� . �4�

Then one step of the DTQW is defined as applying the op-
erator

Ŵ = Ŝ�Ĥ � 1� . �5�

On a circle, this type of algorithm shows destructive in-
terference effects and a probability distribution that is peri-
odic in time. The contrasting dynamics for the classical and
quantum random walks are shown in Fig. 1. As opposed to
the classical walk where the probability is always spread out,
the quantum walk has steps where the probability amplitudes
interfere such that all the probability comes back to one
node. Furthermore, this walk is periodic in that after eight
steps, the corresponding propagator is equal to the identity
and the system comes back to its original state.

In our experimental setup we have three qubits available,
which allows one qubit to describe the coin state and two for
the position state. Thus, we have n=4, and we are perform-
ing a discrete quantum walk on a square. The shift operator

defined in Eq. �4� would require a complicated quantum cir-
cuit involving a Toffoli gate. We can simplify the circuit
required by using a shifting operator that moves the walker
along a direction vector—i.e., horizontally or vertically �this
also is analogous to the random walk on the hypercube �23��.
Therefore, if we label the corners of the square as shown in
Fig. 2, the shift operator on the three qubit register becomes

Ŝ = P̂HX̂2 + P̂TX̂3 = �P̂HX̂2 + P̂T��P̂TX̂3 + P̂H�

= �X̂1CNOT1,2X̂1�CNOT1,3, �6�

where CNOT denotes controlled-NOT, X denotes the standard
�x Pauli matrix, PH/T are the projectors on the two coin
states, and the superscript indicates on which of the qubits
the action is performed. Here, it is understood that the first
qubit represents the coin and the second and third the posi-
tion register. The resulting probabilities for each step are
shown in Table I.

III. LIQUID-STATE NMR QUANTUM-INFORMATION
PROCESSING

A. Basic principles

A liquid-state NMR QIP consists of an ensemble of
roughly 1020 identical molecules dissolved in a liquid sol-

FIG. 1. Comparison of the dynamics of the classical �left� and quantum �right� random walk on a square for three steps. H or T represents
the state of the coin and the number the position of the walker at one of the four nodes of the square. p is the probability of each classical
state and A is the probability amplitude for the quantum state. Part �a� for each step is the coin flip and part �b� the movement around the
square. In both cases the walker starts at node 0 with the coin in the heads state. After one step he has a 50% probability of being at either
node 1 or 3. Then, in the second step he goes to either 0 or 2 with a 50% probability. In the third step, however, the two types of walk
diverge. The classical walk continues to oscillate and the probability remains spread out. In the quantum walk, on the other hand, the
probability amplitudes interfere and cancel out, leaving all the probability in one corner after three steps.

FIG. 2. Logical labeling of the nodes on which we implemented
the DTQW. With this labeling, flipping the first qubit corresponds to
a horizontal move and flipping the second qubit a vertical move.
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vent. Due to the fast tumbling motion of the molecules, they
are essentially decoupled from each other; ideally, all the
molecules have the same evolution. We can think of the
quantum register made of qubits that correspond to the spin-
1
2 nuclei within each molecule. The sample is placed in a
strong homogeneous magnetic field which provides the
quantization axis and causes the spins to precess around the
axis of the field. It is possible to implement single-qubit
gates using radio-frequency �rf� pulses resonant with the pre-
cession frequency, which can effect a rotation about any axis
orthogonal to the axis of the external field. Two-qubit gates
are effected through the coupling from the natural Hamil-
tonian, which produces a controlled phase gate �24�.

If the molecule used contains n distinguishable nuclei and
the magnetic field is aligned along the z axis, then the system
Hamiltonian is approximated by

Ĥ = ��
i=1

n

�iẐi +
�

2 �
i�j

JijẐi � Ẑj , �7�

where �i is the Larmor frequency of spin i in Hz. Jij is the
coupling strength between spin i and j in Hz and Z is the
conventional Pauli operator �z. The interaction part of the
Hamiltonian can be approximated to the above Ising form
�weak-coupling regime or secular approximation� only if the
difference between any two nuclei Larmor frequencies is
much greater than the coupling between the nuclei. We can
also turn off the coupling between any two spins as needed
by applying refocusing rf pulses.

B. Implementing dephasing in NMR

We can apply a controllable amount of decoherence to
selected spins using gradient techniques in NMR. Consider
only one nucleus with state �, and suppose we work in the
rotating frame of that spin. On a NMR spectrometer, it is
possible to apply a gradient to the external magnetic field.
During the time that the gradient is applied, the spins will
precess at different frequencies depending on their position
in the sample. The state of the ensemble will then be given
by an average over the observable sample,

�� =
1

2a
�

−a

a

e−i����tz/2�Ẑ�ei����tz/2�Ẑdz , �8�

where 2a is the length of the sample, t is the interval of time
the gradient is being applied, and ��=� /� and �=� /Bz, the
gyromagnetic ratio of the nucleus. If we compute the inte-
gral, it can be shown that

�� = �1 − p�� + pẐ�Ẑ ,

p =
1

2

1 −

1

���ta
sin����ta�� , �9�

which is the exact form of a z-dephasing decoherence. The
amount of dephasing can be controlled by the strength and
time of the gradient pulse. Particular spins can be protected
from the applied decoherence by applying a 180° rotation
and applying a second gradient of the same strength and
time. This second gradient will reverse the dephasing of the
rotated spins and double it on the spins that were not rotated.

IV. EXPERIMENT

We implemented the quantum walk algorithm on two
molecules: trans-crotonic acid and trichloroethylne �TCE�.
This allowed us to compare the quality of two different
methods of control and the merits of the two molecules.

A. Implementation on crotonic acid

The seven-qubit molecule trans-crotonic acid �four car-
bons, two hydrogens, and one methyl group� has been used
in experimental demonstrations of quantum algorithms, such
as quantum error correction �25,26� and quantum simulations
�27�. In this experiment, we used the carbon backbone of
labeled trans-crotonic acid in a solution of deuterated ac-
etone. The hydrogen nuclei were decoupled using standard
heteronuclear decoupling techniques �28�. We used C3 as the
coin and C2 and C4 as the position register �see Fig. 3�. C1
was used as a labeling spin to ease the creation of the initial
state. On a Bruker DRX Avance 600 NMR spectrometer, the
molecule has the Hamiltonian parameters shown in Fig. 3.

TABLE I. Probability to be in each of the corner states as denoted in Fig. 2. While in the classical random
walk the probability always remains spread out between two corners, in the quantum random walk all the
probability returns to one corner at certain time steps.

Corner

Classical Quantum

0 1 2 3 0 1 2 3

Step 0 1 1

Step 1 0.5 0.5 0.5 0.5

Step 2 0.5 0.5 0.5 0.5

Step 3 0.5 0.5 1

Step 4 0.5 0.5 1

Step 5 0.5 0.5 0.5 0.5

Step 6 0.5 0.5 0.5 0.5

Step 7 0.5 0.5 1

Step 8 0.5 0.5 1

EXPERIMENTAL IMPLEMENTATION OF A DISCRETE-… PHYSICAL REVIEW A 72, 062317 �2005�

062317-3



Since our system is homonuclear, the control of individual
qubits is achieved through soft Gaussian-like rf pulses at the
Larmor frequency of the target nucleus. The length of the
soft pulses is of the order of the inverse of the smallest
chemical shift difference with the other nuclei. In our experi-
ment the length of the selective pulses on C1 and C2, C3, C4
were 192 	s and 704 	s, respectively.

1. Initial-state preparation

The experiment required the initial state

�in = * � �000�000� = * �1 + Z��1 + Z��1 + Z� . �10�

We created the labeled pseudopure state Z000 �using the no-
tation C1C2C3C4� following the spatial averaging technique
elaborated in �29�.

2. Pulse sequence implementation

The unitary of one step of the DTQW from Eq. �6� was
translated to a sequence of pulses and coupling gates as
shown in Fig. 4. Although many pulse sequences are possible
through the use of commutation rules, this particular one was
designed to be the most efficient due to the cancellations
possible during multiple-step sequences. Moreover, the ZZ
gates are achieved simultaneously, which shortens the overall

pulse sequence, thus reducing decoherence effects; the slight
mismatch in coupling strengths was taken care of with a
refocusing pulse on C4 near the end of the coupling period
�30�. Commutation rules were also used to cancel pulses be-
tween the final step and the readout pulses.

The ideal pulse sequence of rotations and couplings was
then input into a pulse sequence compiler which numerically
optimized the timing and phases of the pulses. During the
selective excitations, the first-order deviations from the ideal
pulse are simply phase �the Bloch-Siegert shift� rotations on
the other qubits and ZZ couplings that occur during the
finite-length pulse. The compiler presimulates the selective rf
pulses using an efficient pairwise simulation and then de-
composes the simulated unitary into phase and coupling er-
rors sandwiching the ideal selective pulse. These errors can
then be taken into account by the refocusing scheme and
phase of the pulses, so that the overall unitary is as close to
the desired one as possible.

Since we are concerned with the final state of only three
qubits in this experiment, complete state tomography is still
feasible. On a three-qubit system in NMR, only seven differ-
ent readout pulses are required to rotate each term of the
density matrix into observable simple single coherences.1

And since we were operating on a homonuclear system, ob-
serving the signal from all spins in one experiment was pos-
sible, with some post-processing to adjust for the correct
phase of each individual rotating frame. The coupling be-
tween the labeling spin C1 and the other three qubits is re-
solvable, and so the presence of the labeling spin does not
interfere with the tomography of C2, C3, and C4.

3. Experimental results

For the state tomography each of the peaks in the spectra
were fitted using absorption and dispersion Lorentzian peaks.
The full density matrix was then reconstructed by appropri-
ately summing up the corresponding Pauli terms. Where two
experiments gave values for the same density matrix terms,
the values were simply averaged. As we observed only C2,
C3, and C4, the term ZIII could not be determined. A suitable
amount of that term was subsequently added to the density
matrix so as to make the initial state as close to Z000 as
possible. This amount was then kept constant for the density
matrix reconstruction in subsequent experiments.

To quantify the success of our experiments, we computed
the fidelity of the experimental density matrix to both the
ideal and simulated results. In NMR, all states are nearly
completely mixed and the fidelity measure introduced in �31�
is appropriate. We can compare one density matrix to another
using the formula

FA,B =
Tr��A�B�

	Tr���A�2�	Tr���B�2�
. �11�

We made two comparisons. First, we compare the experi-
mentally determined density matrix to the theoretically ex-
pected result. The theoretical result is achieved by
multiplying the ideal initial state by the ideal propagator. To

1Readout pulses yII,IIy,IIx,yyI,Ixx,yyy,xxx are sufficient.

FIG. 3. �Color online� Molecular structure of trans-crotonic acid
and its Hamiltonian parameters. The chemical shifts are given as the
diagonal elements and the coupling strength �Hz� by the off-
diagonal elements. Note that since the darkly shaded unlabeled nu-
clei are oxygen whose natural abundance of 16O with 0 spin is close
to 100%, the two oxygen nuclei do not couple with the rest of the
molecule and can be ignored. Lightly shaded unlabeled nuclei are
hydrogen which were decoupled during the experiment.

FIG. 4. NMR pulse sequence representing one step of DTQW.
The notation Ri


 means a rotation of an angle 
 around the axis i.
Refocusing pulses are not shown. Since each nucleus is tracked in
its own rotating frame, rotations about the z axis are implemented
instantaneously through a change of reference frame.
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investigate how well we understand our control of the sys-
tem, we also compare the fidelity of the results from a simu-
lation of the experiment to the theoretical result.

The fidelities of simulated and experimental results are
compared in Table II and Fig. 5 give a sample of the fully
reconstructed density matrices for C2, C3, and C4. The loss of
fidelity in our experiment, over and above that of the simu-
lated control errors, is explained from three sources which
are not taken into account by the simulation. We have losses
from T2 relaxation. Although our pulse sequence is short
compared with the T2 relaxation times, during the quantum-
walk algorithm, the state is often in high coherences, which
decay much faster than the simple T2 time. Inhomogeneities
in the strong magnetic field also cause extra relaxation and
dephasing. Further losses come from inhomogeneities of the
rf field used to implement rotations and pulse-angle miscali-
bration.

4. Addition of decoherence on the coin

In a subsequent experiment, we added dephasing decoher-
ence to the entire qubit register using the technique described
in Sec. III B. We expect that the behavior of the quantum
walk should converge to the classical walk as the decoher-
ence becomes complete after each step. To demonstrate this
claim experimentally, we implemented the quantum random
walk for four steps, adding decoherence of a certain strength
between each step of the walk. The differences between the
quantum and classical walks are manifested in the different
probabilities of being in each of the corners after each step.
The results are shown in Table III for gradient strengths cor-
responding to no, partial, and full decoherence.

The divergence between the classical and quantum walks
shows most clearly in steps 3 and 4. Whether the walk is

classical or quantum, steps 1 and 2 yield the same measure-
ment probabilities for the position �however, the quantum
version with decoherence will have coherent superposition
states�. Analyzing the data from steps 3 and 4, one can see
that the quantum interference, present so clearly in the quan-
tum walk with no decoherence, is less obvious as the amount
of decoherence increases. Instead of the probability all col-
lecting in one corner, it remains spread out between two
opposite corners—the same as in the classical walk. This can
also be seen in part �b� of Fig. 5 by the reduction of the
off-diagonal terms of the density matrix as the decoherence
becomes stronger and the appearance of diagonal terms
which were previously canceled by the quantum interfer-
ence.

The probabilities even with zero gradient strength do not
correspond perfectly to the ideal quantum walk. We believe
these errors come from two sources. Because the gradient
does not commute with any pulses, we were not able to use
commutation rules to reduce the number of pulses during
multiple-step experiments. Furthermore, gradient methods
are hampered by diffusion and multiple gradients may lead
to a return of signal that was “erased” by a previous gradient.

B. Comparison with the TCE molecule

For comparison purposes and to show the importance of
choosing a molecule with good characteristics in liquid-state
NMR quantum-information processing, we show our results
from our initial attempt to implement the quantum walk on
the molecule trichloroethylene—a molecule with which we
have much less control due to the presence of strong cou-
pling. The molecule has been used for some initial demon-
strations of quantum algorithms �32�. A diagram of the mol-
ecule and the parameters of its Hamiltonian are shown in
Fig. 6.

1. Pseudopure-state preparation

Since the TCE molecule contains only three qubits, we
are unable to create the labeled pseudopure state that we used
in the crotonic acid experiments. Instead, we chose to use
temporal averaging and add three separate experiments to
achieve the initial state �000�. The three different initial states
we used are

�1 = Z � �1 + Z� � �1 + Z� ,

�2 = 1 � Z � �1 + Z� ,

�3 = 1 � 1 � �1 + Z� . �12�

If we add the results of these three experiments, it is
equivalent to having performed the algorithm on the initial
state:

�in = �1 + �2 + �3 = �1 + Z� � �1 + Z� � �1 + Z� = �000�000� .

�13�

Since there is only one hydrogen nucleus in the molecule,
we can use broadband hard pulses to control it. One useful
property of the TCE molecule in a 600-Mhz spectrometer is
that the J coupling between the two carbons is almost exactly
10.5 times smaller than the difference in chemical shift ����.

TABLE II. Fidelities �in percent� of experimental and simulated
results. The first column gives the fidelity of the experimental den-
sity matrices determined from the tomography, with respect to the
theoretical expected density matrix. The second column gives the
fidelity of the simulation results. Errors are estimated from the fit-
ting procedure. Note that since computer simulation of the spatial
averaging that occurs during the pseudopure preparation is difficult
and inaccurate, the initial state for the simulation was the experi-
mental pseudopure state determined from the tomography. The fluc-
tuations observed in the fidelity come from uncertainties in the fit
and instabilities in the spectrometer over the course of the
experiment.

Experimental Simulated

Step 0 98±5 —

Step 1 97±5 98

Step 2 98±5 98

Step 3 92±5 98

Step 4 99±5 98

Step 5 94±5 97

Step 6 96±5 97

Step 7 96±5 97

Step 8 87±4 97
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Therefore, during the time for a �� /2�ẐẐ coupling gate be-
tween the two carbons ��t=1/2JC1C2

�, the relative chemical
shift evolution of C2 with respect to C1 will be 
=2����t
=��� /JC1C2

=−10.5�=−� /2 mod2�. Therefore, in the ref-
erence frame rotating at the Larmor frequency of C1, every
time there is a � /2 coupling between the carbons, an extra
Rz

−�/2 is naturally performed on C2.
The chemical shift difference between the two carbons is

small and the coupling between them large, so selective
pulses were impossible to achieve using the same technique
of Gaussian-shaped pulses used in the crotonic acid experi-
ments. These pulses would be very long �roughly 5 ms� and
the large coupling errors that would occur during the pulse
would be difficult to refocus. Instead, it was possible to per-
form selective pulses using hard pulses and the chemical

shift evolution. To illustrate the technique, we demonstrate
how to perform a selective � /2 rotation of C2. If we use a
reference frame rotating at the Larmor frequency of C1, then,
during a time �=1/4��, the spin C1 will not precess while
C2 will undergo a rotation of −� /2 around the z axis. Since
1/4�� is much less than the coupling time 1/2JC1C2

, we can
ignore the coupling between the two carbons and refocus
only the hydrogen. Using this selective z rotation combined
with hard pulses that rotate the two carbons together, we can
perform a � /2 rotation with phase  on only C2 as follows:

�R−�/2
�/2

� R−�/2
�/2 ��1 � Rz

−�/2��R+�/2
�/2

� R+�/2
�/2 �

= 1 � R−�/2
�/2 Rz

−�/2R+�/2
�/2 = 1 � R

�/2. �14�

Similar pulse sequences can be derived to perform a �
rotation on C2 and selective pulses on C1. Because of the

FIG. 5. Examples of the real part of reconstructed density matrices after �a� steps 0, 4, and 8 �left to right� of the quantum walk
implemented on crotonic acid; �b� step 3 with no, partial, and full decoherence applied after each step; and �c� steps 0, 4, and 8 of the
quantum walk implemented on TCE. The effects of the quantum interference returning all the probability to one corner is clearly evident in
steps 4 and 8; however, the fidelity in the TCE case is much worse. The density matrices from the decoherence experiments show how
destruction of the off-diagonal coherences prevents all the probability returning to one corner after three steps.
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different form of selective pulses used, the pulse sequences
were written and optimized by hand. This required a differ-
ent pulse-sequence implementation of the quantum-walk uni-
tary, which avoided as much as possible selective pulses and
z rotations where possible. The one z rotation used is a natu-
ral outcome of the C1-C2 coupling gate as described above.
This alternative pulse sequence is shown in Fig. 7.

2. Experimental results

Fidelity results, similar to those calculated for the crotonic
acid experiments, are shown in Table IV, and a sample of
reconstructed density matrices can be seen in Fig. 5�c�.
Clearly this experiment was not as successful as the imple-
mentation on the crotonic acid molecule. There are two main
reasons for this loss of fidelity. First, the chemical shift dif-
ference between the two carbons is very small. Because of
this, the secular approximation no longer holds and thus the
coupling between the two carbon spins can no longer be
approximated by the Ising form ZC1

� ZC2
. Indeed, it has to

take all the strong-coupling terms into account—i.e.,

S�C1
·S�C2

=XC1
� XC2

+YC1
� YC2

+ZC1
� ZC2

.

Unfortunately, this strong coupling renders our ideal ZZ
gates much less precise. Every coupling gate performed
added XX and YY error terms which we could not refocus.
This coupling also caused problems during our selective car-
bon rotations. Although the coupling is small, there is an
unrefocusable coupling of �JC1C2

/4���4.27°. Our only
way to minimize these errors was to optimize the delay times
analytically and from numerical simulations. However, these
did not correspond well to the experimentally determined
optimal values. This point also clearly demonstrates the sec-
ond reason for the less satisfactory results on TCE. We were
unable to use the numerical optimization of the pulse-
sequence compiler used for crotonic acid. The compiler pro-
vides a systematic and reliable way to produce pulse se-
quences that implement unitaries with high fidelity and is
clearly superior to writing and optimizing pulse sequences
by hand. These experiments also showed the limits of our
simulator. For the crotonic acid experiments, where only soft
pulses were used, the rf power applied changed slowly and
the simulator was faithful to what rf power the spins were
experiencing. In TCE, where control was achieved only
through short hard pulses, other effects such as phase tran-
sients enter and the spins might experience an rf field much
different from the ideal square pulse simulated. To fully un-
derstand the issues surrounding hard-pulse control a much
more detailed study of the probe response must be under-
taken. This underlines a key point: control of a more com-
plex and strongly coupled system could be obtained through
sophisticated control techniques such as strongly modulating

TABLE III. Estimate of quantum probability to be in each corner of the square for one through four steps �cf. Table I�. The results were
obtained for gradient strengths corresponding to no, partial, and full decoherence. The probabilities were obtained by reconstructing the
density matrix using the same fitting software used before and then applying the position measurement projectors to the reconstructed density
matrix.

Corner

Quantum walk with decoherence

None Partial Full

0 1 2 3 0 1 2 3 0 1 2 3

Step 0 100±8 0±1 4±1 −2±1 100±8 0±1 4±1 −2±1 100±8 0±1 4±1 −2±1

Step 1 2±1 57±4 −1±1 43±3 2±1 58±4 −2±1 44±3 0±1 59±4 −2±1 45±4

Step 2 57±4 1±1 44±3 −1±1 50±4 7±1 40±3 5±1 51±4 4±1 46±40 1±1

Step 3 7±1 14±1 3±1 78±6 2±1 14±1 1±1 84±6 −1±1 53±4 −3±1 53±4

Step 4 15±1 −1±1 84±6 3±1 19±2 1±1 78±6 4±1 50±4 0±1 53±4 −1±1

FIG. 6. Diagram of 13C labeled TCE. The chemical shifts and
couplings are given in the table. Note that since the chlorine nuclei
�unlabeled� have a spin of 3

2 , they have an electric-quadrupole mo-
ment which causes them to decohere quickly and they have a very
small coupling to the rest of the molecule which we can ignore in
the natural Hamiltonian of the molecule.

FIG. 7. Circuit used to implement one step of the DTQW on the
TCE. The z rotation on C2 occurs naturally during the coupling with
C1. Note also that the refocusing pulses are not shown in this pulse
sequence.
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pulses �31�; however, it seems prudent to invest the effort in
a wise choice of molecule.

V. CONCLUSION

We have presented the first experimental implementation
of a coined discrete-time quantum walk. It showed a clear
difference with the classical coined quantum walk, since the
DTQW possesses destructive interference and periodicity in
its evolution. A proof of principle like this lays down the
path to more elaborate experiments using discrete quantum
walks, such as the database searches, walks on a hypercube
or N-node circle, or a more profound study of the effect of
decoherence on the walk. This paper also demonstrates the
importance of choosing a natural Hamiltonian well suited to
automated control in the context of quantum-information
processing.
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TABLE IV. Experimental and simulated fidelities �in percent�
for the implementation of eight steps of the DTQW on the molecule
TCE. Again, simulation of the pseudopure state was not performed.

Experimental Simulated

Step 0 98±6 —

Step 1 85±5 96

Step 2 82±4 94

Step 3 70±4 93

Step 4 80±4 90

Step 5 76±4 89

Step 6 65±4 86

Step 7 53±4 84

Step 8 43±4 83
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